1
|
Sato K, Sato T, Hirotani R, Bam M. Effect of combined blue light and 5-ALA on mitochondrial functions and cellular responses in B16F1 melanoma and HaCaT cells. Cytotechnology 2024; 76:795-816. [PMID: 39435424 PMCID: PMC11490642 DOI: 10.1007/s10616-024-00654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/21/2024] [Indexed: 10/23/2024] Open
Abstract
In this study, we investigated the effects of blue light and 5-aminolevulinic acid (5-ALA) co-treatment on B16F1 melanoma cells and HaCaT keratinocytes. We focused on cellular responses, including mitochondrial function, DNA integrity, and gene expression. Co-treatment significantly damaged the mitochondria, altered their morphology, induced mitochondrial membrane depolarization, increased intracellular reactive oxygen species, and led to cardiolipin peroxidation in both cell types. This approach promoted DNA fragmentation and apoptosis. However, blue light and co-treatment with 5-ALA did not enhance the formation of cyclobutane pyrimidine dimers, 6-4 photoproducts, or Dewar photoproducts. Moreover, it triggered complex, time-dependent changes in gene expression, particularly the upregulation of MMP-1 and p21 in HaCaT cells. Our findings revealed that blue light and 5-ALA co-treatment caused substantial cellular stress and damage, suggesting their therapeutic potential against melanoma and highlighting the need for caution and precision in their application to avoid harming normal cells. This underscores the necessity for further research to refine therapeutic approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00654-x.
Collapse
Affiliation(s)
- Kazuomi Sato
- Graduate School of Agriculture, Tamagawa University, 6-1-1 Machida, Tokyo, 1940-8610 Japan
- Biosystems and Biofunctions Research Center, Tamagawa University Research Institute, 6-1-1 Machida, Tokyo, 194-8610 Japan
| | - Taiki Sato
- Graduate School of Agriculture, Tamagawa University, 6-1-1 Machida, Tokyo, 1940-8610 Japan
| | - Riku Hirotani
- Graduate School of Agriculture, Tamagawa University, 6-1-1 Machida, Tokyo, 1940-8610 Japan
| | - Munetsugu Bam
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3998 Yamanashi Japan
| |
Collapse
|
2
|
Srivastava P, Jha S, Singh SK, Vyas H, Sethupathi P, Nair RS, Ramachandran K, Rana B, Kumar S, Rana A. Protease activated receptor-1 regulates mixed lineage kinase-3 to drive triple-negative breast cancer tumorigenesis. Cancer Lett 2024; 603:217200. [PMID: 39222677 DOI: 10.1016/j.canlet.2024.217200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) is difficult to treat breast cancer subtype due to lack or insignificant expressions of targetable estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2). Therefore, finding a targetable protein or signaling pathway in TNBC would impact patient care. Here, we report that a member of the Mixed Lineage Kinase (MLK) family, MLK3, is an effector of G-protein-coupled protease-activated receptors 1 (PAR1) and targeting MLK3 by a small-molecule inhibitor prevented PAR1-mediated TNBC tumorigenesis. In silico and immunohistochemistry analysis of human breast tumors showed overexpression of PAR1 and MLK3 in TNBC tumors. Treating α-thrombin and PAR1 agonist increased MLK3 and JNK activities and induced cell migration in TNBC cells. The PAR1 positive/high (PAR1+/hi) population of TNBC cells showed aggressive tumor phenotype with increased MLK3 signaling. Moreover, combined inhibition of the PAR1 and MLK3 mitigated the TNBC tumor burden in preclinical TNBC models. Our data suggests that activation of the PAR1-MLK3 axis promotes TNBC tumorigenesis. Therefore, combinatorial therapy targeting MLK3 and PAR1 could effectively reduce TNBC tumor burden.
Collapse
Affiliation(s)
- Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Saket Jha
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Harsh Vyas
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Periannan Sethupathi
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kheerthivasan Ramachandran
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA; Research Unit, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA; Research Unit, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Karpińska K, Mehlich D, Sabbasani VR, Łomiak M, Torres-Ayuso P, Wróbel K, Truong VNP, Serwa R, Swenson RE, Brognard J, Marusiak AA. Selective Degradation of MLK3 by a Novel CEP1347-VHL-02 PROTAC Compound Limits the Oncogenic Potential of TNBC. J Med Chem 2024; 67:15012-15028. [PMID: 39207123 PMCID: PMC11403673 DOI: 10.1021/acs.jmedchem.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) is associated with poor prognosis because of the lack of effective therapies. Mixed-lineage protein kinase 3 (MLK3) is a protein that is often upregulated in TNBC and involved in driving the tumorigenic potential of cancer cells. Here, we present a selective MLK3 degrader, CEP1347-VHL-02, based on the pan-MLK inhibitor CEP1347 and a ligand for E3 ligase von Hippel-Lindau (VHL) by employing proteolysis-targeting chimera (PROTAC) technology. Our compound effectively targeted MLK3 for degradation via the ubiquitin-proteasome system in several cell line models but did not degrade other MLK family members. Furthermore, we showed that CEP1347-VHL-02 robustly degraded MLK3 and inhibited its oncogenic activity in TNBC, measured as a reduction of clonogenic and migratory potential, cell cycle arrest, and the induction of apoptosis in MDA-MB-468 cells. In conclusion, we present CEP1347-VHL-02 as a novel MLK3 degrader that may be a promising new strategy to target MLK3 in TNBC.
Collapse
Affiliation(s)
- Kamila Karpińska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Dawid Mehlich
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Venkata R Sabbasani
- Chemistry and Synthesis Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Michał Łomiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Pedro Torres-Ayuso
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Katarzyna Wróbel
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Vi Nguyen-Phuong Truong
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Remigiusz Serwa
- Proteomic Core Facility, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Anna A Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| |
Collapse
|
4
|
Ke R, Kumar S, Singh SK, Rana A, Rana B. Molecular insights into the role of mixed lineage kinase 3 in cancer hallmarks. Biochim Biophys Acta Rev Cancer 2024; 1879:189157. [PMID: 39032538 DOI: 10.1016/j.bbcan.2024.189157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Mixed-lineage kinase 3 (MLK3) is a serine/threonine kinase of the MAPK Kinase kinase (MAP3K) family that plays critical roles in various biological processes, including cancer. Upon activation, MLK3 differentially activates downstream MAPKs, such as JNK, p38, and ERK. In addition, it regulates various non-canonical signaling pathways, such as β-catenin, AMPK, Pin1, and PAK1, to regulate cell proliferation, apoptosis, invasion, and metastasis. Recent studies have also uncovered other potentially diverse roles of MLK3 in malignancy, which include metabolic reprogramming, cancer-associated inflammation, and evasion of cancer-related immune surveillance. The role of MLK3 in cancer is complex and cancer-specific, and an understanding of its function at the molecular level aligned specifically with the cancer hallmarks will have profound therapeutic implications for diagnosing and treating MLK3-dependent cancers. This review summarizes the current knowledge about the effect of MLK3 on the hallmarks of cancer, providing insights into its potential as a promising anticancer drug target.
Collapse
Affiliation(s)
- Rong Ke
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Khedri A, Guo S, Ramar V, Hudson B, Liu M. FOSL1's Oncogene Roles in Glioma/Glioma Stem Cells and Tumorigenesis: A Comprehensive Review. Int J Mol Sci 2024; 25:5362. [PMID: 38791400 PMCID: PMC11121637 DOI: 10.3390/ijms25105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This review specifically examines the important function of the oncoprotein FOSL1 in the dimeric AP-1 transcription factor, which consists of FOS-related components. FOSL1 is identified as a crucial controller of invasion and metastatic dissemination, making it a potential target for therapeutic treatment in cancer patients. The review offers a thorough examination of the regulatory systems that govern the influence exerted on FOSL1. These include a range of changes that occur throughout the process of transcription and after the translation of proteins. We have discovered that several non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a significant role in regulating FOSL1 expression by directly interacting with its mRNA transcripts. Moreover, an investigation into the functional aspects of FOSL1 reveals its involvement in apoptosis, proliferation, and migration. This work involves a comprehensive analysis of the complex signaling pathways that support these diverse activities. Furthermore, particular importance is given to the function of FOSL1 in coordinating the activation of several cytokines, such as TGF-beta, and the commencement of IL-6 and VEGF production in tumor-associated macrophages (TAMs) that migrate into the tumor microenvironment. There is a specific emphasis on evaluating the predictive consequences linked to FOSL1. Insights are now emerging on the developing roles of FOSL1 in relation to the processes that drive resistance and reliance on specific treatment methods. Targeting FOSL1 has a strong inhibitory effect on the formation and spread of specific types of cancers. Despite extensive endeavors, no drugs targeting AP-1 or FOSL1 for cancer treatment have been approved for clinical use. Hence, it is imperative to implement innovative approaches and conduct additional verifications.
Collapse
Affiliation(s)
- Azam Khedri
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shanchun Guo
- RCMI Cancer Research Center, Department of Chemistry, New Orleans, LA 70125, USA
| | - Vanajothi Ramar
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - BreAnna Hudson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
6
|
Al-khayyat W, Pirkkanen J, Dougherty J, Laframboise T, Dickinson N, Khaper N, Lees SJ, Mendonca MS, Boreham DR, Tai TC, Thome C, Tharmalingam S. Overexpression of FRA1 ( FOSL1) Leads to Global Transcriptional Perturbations, Reduced Cellular Adhesion and Altered Cell Cycle Progression. Cells 2023; 12:2344. [PMID: 37830558 PMCID: PMC10571788 DOI: 10.3390/cells12192344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
FRA1 (FOSL1) is a transcription factor and a member of the activator protein-1 superfamily. FRA1 is expressed in most tissues at low levels, and its expression is robustly induced in response to extracellular signals, leading to downstream cellular processes. However, abnormal FRA1 overexpression has been reported in various pathological states, including tumor progression and inflammation. To date, the molecular effects of FRA1 overexpression are still not understood. Therefore, the aim of this study was to investigate the transcriptional and functional effects of FRA1 overexpression using the CGL1 human hybrid cell line. FRA1-overexpressing CGL1 cells were generated using stably integrated CRISPR-mediated transcriptional activation, resulting in a 2-3 fold increase in FRA1 mRNA and protein levels. RNA-sequencing identified 298 differentially expressed genes with FRA1 overexpression. Gene ontology analysis showed numerous molecular networks enriched with FRA1 overexpression, including transcription-factor binding, regulation of the extracellular matrix and adhesion, and a variety of signaling processes, including protein kinase activity and chemokine signaling. In addition, cell functional assays demonstrated reduced cell adherence to fibronectin and collagen with FRA1 overexpression and altered cell cycle progression. Taken together, this study unravels the transcriptional response mediated by FRA1 overexpression and establishes the role of FRA1 in adhesion and cell cycle progression.
Collapse
Affiliation(s)
- Wuroud Al-khayyat
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jake Pirkkanen
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jessica Dougherty
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Taylor Laframboise
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Noah Dickinson
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
| | - Neelam Khaper
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Simon J. Lees
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Marc S. Mendonca
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Douglas R. Boreham
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Tze Chun Tai
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Christopher Thome
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| |
Collapse
|
7
|
Izdebska M, Zielińska W, Krajewski A, Grzanka A. Fascin in migration and metastasis of breast cancer cells - A review. Adv Med Sci 2023; 68:290-297. [PMID: 37660543 DOI: 10.1016/j.advms.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Cancer cell migration and metastasis are the biggest problems in the treatment of cancer patients. The most aggressive breast cancer (BC) is the triple-negative type. Therefore, effective therapeutic targets that limit cell migration are sought. One such target may be fascin, as its overexpression is characteristic to triple-negative breast cancer. The high level of fascin enables the formation of protrusion and thus promotes the invasion of cancer cells. Fascin also shows co-localization or functional relationships with other proteins. These are proteins involved in the epithelial-mesenchymal transition process, vimentin, cadherins, β-catenin, and matrix metalloproteinases 2/9 (MMP-2/9). Fascin is also involved in many signaling pathways protein kinase C-δ (PKCδ), Wnt/β-catenin, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and phosphatidylinositol 3-kinase (PI3K)-Akt. Therefore, in this article, we review currently available in vitro studies and compare them with The Cancer Genome Atlas (TCGA) data analysis of BC patients to demonstrate the role of fascin in the migration and invasion of cancer cells.
Collapse
Affiliation(s)
- Magdalena Izdebska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Wioletta Zielińska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Adrian Krajewski
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland.
| | - Alina Grzanka
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| |
Collapse
|
8
|
Banushi B, Joseph SR, Lum B, Lee JJ, Simpson F. Endocytosis in cancer and cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00574-6. [PMID: 37217781 DOI: 10.1038/s41568-023-00574-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Endocytosis is a complex process whereby cell surface proteins, lipids and fluid from the extracellular environment are packaged, sorted and internalized into cells. Endocytosis is also a mechanism of drug internalization into cells. There are multiple routes of endocytosis that determine the fate of molecules, from degradation in the lysosomes to recycling back to the plasma membrane. The overall rates of endocytosis and temporal regulation of molecules transiting through endocytic pathways are also intricately linked with signalling outcomes. This process relies on an array of factors, such as intrinsic amino acid motifs and post-translational modifications. Endocytosis is frequently disrupted in cancer. These disruptions lead to inappropriate retention of receptor tyrosine kinases on the tumour cell membrane, changes in the recycling of oncogenic molecules, defective signalling feedback loops and loss of cell polarity. In the past decade, endocytosis has emerged as a pivotal regulator of nutrient scavenging, response to and regulation of immune surveillance and tumour immune evasion, tumour metastasis and therapeutic drug delivery. This Review summarizes and integrates these advances into the understanding of endocytosis in cancer. The potential to regulate these pathways in the clinic to improve cancer therapy is also discussed.
Collapse
Affiliation(s)
- Blerida Banushi
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon R Joseph
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Lum
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Jason J Lee
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Fiona Simpson
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
9
|
Casalino L, Talotta F, Matino I, Verde P. FRA-1 as a Regulator of EMT and Metastasis in Breast Cancer. Int J Mol Sci 2023; 24:ijms24098307. [PMID: 37176013 PMCID: PMC10179602 DOI: 10.3390/ijms24098307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Among FOS-related components of the dimeric AP-1 transcription factor, the oncoprotein FRA-1 (encoded by FOSL1) is a key regulator of invasion and metastasis. The well-established FRA-1 pro-invasive activity in breast cancer, in which FOSL1 is overexpressed in the TNBC (Triple Negative Breast Cancer)/basal subtypes, correlates with the FRA-1-dependent transcriptional regulation of EMT (Epithelial-to-Mesenchymal Transition). After summarizing the major findings on FRA-1 in breast cancer invasiveness, we discuss the FRA-1 mechanistic links with EMT and cancer cell stemness, mediated by transcriptional and posttranscriptional interactions between FOSL1/FRA-1 and EMT-regulating transcription factors, miRNAs, RNA binding proteins and cytokines, along with other target genes involved in EMT. In addition to the FRA-1/AP-1 effects on the architecture of target promoters, we discuss the diagnostic and prognostic significance of the EMT-related FRA-1 transcriptome, along with therapeutic implications. Finally, we consider several novel perspectives regarding the less explored roles of FRA-1 in the tumor microenvironment and in control of the recently characterized hybrid EMT correlated with cancer cell plasticity, stemness, and metastatic potential. We will also examine the application of emerging technologies, such as single-cell analyses, along with animal models of TNBC and tumor-derived CTCs and PDXs (Circulating Tumor Cells and Patient-Derived Xenografts) for studying the FRA-1-mediated mechanisms in in vivo systems of EMT and metastasis.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Francesco Talotta
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Ilenia Matino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
10
|
TrkA expression directs the anti-neoplastic activity of MLK3 inhibitors in triple-negative breast cancer. Oncogene 2023; 42:1132-1143. [PMID: 36813855 DOI: 10.1038/s41388-023-02633-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Mixed Lineage Kinase 3 (MLK3) is a viable target for neoplastic diseases; however, it is unclear whether its activators or inhibitors can act as anti-neoplastic agents. We reported that the MLK3 kinase activity was higher in triple-negative (TNBC) than in hormone receptor-positive human breast tumors, where estrogen inhibited MLK3 kinase activity and provided a survival advantage to ER+ breast cancer cells. Herein, we show that in TNBC, the higher MLK3 kinase activity paradoxically promotes cancer cell survival. Knockdown of MLK3 or MLK3 inhibitors, CEP-1347 and URMC-099, attenuated tumorigenesis of TNBC cell line and Patient-Derived (PDX) xenografts. The MLK3 kinase inhibitors decreased both the expression and activation of MLK3, PAK1, and NF-kB protein and caused cell death in TNBC breast xenografts. RNA-seq analysis identified several genes downregulated by MLK3 inhibition, and the NGF/TrkA MAPK pathway was significantly enriched in tumors sensitive to growth inhibition by MLK3 inhibitors. The TNBC cell line unresponsive to kinase inhibitor had substantially lower TrkA, and overexpression of TrkA restored the sensitivity to MLK3 inhibition. These results suggest that the functions of MLK3 in breast cancer cells depend on downstream targets in TNBC tumors expressing TrkA, and MLK3 kinase inhibition may provide a novel targeted therapy.
Collapse
|
11
|
Morales-Bárcenas R, Sánchez-Pérez Y, Santibáñez-Andrade M, Chirino YI, Soto-Reyes E, García-Cuellar CM. Airborne particulate matter (PM 10) induces cell invasion through Aryl Hydrocarbon Receptor and Activator Protein 1 (AP-1) pathway deregulation in A549 lung epithelial cells. Mol Biol Rep 2023; 50:107-119. [PMID: 36309615 DOI: 10.1007/s11033-022-07986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Particulate matter with an aerodynamic size ≤ 10 μm (PM10) is a risk factor for lung cancer development, mainly because some components are highly toxic. Polycyclic aromatic hydrocarbons (PAHs) are present in PM10, such as benzo[a]pyrene (BaP), which is a well-known genotoxic and carcinogenic compound to humans, capable of activating AP-1 transcription factor family genes through the Aryl Hydrocarbon Receptor (AhR). Because effects of BaP include metalloprotease 9 (MMP-9) activation, cell invasion, and other pathways related to carcinogenesis, we aimed to demonstrate that PM10 (10 µg/cm2) exposure induces the activation of AP-1 family members as well as cell invasion in lung epithelial cells, through AhR pathway. METHODS AND RESULTS The role of the AhR gene in cells exposed to PM10 (10 µg/cm2) and BaP (1µM) for 48 h was evaluated using AhR-targeted interference siRNA. Then, the AP-1 family members (c-Jun, Jun B, Jun D, Fos B, C-Fos, and Fra-1), the levels/activity of MMP-9, and cell invasion were analyzed. We found that PM10 increased AhR levels and promoted its nuclear localization in A549 treated cells. Also, PM10 and BaP deregulated the activity of AP-1 family members. Moreover, PM10 upregulated the secretion and activity of MMP-9 through AhR, while BaP had no effect. Finally, we found that cell invasion in A549 cells exposed to PM10 and BaP is modulated by AhR. CONCLUSION Our results demonstrated that PM10 exposure induces upregulation of the c-Jun, Jun B, and Fra-1 activity, the expression/activity of MMP-9, and the cell invasion in lung epithelial cells, effects mediated through the AhR. Also, the Fos B and C-Fos activity were downregulated. In addition, the effects induced by PM10 exposure were like those induced by BaP, which highlights the potentially toxic effects of the PM10 mixture in lung epithelial cells.
Collapse
Affiliation(s)
- Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México
| | - Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, CP 54090, Tlalnepantla de Baz, Estado de México, México
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Ciudad de México, México
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México.
| |
Collapse
|
12
|
Elevated ITGA2 expression promotes collagen type I-induced clonogenic growth of intrahepatic cholangiocarcinoma. Sci Rep 2022; 12:22429. [PMID: 36575207 PMCID: PMC9794692 DOI: 10.1038/s41598-022-26747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) arises along the peripheral bile ducts and is often accompanied by a tumor microenvironment (TME) high in extracellular matrices (ECMs). In this study, we aimed to evaluate whether an ECM-rich TME favors iCCA progression. We identified ITGA2, which encodes collagen-binding integrin α2, to be differentially-expressed in iCCA tumors compared with adjacent normal tissues. Elevated ITGA2 is also positively-correlated with its ligand, collagen type I. Increased ITGA2 expression and its role in collagen type I binding was validated in vitro using four iCCA cell lines, compared with a non-cancerous, cholangiocyte cell line. Robust interaction of iCCA cells with collagen type I was abolished by either ITGA2 depletion or integrin α2β1-selective inhibitor treatment. In a phenotypic study, collagen type I significantly enhances clonogenic growth of HuCCA-1 and HuCCT-1 cells by three and sixfold, respectively. Inhibition of integrin α2 expression or its activity significantly blocks collagen type I-induced colony growth in both cell lines. Taken together, our data provide mechanistic evidence that collagen type I promotes growth of iCCA colonies through integrin α2 suggesting that the collagen type I-integrin α2 axis could be a promising target for cancer prevention and a therapeutic opportunity for this cancer.
Collapse
|
13
|
The role of mixed lineage kinase 3 (MLK3) in cancers. Pharmacol Ther 2022; 238:108269. [DOI: 10.1016/j.pharmthera.2022.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
14
|
Cedeno-Rosario L, Honda D, Sunderland AM, Lewandowski MD, Taylor WR, Chadee DN. Phosphorylation of mixed lineage kinase MLK3 by cyclin-dependent kinases CDK1 and CDK2 controls ovarian cancer cell division. J Biol Chem 2022; 298:102263. [PMID: 35843311 PMCID: PMC9399292 DOI: 10.1016/j.jbc.2022.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022] Open
Abstract
Mixed lineage kinase 3 (MLK3) is a serine/threonine mitogen-activated protein kinase kinase kinase that promotes the activation of multiple mitogen-activated protein kinase pathways and is required for invasion and proliferation of ovarian cancer cells. Inhibition of MLK activity causes G2/M arrest in HeLa cells; however, the regulation of MLK3 during ovarian cancer cell cycle progression is not known. Here, we found that MLK3 is phosphorylated in mitosis and that inhibition of cyclin-dependent kinase 1 (CDK1) prevented MLK3 phosphorylation. In addition, we observed that c-Jun N-terminal kinase, a downstream target of MLK3 and a direct target of MKK4 (SEK1), was activated in G2 phase when CDK2 activity is increased and then inactivated at the beginning of mitosis concurrent with the increase in CDK1 and MLK3 phosphorylation. Using in vitro kinase assays and phosphomutants, we determined that CDK1 phosphorylates MLK3 on Ser548 and decreases MLK3 activity during mitosis, whereas CDK2 phosphorylates MLK3 on Ser770 and increases MLK3 activity during G1/S and G2 phases. We also found that MLK3 inhibition causes a reduction in cell proliferation and a cell cycle arrest in ovarian cancer cells, suggesting that MLK3 is required for ovarian cancer cell cycle progression. Taken together, our results suggest that phosphorylation of MLK3 by CDK1 and CDK2 is important for the regulation of MLK3 and c-Jun N-terminal kinase activities during G1/S, G2, and M phases in ovarian cancer cell division.
Collapse
Affiliation(s)
- Luis Cedeno-Rosario
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - David Honda
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - Autumn M Sunderland
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - Mark D Lewandowski
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - William R Taylor
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - Deborah N Chadee
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
15
|
Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches. Gene 2022; 833:146595. [PMID: 35598687 DOI: 10.1016/j.gene.2022.146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
The CRISPR/Cas9 system enables a versatile set of genomes editing and genetic-based disease modeling tools due to its high specificity, efficiency, and accessible design and implementation. In cancer, the CRISPR/Cas9 system has been used to characterize genes and explore different mechanisms implicated in tumorigenesis. Different experimental strategies have been proposed in recent years, showing dependency on various intrinsic factors such as cancer type, gene function, mutation type, and technical approaches such as cell line, Cas9 expression, and transfection options. However, the successful methodological approaches, genes, and other experimental factors have not been analyzed. We, therefore, initially considered more than 1,300 research articles related to CRISPR/Cas9 in cancer to finally examine more than 400 full-text research publications. We summarize findings regarding target genes, RNA guide designs, cloning, Cas9 delivery systems, cell enrichment, and experimental validations. This analysis provides valuable information and guidance for future cancer gene validation experiments.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Claudia Martinez-Amador
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada avenue 2501, Monterrey, Nuevo Leon 64849, México.
| |
Collapse
|
16
|
Zeng F, He J, Jin X, Liao Q, Chen Z, Peng H, Zhou Y. FRA-1: A key factor regulating signal transduction of tumor cells and a potential target molecule for tumor therapy. Biomed Pharmacother 2022; 150:113037. [PMID: 35658206 DOI: 10.1016/j.biopha.2022.113037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Fos-related antigen-1 (FRA-1) is a member of activator protein-1 (AP-1) transcription factor superfamily, and FRA-1 is highly expressed in colon cancer, breast cancer, gastric cancer, lung cancer, bladder cancer, and other tumors. The expression level of FRA-1 is closely related to the processes of tumor cell proliferation, apoptosis, transformation, migration, and invasion, which is a potential therapeutic target and prognostic factor for many tumors. Clarifying the detailed mechanism of action of FRA-1 could provide the theoretical basis for tumor diagnosis, treatment, and prognosis, and is of great significance for the study of tumor etiology and pathogenesis. In this paper, the expression levels and influencing factors of FRA-1 in various tumor tissues and cells are summarized, as well as the effect of FRA-1 expression level on the biological behavior of tumor cells and the signal transduction mechanism. At the same time, the signal transduction mechanism of FRA-1 in inflammation was expounded. In addition, the related metabolites, drugs and non-coding RNA that affect the expression and function of FRA-1 were summarized. Finally, it illustrates that FRA-1 may be taken as a key factor for tumor prognosis and a potential therapeutic target. This review provides a theoretical basis for the systematic understanding of the relationship between FRA-1 and tumors, its function, and possible mechanism.
Collapse
Affiliation(s)
- Feng Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Junyu He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xi Jin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Zhifang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Honghua Peng
- Department of The Oncology, Third Xianya Hospital, Xiangya School of Medicine, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
17
|
Shu L, Chen A, Li L, Yao L, He Y, Xu J, Gu W, Li Q, Wang K, Zhang T, Liu G. NRG1 regulates Fra-1 transcription and metastasis of triple-negative breast cancer cells via the c-Myc ubiquitination as manipulated by ERK1/2-mediated Fbxw7 phosphorylation. Oncogene 2022; 41:907-919. [PMID: 34992218 DOI: 10.1038/s41388-021-02142-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/14/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022]
Abstract
Neuregulin 1 (NRG1), an EGF family member, is expressed in most breast cancers. It promotes breast cancer growth and metastasis in HER2 receptor expressing breast cancer. However, its role in triple-negative breast cancer (TNBC) has not been extensively investigated. In this study, we observed that NRG1 knockdown resulted in the suppression of TNBC cells (MDA-MB-231 cell and MDA-MB-468 cell) metastasis and downregulation of Fra-1 (FOS-like 1, AP-1 transcription factor subunit, which is an overexpressed transcription factor in TNBC and acts as a coordinator of metastasis). In addition, the transcriptional regulation of Fra-1 by NRG1 was mediated by ERK1/2-induced recruitment of c-Myc (MYC proto-oncogene, transcription factor) to the promoter of Fra-1. Furthermore, c-Myc was targeted by an E3 ligase Fbxw7 and its ubiquitination and degradation by Fbxw7 was regulated by NRG1 expression and ERK1/2-mediated Fbxw7 phosphorylation that results in the dissociation and nuclear import of c-Myc. Taken together, the results of our study demonstrated that NRG1 regulates the Fra-1 expression to coordinate the TNBC metastasis via the novel ERK1/2-Fbxw7-c-Myc pathway and targeting NRG1 expression could be a potential therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Le Shu
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, Anhui Province, People's Republic of China.
| | - Ao Chen
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Linrui Li
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Lun Yao
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Yiduo He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jianbo Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Wei Gu
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, Anhui Province, People's Republic of China
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui Province, People's Republic of China
| | - Qiang Li
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, Anhui Province, People's Republic of China
- Department of Cell Biology, School of Biological Sciences, Bengbu Medical College, Bengbu, 233030, Anhui Province, People's Republic of China
| | - Kun Wang
- College of Biomedical Engineering, Hubei University of Medicine, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Tongcun Zhang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430070, Hubei Province, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Guoquan Liu
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, Anhui Province, People's Republic of China.
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui Province, People's Republic of China.
| |
Collapse
|
18
|
De Tomi E, Campagnari R, Orlandi E, Cardile A, Zanrè V, Menegazzi M, Gomez-Lira M, Gotte G. Upregulation of miR-34a-5p, miR-20a-3p and miR-29a-3p by Onconase in A375 Melanoma Cells Correlates with the Downregulation of Specific Onco-Proteins. Int J Mol Sci 2022; 23:ijms23031647. [PMID: 35163570 PMCID: PMC8835754 DOI: 10.3390/ijms23031647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Onconase (ONC) is an amphibian secretory ribonuclease displaying cytostatic and cytotoxic activities against many mammalian tumors, including melanoma. ONC principally damages tRNA species, but also other non-coding RNAs, although its precise targets are not known. We investigated the ONC ability to modulate the expression of 16 onco-suppressor microRNAs (miRNAs) in the A375 BRAF-mutated melanoma cell line. RT-PCR and immunoblots were used to measure the expression levels of miRNAs and their regulated proteins, respectively. In silico study was carried out to verify the relations between miRNAs and their mRNA targets. A375 cell transfection with miR-20a-3p and miR-34a-5p mimics or inhibitors was performed. The onco-suppressors miR-20a-3p, miR-29a-3p and miR-34a-5p were highly expressed in 48-h ONC-treated A375 cells. The cytostatic effect of ONC in A375 cells was mechanistically explained by the sharp inhibition of cyclins D1 and A2 expression level, as well as by downregulation of retinoblastoma protein and cyclin-dependent-kinase-2 activities. Remarkably, the expression of kinases ERK1/2 and Akt, as well as of the hypoxia inducible factor-1α, was inhibited by ONC. All these proteins control pro-survival pathways. Finally, many crucial proteins involved in migration, invasion and metastatic potential were downregulated by ONC. Results obtained from transfection of miR-20a-3p and miR-34a-5p inhibitors in the presence of ONC show that these miRNAs may participate in the antitumor effects of ONC in the A375 cell line. In conclusion, we identified many intracellular downregulated proteins involved in melanoma cell proliferation, metabolism and progression. All mRNAs coding these proteins may be targets of miR-20a-3p, miR-29a-3p and/or miR-34a-5p, which are in turn upregulated by ONC. Data suggest that several known ONC anti-proliferative and anti-metastatic activities in A375 melanoma cells might depend on the upregulation of onco-suppressor miRNAs. Notably, miRNAs stability depends on the upstream regulation by long-non-coding-RNAs or circular-RNAs that can, in turn, be damaged by ONC ribonucleolytic activity.
Collapse
Affiliation(s)
- Elisa De Tomi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Elisa Orlandi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Alessia Cardile
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Valentina Zanrè
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
- Correspondence:
| | - Macarena Gomez-Lira
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| |
Collapse
|
19
|
Ahmed M, Daoud GH, Mohamed A, Harati R. New Insights into the Therapeutic Applications of CRISPR/Cas9 Genome Editing in Breast Cancer. Genes (Basel) 2021; 12:genes12050723. [PMID: 34066014 PMCID: PMC8150278 DOI: 10.3390/genes12050723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most prevalent forms of cancer globally and is among the leading causes of death in women. Its heterogenic nature is a result of the involvement of numerous aberrant genes that contribute to the multi-step pathway of tumorigenesis. Despite the fact that several disease-causing mutations have been identified, therapy is often aimed at alleviating symptoms rather than rectifying the mutation in the DNA sequence. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 is a groundbreaking tool that is being utilized for the identification and validation of genomic targets bearing tumorigenic potential. CRISPR/Cas9 supersedes its gene-editing predecessors through its unparalleled simplicity, efficiency and affordability. In this review, we provide an overview of the CRISPR/Cas9 mechanism and discuss genes that were edited using this system for the treatment of breast cancer. In addition, we shed light on the delivery methods—both viral and non-viral—that may be used to deliver the system and the barriers associated with each. Overall, the present review provides new insights into the potential therapeutic applications of CRISPR/Cas9 for the advancement of breast cancer treatment.
Collapse
|
20
|
Kumar S, Singh SK, Rana B, Rana A. The regulatory function of mixed lineage kinase 3 in tumor and host immunity. Pharmacol Ther 2021; 219:107704. [PMID: 33045253 PMCID: PMC7887016 DOI: 10.1016/j.pharmthera.2020.107704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Protein kinases are the second most sought-after G-protein coupled receptors as drug targets because of their overexpression, mutations, and dysregulated catalytic activities in various pathological conditions. Till 2019, 48 protein kinase inhibitors have received FDA approval for the treatment of multiple illnesses, of which the majority of them are indicated for different malignancies. One of the attractive sub-group of protein kinases that has attracted attention for drug development is the family members of MAPKs that are recognized to play significant roles in different cancers. Several inhibitors have been developed against various MAPK members; however, none of them as monotherapy has shown sustainable efficacy. One of the MAPK members, called Mixed Lineage Kinase 3 (MLK3), has attracted considerable attention due to its role in inflammation and neurodegenerative diseases; however, its role in cancer is an emerging area that needs more investigation. Recent advances have shown that MLK3 plays a role in cancer cell survival, migration, drug resistance, cell death, and tumor immunity. This review describes how MLK3 regulates different MAPK pathways, cancer cell growth and survival, apoptosis, and host's immunity. We also discuss how MLK3 inhibitors can potentially be used along with immunotherapy for different malignancies.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
21
|
Zhu Y, Sun JM, Sun ZC, Chen FJ, Wu YP, Hou XY. MLK3 Is Associated With Poor Prognosis in Patients With Glioblastomas and Actin Cytoskeleton Remodeling in Glioblastoma Cells. Front Oncol 2021; 10:600762. [PMID: 33692940 PMCID: PMC7937953 DOI: 10.3389/fonc.2020.600762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/30/2020] [Indexed: 01/24/2023] Open
Abstract
Mixed lineage kinase 3 (MLK3) has been implicated in human melanoma and breast cancers. However, the clinical significance of MLK3 in human gliomas and the underlying cellular and molecular mechanisms remain unclear. We found that MLK3 proteins were highly expressed in high-grade human glioma specimens and especially prevalent in primary and recurrent glioblastoma multiforme (GBM). High levels of MLK3 mRNA were correlated with poor prognosis in patients with isocitrate dehydrogenase (IDH)-wild-type (wt) gliomas. Furthermore, genetic ablation of MLK3 significantly suppressed the migration and invasion abilities of GBM cells and disrupted actin cytoskeleton organization. Importantly, MLK3 directly bound to epidermal growth factor receptor kinase substrate 8 (EPS8) and regulated the cellular location of EPS8, which is essential for actin cytoskeleton rearrangement. Overall, these findings provide evidence that MLK3 upregulation predicts progression and poor prognosis in human IDH-wt gliomas and suggest that MLK3 promotes the migration and invasion of GBM cells by remodeling the actin cytoskeleton via MLK3-EPS8 signaling.
Collapse
Affiliation(s)
- Yan Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jin-Min Sun
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Laboratory of Clinical and Experimental Pathology, Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Zi-Chen Sun
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Feng-Jiao Chen
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Yong-Ping Wu
- Laboratory of Clinical and Experimental Pathology, Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Yu Hou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
Bizinelli D, Flores Navarro F, Lima Costa Faldoni F. Maca Root ( Lepidium meyenii) Extract Increases the Expression of MMP-1 and Stimulates Migration of Triple-Negative Breast Cancer Cells. Nutr Cancer 2021; 74:346-356. [PMID: 33560149 DOI: 10.1080/01635581.2021.1882511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Maca root (Lepidium meyenii) extract is a worldwide consumed food supplement for sexual dysfunctions, increasing sperm production and its motility, and alleviating menopausal symptoms. Once maca root has a role in cell proliferation and motility, and its consumption may increase along with age, mainly in menopausal women, we aimed to investigate the plant effects on triple-negative breast cancer (TNBC) cell lines. Standardized maca root powdered extract showed significant cytotoxic activity in both MDA-MB-231 and Hs578T cells, and the IC50s were 2000 μg/ml and 3000 μg/ml, respectively. Both cell lines showed an increase in migratory capacity. Using bioinformatics tools, we established genes involved in the metastatic process, CAV1, LAMA4, and MMP-1, and the mRNAs expression was assessed by qPCR. Comparing the treated cells to the negative control, CAV1 presented a decreased expression by 2-fold in MDA-MB-231. LAMA4 presented a decrease by 4-fold in Hs578T cells. MMP-1 showed substantially increase mRNA expression in MDA-MB-231 by 86-fold and in Hs578T by 5-fold. To the best of our knowledge, this is the first study indicating that the human consumption of maca may be dangerous due to the upregulation in MMP-1 expression and the increase in TNBC migrated cells.
Collapse
Affiliation(s)
- Daniela Bizinelli
- University Center of Hermínio Ometto Foundation - FHO, Araras, São Paulo, Brazil
| | | | - Flavia Lima Costa Faldoni
- University Center of Hermínio Ometto Foundation - FHO, Araras, São Paulo, Brazil.,Department of Gynecology and Obstetrics, Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
23
|
Daisy PS, Shreyas KS, Anitha TS. Will CRISPR-Cas9 Have Cards to Play Against Cancer? An Update on its Applications. Mol Biotechnol 2021; 63:93-108. [PMID: 33386579 PMCID: PMC7775740 DOI: 10.1007/s12033-020-00289-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Genome editing employs targeted nucleases as powerful tools to precisely alter the genome of target cells and regulate functional genes. Various strategies have been risen so far as the molecular scissors-mediated genome editing that includes zinc finger nuclease, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats-CRISPR-related protein 9. These tools allow researchers to understand the basics of manipulating the genome, create animal models to study human diseases, understand host-pathogen interactions and design disease targets. Targeted genome modification utilizing RNA-guided nucleases are of recent curiosity, as it is a fast and effective strategy that enables the researchers to manipulate the gene of interest, carry out functional studies, understand the molecular basis of the disease and design targeted therapies. CRISPR-Cas9, a bacterial defense system employed against viruses, consists of a single-strand RNA-guided Cas9 nuclease connected to the corresponding complementary target sequence. This powerful and versatile tool has gained tremendous attention among the researchers, owing to its ability to correct genetic disorders. To help illustrate the potential of this gene editor in unexplored corners of oncology, we describe the history of CRISPR-Cas9, its rapid progression in cancer research as well as future perspectives.
Collapse
Affiliation(s)
- Precilla S Daisy
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed To-Be University), Mahatma Gandhi Medical College and Research Institute Campus, Pillaiyarkuppam, Puducherry, 607403, India
| | - Kuduvalli S Shreyas
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed To-Be University), Mahatma Gandhi Medical College and Research Institute Campus, Pillaiyarkuppam, Puducherry, 607403, India
| | - T S Anitha
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed To-Be University), Mahatma Gandhi Medical College and Research Institute Campus, Pillaiyarkuppam, Puducherry, 607403, India.
| |
Collapse
|
24
|
Zhao HF, Wu CP, Zhou XM, Diao PY, Xu YW, Liu J, Wang J, Huang XJ, Liu WL, Chen ZP, Huang GD, Li WP. Synergism between the phosphatidylinositol 3-kinase p110β isoform inhibitor AZD6482 and the mixed lineage kinase 3 inhibitor URMC-099 on the blockade of glioblastoma cell motility and focal adhesion formation. Cancer Cell Int 2021; 21:24. [PMID: 33407478 PMCID: PMC7789614 DOI: 10.1186/s12935-020-01728-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022] Open
Abstract
Background Glioblastoma multiforme, the most aggressive and malignant primary brain tumor, is characterized by rapid growth and extensive infiltration to neighboring normal brain parenchyma. Our previous studies delineated a crosstalk between PI3K/Akt and JNK signaling pathways, and a moderate anti-glioblastoma synergism caused by the combined inhibition of PI3K p110β (PI3Kβ) isoform and JNK. However, this combination strategy is not potent enough. MLK3, an upstream regulator of ERK and JNK, may replace JNK to exert stronger synergism with PI3Kβ. Methods To develop a new combination strategy with stronger synergism, the expression pattern and roles of MLK3 in glioblastoma patient’s specimens and cell lines were firstly investigated. Then glioblastoma cells and xenografts in nude mice were treated with the PI3Kβ inhibitor AZD6482 and the MLK3 inhibitor URMC-099 alone or in combination to evaluate their combination effects on tumor cell growth and motility. The combination effects on cytoskeletal structures such as lamellipodia and focal adhesions were also evaluated. Results MLK3 protein was overexpressed in both newly diagnosed and relapsing glioblastoma patients’ specimens. Silencing of MLK3 using siRNA duplexes significantly suppressed migration and invasion, but promoted attachment of glioblastoma cells. Combined inhibition of PI3Kβ and MLK3 exhibited synergistic inhibitory effects on glioblastoma cell proliferation, migration and invasion, as well as the formation of lamellipodia and focal adhesions. Furthermore, combination of AZD6482 and URMC-099 effectively decreased glioblastoma xenograft growth in nude mice. Glioblastoma cells treated with this drug combination showed reduced phosphorylation of Akt and ERK, and decreased protein expression of ROCK2 and Zyxin. Conclusion Taken together, combination of AZD6482 and URMC-099 showed strong synergistic anti-tumor effects on glioblastoma in vitro and in vivo. Our findings suggest that combined inhibition of PI3Kβ and MLK3 may serve as an attractive therapeutic approach for glioblastoma multiforme.
Collapse
Affiliation(s)
- Hua-Fu Zhao
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Chang-Peng Wu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.,Department of Neurosurgery, People's Hospital of Longhua District, Shenzhen, 518109, China
| | - Xiu-Ming Zhou
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.,Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, 510510, China
| | - Peng-Yu Diao
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yan-Wen Xu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Jing Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Jing Wang
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xian-Jian Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Wen-Lan Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Guo-Dong Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Wei-Ping Li
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| |
Collapse
|
25
|
Kumar S, Singh SK, Viswakarma N, Sondarva G, Nair RS, Sethupathi P, Dorman M, Sinha SC, Hoskins K, Thatcher G, Rana B, Rana A. Rationalized inhibition of mixed lineage kinase 3 and CD70 enhances life span and antitumor efficacy of CD8 + T cells. J Immunother Cancer 2020; 8:e000494. [PMID: 32759234 PMCID: PMC7410077 DOI: 10.1136/jitc-2019-000494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The mitogen-activated protein kinases (MAPKs) are important for T cell survival and their effector function. Mixed lineage kinase 3 (MLK3) (MAP3K11) is an upstream regulator of MAP kinases and emerging as a potential candidate for targeted cancer therapy; yet, its role in T cell survival and effector function is not known. METHODS T cell phenotypes, apoptosis and intracellular cytokine expressions were analyzed by flow cytometry. The apoptosis-associated gene expressions in CD8+CD38+ T cells were measured using RT2 PCR array. In vivo effect of combined blockade of MLK3 and CD70 was analyzed in 4T1 tumor model in immunocompetent mice. The serum level of tumor necrosis factor-α (TNFα) was quantified by enzyme-linked immunosorbent assay. RESULTS We report that genetic loss or pharmacological inhibition of MLK3 induces CD70-TNFα-TNFRSF1a axis-mediated apoptosis in CD8+ T cells. The genetic loss of MLK3 decreases CD8+ T cell population, whereas CD4+ T cells are partially increased under basal condition. Moreover, the loss of MLK3 induces CD70-mediated apoptosis in CD8+ T cells but not in CD4+ T cells. Among the activated CD8+ T cell phenotypes, CD8+CD38+ T cell population shows more than five fold increase in apoptosis due to loss of MLK3, and the expression of TNFRSF1a is significantly higher in CD8+CD38+ T cells. In addition, we observed that CD70 is an upstream regulator of TNFα-TNFRSF1a axis and necessary for induction of apoptosis in CD8+ T cells. Importantly, blockade of CD70 attenuates apoptosis and enhances effector function of CD8+ T cells from MLK3-/- mice. In immune-competent breast cancer mouse model, pharmacological inhibition of MLK3 along with CD70 increased tumor infiltration of cytotoxic CD8+ T cells, leading to reduction in tumor burden largely via mitochondrial apoptosis. CONCLUSION Together, these results demonstrate that MLK3 plays an important role in CD8+ T cell survival and effector function and MLK3-CD70 axis could serve as a potential target in cancer.
Collapse
Affiliation(s)
- Sandeep Kumar
- Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Navin Viswakarma
- Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Gautam Sondarva
- Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | - Matthew Dorman
- Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Kent Hoskins
- Division of Hematology/Oncology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Gregory Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Basabi Rana
- Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ajay Rana
- Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
26
|
Talotta F, Casalino L, Verde P. The nuclear oncoprotein Fra-1: a transcription factor knocking on therapeutic applications' door. Oncogene 2020; 39:4491-4506. [PMID: 32385348 DOI: 10.1038/s41388-020-1306-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Among the FOS-related members of the AP-1 dimeric complex, the transcription factor Fra-1, encoded by FOSL1, is crucially involved in human tumor progression and metastasis, thus representing a promising therapeutic target. Here we review the state of the art and discuss the emerging topics and perspectives on FOSL1 and its gene product. First, we summarize the present knowledge on the FOSL1 transcriptional and epigenetic controls, driving Fra-1 accumulation in a variety of human solid tumors. We also present a model on the regulatory interactions between Fra-1, p53, and miRNAs. Then, we outline the multiple roles of Fra-1 posttranslational modifications and transactivation mechanisms of select Fra-1 target genes. In addition to summarizing the Fra-1-dependent gene networks controlling proliferation, survival, and epithelial-mesenchymal transitions (EMT) in multiple cancer cell types, we highlight the roles played by Fra-1 in nonneoplastic cell populations recruited to the tumor microenvironment, and in mouse models of tumorigenesis. Next, we review the prognostic power of the Fra-1-associated gene signatures, and envisage potential strategies aimed at Fra-1 therapeutic inhibition. Finally, we discuss several recent reports showing the emerging roles of Fra-1 in the mechanisms of both resistance and addiction to targeted therapies.
Collapse
Affiliation(s)
- Francesco Talotta
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.,ReiThera Srl, Castel Romano, Rome, Italy
| | - Laura Casalino
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.
| |
Collapse
|
27
|
Zhang F, Zhu Y, Wu S, Hou G, Wu N, Qian L, Yang D. MLK3 is a newly identified microRNA-520b target that regulates liver cancer cell migration. PLoS One 2020; 15:e0230716. [PMID: 32214367 PMCID: PMC7098554 DOI: 10.1371/journal.pone.0230716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
The roles of microRNAs (miRNAs) in liver cancer have attracted much attention in recent years. In this study, we demonstrate that miR-520b is downregulated in MHCC-97H cells, a liver cancer cell line with high potential of metastasis, compared with MHCC-97L cells which has a low potential of metastasis. Furthermore, the enhanced expression of miR-520b could inhibit liver cancer cell migration, while silencing its expression resulted in increased migration. Mixed lineage kinase 3 (MLK3) was identified as a direct and functional new target of miR-520b. This regulation was also confirmed by luciferase reporter assays. In addition, our results showed that overexpression of the MLK3 expression partially reversed the effect of miR-520b on liver cancer cell migration, indicating that MLK3 contributes to the migration in liver cancer. The newly identified miR-520b/MLK3 axis partially elucidates the molecular mechanism of liver cancer cell migration and represents a new potential therapeutic target for liver cancer treatment.
Collapse
Affiliation(s)
- Fei Zhang
- Anhui Vocational College of Defense Technology, Lu'an, Anhui, China
| | - Yu Zhu
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuhua Wu
- Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Guodong Hou
- Anhui Vocational College of Defense Technology, Lu'an, Anhui, China
| | - Nianxiang Wu
- Anhui Vocational College of Defense Technology, Lu'an, Anhui, China
| | - Lirun Qian
- Anhui Vocational College of Defense Technology, Lu'an, Anhui, China
| | - Dong Yang
- Department of Hepatobiliary Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| |
Collapse
|
28
|
Dou Y, Huang D, Zeng X, Zhou Y, Jiang X, Yue C, He J, Xiao S. All-trans retinoic acid enhances the effect of Fra-1 to inhibit cell proliferation and metabolism in cervical cancer. Biotechnol Lett 2020; 42:1051-1060. [PMID: 32124141 DOI: 10.1007/s10529-020-02847-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This study on all-trans retinoic acid was designed to explore its effect on the ability of Fra-1 to cervical cancer cell development. The results show that all-trans retinoic acid enhances the effect of Fra-1 on inhibiting cervical cancer proliferation and the glucose consumption, its effect on the loss of mitochondrial membrane potential, on the decreasing of lactic acid as well as ATP, and also influences the expression of MDM2/P53/P21 and LDHA. RESULTS The results show that the expression of Fra-1 is higher in all-trans retinoic acid-treated cervical cancer. Flow cytometry and kit detection show that all-trans retinoic acid can enhance the ability of Fra-1 to lose the mitochondrial membrane potential, inhibit the glucose consumption and the production of lactic acid as well as ATP. CCK8 and colony formation assays indicate that all-trans retinoic acid enhances the ability of Fra-1 to inhibit cell proliferation. In addition, through Western blot analysis, it was determined that P53 and P21 were up-regulated, and MDM2 and LDHA were down-regulated. CONCLUSION The overall results of the study strongly suggest that all-trans retinoic acid enhances the effect of Fra-1 on inhibiting cervical cancer proliferation and metabolism in vitro, and also influences the expression of MDM2/P53/P21 and LDHA.
Collapse
Affiliation(s)
- Yingyu Dou
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Dongqing Huang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Gynecology and Obstetrics, The Second Hospital of Zhuzhou, Zhuzhou, 412000, Hunan, China
| | - Xiangyang Zeng
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yanhong Zhou
- The Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoyan Jiang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chunxue Yue
- The Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junyu He
- The Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
29
|
Yun SI, Hong HK, Yeo SY, Kim SH, Cho YB, Kim KK. Ubiquitin-Specific Protease 21 Promotes Colorectal Cancer Metastasis by Acting as a Fra-1 Deubiquitinase. Cancers (Basel) 2020; 12:cancers12010207. [PMID: 31947604 PMCID: PMC7017141 DOI: 10.3390/cancers12010207] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/22/2022] Open
Abstract
Fos-related-antigen-1 (Fra-1), a member of the activator protein-1 (AP-1) transcription factor superfamily, has an essential role in cancer progress and metastasis and Fra-1 is considered a therapeutic target in metastatic cancer including metastatic colorectal cancer (mCRC). However, its regulation at protein level has not yet been clearly elucidated. We found that ubiquitin-specific protease 21 (USP21) increases Fra-1 stability by deubiquitinating Fra-1 and enhances the expression of Fra-1 target genes in colon cancer cells. We also showed that USP21 controlled Fra-1-dependent migration and invasion activities. The oncogenic property of USP21 was confirmed by a significant reduction in liver metastasis when USP21-knockdown cancer cells were injected intrasplenically into mice. Consistently, clinicopathological analysis of colorectal cancer patients revealed a correlation of USP21 expression with high-grade carcinoma and life span. These results demonstrate that USP21 enhances Fra-1 stability and AP-1 target gene expression by deubiquitinating Fra-1. Therefore, USP21 is considered an attractive therapeutic target in mCRC with high Fra-1 expression.
Collapse
Affiliation(s)
- Sun-Il Yun
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Hye Kyung Hong
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea;
| | - So-Young Yeo
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea;
| | - Seok-Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea;
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul 06531, Korea
- Correspondence: (S.-H.K.); (Y.B.C.); (K.K.K.); Tel.: +82-02-3410-2898 (S.-H.K.); +82-02-3410-0217 (Y.B.C.); +82-031-299-6136 (K.K.K.)
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea;
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul 06531, Korea
- Correspondence: (S.-H.K.); (Y.B.C.); (K.K.K.); Tel.: +82-02-3410-2898 (S.-H.K.); +82-02-3410-0217 (Y.B.C.); +82-031-299-6136 (K.K.K.)
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul 06531, Korea
- Correspondence: (S.-H.K.); (Y.B.C.); (K.K.K.); Tel.: +82-02-3410-2898 (S.-H.K.); +82-02-3410-0217 (Y.B.C.); +82-031-299-6136 (K.K.K.)
| |
Collapse
|
30
|
Gallo KA, Ellsworth E, Stoub H, Conrad SE. Therapeutic potential of targeting mixed lineage kinases in cancer and inflammation. Pharmacol Ther 2019; 207:107457. [PMID: 31863814 DOI: 10.1016/j.pharmthera.2019.107457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Dysregulation of intracellular signaling pathways is a key attribute of diseases associated with chronic inflammation, including cancer. Mitogen activated protein kinases have emerged as critical conduits of intracellular signal transmission, yet due to their ubiquitous roles in cellular processes, their direct inhibition may lead to undesired effects, thus limiting their usefulness as therapeutic targets. Mixed lineage kinases (MLKs) are mitogen-activated protein kinase kinase kinases (MAP3Ks) that interact with scaffolding proteins and function upstream of p38, JNK, ERK, and NF-kappaB to mediate diverse cellular signals. Studies involving gene silencing, genetically engineered mouse models, and small molecule inhibitors suggest that MLKs are critical in tumor progression as well as in inflammatory processes. Recent advances indicate that they may be useful targets in some types of cancer and in diseases driven by chronic inflammation including neurodegenerative diseases and metabolic diseases such as nonalcoholic steatohepatitis. This review describes existing MLK inhibitors, the roles of MLKs in various aspects of tumor progression and in the control of inflammatory processes, and the potential for therapeutic targeting of MLKs.
Collapse
Affiliation(s)
- Kathleen A Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Edmund Ellsworth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Hayden Stoub
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Susan E Conrad
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
31
|
Expression and function of FRA1 protein in tumors. Mol Biol Rep 2019; 47:737-752. [PMID: 31612408 DOI: 10.1007/s11033-019-05123-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
AP-1 is a dimeric complex that is composed of JUN, FOS, ATF and MAF protein families. FOS-related antigen 1 (FRA1) which encoded by FOSL1 gene, belongs to the FOS protein family, and mainly forms an AP-1 complex with the protein of the JUN family to exert an effect. Regulation of FRA1 occurs at levels of transcription and post-translational modification, and phosphorylation is the major post-translational modification. FRA1 is mainly regulated by the mitogen-activated protein kinases signaling pathway and is degraded by ubiquitin-independent proteasomes. FRA1 can affect biological functions, such as tumor proliferation, differentiation, invasion and apoptosis. Studies have demonstrated that FRA1 is abnormally expressed in many tumors and plays a relevant role, but the specific condition varies from the target organs. FRA1 is overexpressed in breast cancer, lung cancer, colorectal cancer, prostate cancer, nasopharyngeal cancer, thyroid cancer and other tumors. However, the expression of FRA1 is decreased in cervical cancer, and the expression of FRA1 in ovarian cancer and oral squamous cell carcinoma is still controversial. In this review, we present a detailed description of the regulatory factors and functions of FRA1, also, the expression of FRA1 in various tumors and its function in relative tumor.
Collapse
|
32
|
Xu X, Tao Y, Niu Y, Wang Z, Zhang C, Yu Y, Ma L. miR-125a-5p inhibits tumorigenesis in hepatocellular carcinoma. Aging (Albany NY) 2019; 11:7639-7662. [PMID: 31527306 PMCID: PMC6781988 DOI: 10.18632/aging.102276] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/07/2019] [Indexed: 04/16/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly cancers world-wide. miR-125a-5p is a tumor suppressor in HCC and other cancers, but its mechanisms of action during HCC tumorigenesis remain largely unknown. In this study, we found that miR-125a-5p expression was significantly lower in HCC tissues and cell lines than matched normal tissues and liver cells. miR-125a-5p overexpression inhibited HCC cell proliferation and induced apoptosis in vitro and in vivo, while miR-125a-5p knockdown had the opposite effects. In addition, PTPN1 and MAP3K11 were identified as targets of miR-125a-5p. Knocking down PTPN1 and MAP3K11 activated the JNK MAPK signaling pathway to suppress HCC cell proliferation and induce apoptosis. Our findings suggest that miR-125a-5p may be a useful therapeutic target for treatment of HCC patients.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yuquan Tao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yongjie Niu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Zhixian Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Congcong Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lifang Ma
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
33
|
Zhang F, Zhang Y, Sun LX, Chen M, Ran YL, Sun LC. Carboxypeptidase A4 promotes migration and invasion of lung cancer cells, and is closely associated with lymph node metastasis. PRECISION RADIATION ONCOLOGY 2019. [DOI: 10.1002/pro6.1068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Molecular Oncology; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Yuan Zhang
- State Key Laboratory of Molecular Oncology; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Li-xin Sun
- State Key Laboratory of Molecular Oncology; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Meng Chen
- State Key Laboratory of Molecular Oncology; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Yu-liang Ran
- State Key Laboratory of Molecular Oncology; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Li-chao Sun
- State Key Laboratory of Molecular Oncology; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| |
Collapse
|
34
|
Das S, Nair RS, Mishra R, Sondarva G, Viswakarma N, Abdelkarim H, Gaponenko V, Rana B, Rana A. Mixed lineage kinase 3 promotes breast tumorigenesis via phosphorylation and activation of p21-activated kinase 1. Oncogene 2019; 38:3569-3584. [PMID: 30664689 PMCID: PMC7568686 DOI: 10.1038/s41388-019-0690-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/28/2018] [Accepted: 12/07/2018] [Indexed: 02/03/2023]
Abstract
Mixed lineage kinase 3 (MLK3), a MAP3K member has been envisioned as a viable drug target in cancer, yet its detailed function and signaling is not fully elucidated. We identified that MLK3 tightly associates with an oncogene, PAK1. Mammalian PAK1 being a Ste20 (MAP4K) member, we tested whether it is an upstream regulator of MLK3. In contrast to our hypothesis, MLK3 activated PAK1 kinase activity directly, as well as in the cells. Although, MLK3 can phosphorylate PAK1 on Ser133 and Ser204 sites, PAK1S133A mutant is constitutively active, whereas, PAK1S204A is not activated by MLK3. Stable overexpression of PAK1S204A in breast cancer cells, impedes migration, invasion, and NFĸB activity. In vivo breast cancer cell tumorigenesis is significantly reduced in tumors expressing PAK1S204A mutant. These results suggest that mammalian PAK1 does not act as a MAP4K and MLK3-induced direct activation of PAK1 plays a key role in breast cancer tumorigenesis.
Collapse
Affiliation(s)
- Subhasis Das
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rajakishore Mishra
- Center for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, 835205, India
| | - Gautam Sondarva
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
- University of Illinois Hospital &Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- University of Illinois Hospital &Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
35
|
Liu B, Saber A, Haisma HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discov Today 2019; 24:955-970. [PMID: 30849442 DOI: 10.1016/j.drudis.2019.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9), as a powerful genome-editing tool, has revolutionized genetic engineering. It is widely used to investigate the molecular basis of different cancer types. In this review, we present an overview of recent studies in which CRISPR/Cas9 has been used for the identification of potential molecular targets. Based on the collected data, we suggest here that CRISPR/Cas9 is an effective system to distinguish between mutant and wild-type alleles in cancer. We show that several new potential therapeutic targets, such as CD38, CXCR2, MASTL, and RBX2, as well as several noncoding (nc)RNAs have been identified using CRISPR/Cas9 technology. We also discuss the obstacles and challenges that we face for using CRISPR/Cas9 as a therapeutic.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Ali Saber
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands.
| |
Collapse
|
36
|
Ibrahim SAEF, Abudu A, Johnson E, Aftab N, Conrad S, Fluck M. The role of AP-1 in self-sufficient proliferation and migration of cancer cells and its potential impact on an autocrine/paracrine loop. Oncotarget 2018; 9:34259-34278. [PMID: 30344941 PMCID: PMC6188139 DOI: 10.18632/oncotarget.26047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Activating protein-1 (AP-1) family members, especially Fra-1 and c-Jun, are highly expressed in invasive cancers and can mediate enhanced migration and proliferation. The aim of this study was to explore the significance of elevated levels of AP-1 family members under conditions that restrict growth. We observed that invasive MDA-MB-231 cells express high levels of Fra-1, c-Jun, and Jun-D during serum starvation and throughout the cell cycle compared to non-tumorigenic and non-invasive cell lines. We then analyzed Fra-1 levels in additional breast and other cancer cell lines. We found breast and lung cancer cells with higher levels of Fra-1 during serum starvation had relatively higher ability to proliferate and migrate under these conditions. Utilizing a dominant negative construct of AP-1, we demonstrated that proliferation and migration of MDA-MB-231 in the absence of serum requires AP-1 activity. Finally, we observed that MDA-MB-231 cells secrete factors(s) that induce Fra-1 expression and migration in non-tumorigenic and non-metastatic cells and that both the expression of and response to these factors require AP-1 activity. These results suggest the presence of an autocrine/paracrine loop that maintains high Fra-1 levels in aggressive cancer cells, enhancing their proliferative and metastatic ability and affecting neighbors to alter the tumor environment.
Collapse
Affiliation(s)
- Sherif Abd El-Fattah Ibrahim
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.,Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Aierken Abudu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Eugenia Johnson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Neelum Aftab
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Susan Conrad
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Michele Fluck
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
37
|
Wang X, Xu C, Hua Y, Cheng K, Zhang Y, Liu J, Han Y, Liu S, Zhang G, Xu S, Yang Z. Psoralen induced cell cycle arrest by modulating Wnt/β-catenin pathway in breast cancer cells. Sci Rep 2018; 8:14001. [PMID: 30228287 PMCID: PMC6143618 DOI: 10.1038/s41598-018-32438-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/07/2018] [Indexed: 11/26/2022] Open
Abstract
Psoralen could inhibit the proliferation of human breast cancer cells, however, the molecular mechanism was unclear. We evaluated the anti-proliferative effects of psoralen by MTT, plate colony formation assay and cell cycle analysis in MCF-7 and MDA-MB-231 cells. The effects of psoralen on activation of Wnt/β-catenin and the related target genes were examined by quantitative real-time PCR, western blotting and cell immunofluorescence. The tumor growth was conducted in BALB/c nude mice and the pathological changes of heart, liver and kidney were also observed. Our results demonstrate that psoralen significantly inhibited cell proliferation by inducing G0/G1 phase arrest in MCF-7 cells and G2/M phase arrest in MDA-MB-231 cells. The expression of Fra-1 was reduced and Axin2 was promoted both in MCF-7 and MDA-MB-231 cells after psoralen treatment. The cytoplasmic accumulation and nuclear translocation of β-catenin were significantly reduced by psoralen. Psoralen increased the levels of phospho-(Y142) β-catenin, while decreased the expression of total β-catenin and its downstream target Fra-1 in vitro and vivo. Moreover, psoralen didn’t cause any significant toxicity at the effective concentration. Overall, our results might provide theoretical basis for clinical application of psoralen in breast cancer.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P. R. China.
| | - Chengfeng Xu
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P. R. China
| | - Yitong Hua
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P. R. China
| | - Kai Cheng
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P. R. China
| | - Yingzhe Zhang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P. R. China
| | - Jian Liu
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P. R. China
| | - Yong Han
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P. R. China
| | - Song Liu
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P. R. China
| | - Guoqiang Zhang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P. R. China
| | - Shujian Xu
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P. R. China
| | - Zhenlin Yang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P. R. China.
| |
Collapse
|
38
|
Regulating Cdc42 and Its Signaling Pathways in Cancer: Small Molecules and MicroRNA as New Treatment Candidates. Molecules 2018; 23:molecules23040787. [PMID: 29596304 PMCID: PMC6017947 DOI: 10.3390/molecules23040787] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/19/2018] [Accepted: 03/24/2018] [Indexed: 12/13/2022] Open
Abstract
Despite great improvements in the diagnosis and treatment of neoplasms, metastatic disease is still the leading cause of death in cancer patients, with mortality rates still rising. Given this background, new ways to treat cancer will be important for development of improved cancer control strategies. Cdc42 is a member of the Rho GTPase family and plays an important role in cell-to-cell adhesion, formation of cytoskeletal structures, and cell cycle regulation. It thus influences cellular proliferation, transformation, and homeostasis, as well as the cellular migration and invasion processes underlying tumor formation. Cdc42 acts as a collection point for signal transduction and regulates multiple signaling pathways. Moreover, recent studies show that in most human cancers Cdc42 is abnormally expressed and promoting neoplastic growth and metastasis. Regarding possible new treatments for cancer, miRNA and small molecules targeting Cdc42 and related pathways have been recently found to be effective on cancer. In this review, we analyze the newly recognized regulation mechanisms for Cdc42 and Cdc42-related signal pathways, and particularly new treatments using small molecules and miRNAs to inhibit the abnormal overexpression of Cdc42 that may slow down the metastasis process, improve cancer therapy and lead to novel strategies for development of antineoplastic drugs.
Collapse
|
39
|
Ibrahim Abd El-fattah S, Abudu A, Jonhson E, Aftab N, Fluck M. The role of AP-1 in self-sufficient proliferation and migration of cancer cells and its potential impact on an autocrine/paracrine loop.. [DOI: 10.1101/271536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
ABSTRACTThe activating protein-1 (AP-1) family members are highly expressed in invasive cancers, but the consequences of this are not completely understood. The aim of this study was to explore the significance of elevated levels of AP-1 family members under conditions that restrict growth. We observed that invasive MDA-MB-231 cells express high levels of Fra-1, c-Jun and, Jun-D during serum starvation and throughout the cell cycle compared to non-tumorigenic and non-invasive cell lines. We then analyzed Fra-1 levels in additional breast and other cancer cell lines. We found a correlation between the high levels of Fra-1 during serum starvation and the ability of the cells to proliferate and migrate under these conditions. Utilizing a dominant negative construct of AP-1, we demonstrated that proliferation and migration of MDA-MB-231 in the absence of serum requires AP-1 activity. Finally, we observed that MDA-MB-231 cells secrete factors(s) that induce Fra-1 expression and migration in non-tumorigenic and non-metastatic cells and that both the expression of and response to these factors require AP-1 activity. These results suggest the presence of an autocrine/paracrine loop that maintains high Fra-1 levels in aggressive cancer cells, enhancing their proliferative and metastatic ability and affecting neighbors to alter the tumor environment.
Collapse
|
40
|
Neophytou C, Boutsikos P, Papageorgis P. Molecular Mechanisms and Emerging Therapeutic Targets of Triple-Negative Breast Cancer Metastasis. Front Oncol 2018. [PMID: 29520340 PMCID: PMC5827095 DOI: 10.3389/fonc.2018.00031] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Breast cancer represents a highly heterogeneous disease comprised by several subtypes with distinct histological features, underlying molecular etiology and clinical behaviors. It is widely accepted that triple-negative breast cancer (TNBC) is one of the most aggressive subtypes, often associated with poor patient outcome due to the development of metastases in secondary organs, such as the lungs, brain, and bone. The molecular complexity of the metastatic process in combination with the lack of effective targeted therapies for TNBC metastasis have fostered significant research efforts during the past few years to identify molecular “drivers” of this lethal cascade. In this review, the most current and important findings on TNBC metastasis, as well as its closely associated basal-like subtype, including metastasis-promoting or suppressor genes and aberrantly regulated signaling pathways at specific stages of the metastatic cascade are being discussed. Finally, the most promising therapeutic approaches and novel strategies emerging from these molecular targets that could potentially be clinically applied in the near future are being highlighted.
Collapse
Affiliation(s)
- Christiana Neophytou
- Department of Biological Sciences, School of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | |
Collapse
|
41
|
Schroyer AL, Stimes NW, Abi Saab WF, Chadee DN. MLK3 phosphorylation by ERK1/2 is required for oxidative stress-induced invasion of colorectal cancer cells. Oncogene 2018; 37:1031-1040. [PMID: 29084209 PMCID: PMC5823719 DOI: 10.1038/onc.2017.396] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/23/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
Mixed lineage kinase 3 (MLK3) functions in migration and/or invasion of several human cancers; however, the role of MLK3 in colorectal cancer (CRC) invasion is unknown. MLK3 is a mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) which activates MAPK pathways through either kinase-dependent or -independent mechanisms. Human colorectal tumors display increased levels of reactive oxygen species (ROS) or oxidative stress. ROS, such as H2O2, are important for carcinogenesis and activate MAPK signaling pathways. In human colorectal carcinoma (HCT116) cells treated with H2O2, extracellular signal-regulated kinases 1 and 2 (ERK1/2) were activated and MLK3 exhibited reduced electrophoretic mobility (shift) in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which was eliminated by phosphatase treatment. Pretreatment with the ROS scavenger N-acetyl-L-cysteine, the ERK1/2 inhibitor UO126, or ERK1/2 siRNA knockdown blocked the H2O2-induced shift of MLK3, while MLK3 inhibition with Cep1347 did not. In co-immunoprecipitation experiments performed on H2O2-treated HCT116 cells, endogenous MLK3 associated with endogenous ERK1/2 and B-Raf. Active ERK1 phosphorylated kinase dead FLAG-MLK3 in vitro, whereas ERK1 phosphorylation of kinase dead FLAG-MLK3-S705A-S758A was reduced. Both MLK3 siRNA knockdown and FLAG-MLK3-S705A-S758A expression decreased ERK1/2 activation in H2O2-treated cells. Prolonged H2O2 treatment activated ERK1/2 and promoted invasion of colon cancer cells, which was attenuated by MLK3 siRNA knockdown. Furthermore, S705A-S758A-FLAG-MLK3 demonstrated decreased oxidative-stress induced colon cancer cell invasion, but increased interaction with GST-B-Raf as compared with wild-type-FLAG-MLK3 in H2O2-treated cells. These results suggest oxidative stress stimulates an ERK1/2-dependent phosphorylation of MLK3 on Ser705 and Ser758, which promotes MLK3-dependent B-Raf and ERK1/2 activation; this positive feedback loop enhances the invasion of colon cancer cells.
Collapse
Affiliation(s)
- April L. Schroyer
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, USA
| | - Nicholas W. Stimes
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, USA
| | - Widian F. Abi Saab
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, USA
| | - Deborah N. Chadee
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, USA
| |
Collapse
|
42
|
Chu C, Liu X, Bai X, Zhao T, Wang M, Xu R, Li M, Hu Y, Li W, Yang L, Qin Y, Yang M, Yan C, Zhang Y. MiR-519d suppresses breast cancer tumorigenesis and metastasis via targeting MMP3. Int J Biol Sci 2018; 14:228-236. [PMID: 29483840 PMCID: PMC5821043 DOI: 10.7150/ijbs.22849] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/28/2017] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is the most common cause of death in women throughout the world. Although microRNAs (miRNAs) have been identified as novel regulators in carcinogenesis, there are still abundant hidden treasure needed to be excavated. In the present study, we found that miR-519d expression was remarkably decreased in both human BC tissues and MCF-7 cells. CCK8 and 5-Ethynyl-2'-deoxyuridine (EdU) assays were used to evaluate cell proliferation. Wound-healing and transwell assays were performed for detection of cell migration and invasion. The results demonstrated miR-519d overexpression dramatically suppressed MCF-7 cells proliferation, migration and invasion. While downregulation of miR-519d by miR-519d inhibitor substantially increased MCF-7 cell carcinogenesis. Further analysis identified Matrix Metalloproteinase-3 (MMP3) as a direct target of miR-519d. QRT-PCR and western blot results indicated the correlative expression of miR-519d and MMP3 in BC tissues and MCF-7 cells. In summary, our data uncovered the novel molecular interaction between miR-519d and MMP3, indicating a therapeutic strategy of miR-519d for BC.
Collapse
Affiliation(s)
- Chengling Chu
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xue Bai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Tong Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mengxue Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ranchen Xu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mingqi Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yingying Hu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Weihua Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lida Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Youyou Qin
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Meng Yang
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Chaoqi Yan
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin 150086, China
| |
Collapse
|