1
|
Razmimanesh F, Sodeifian G. Evaluation of a temperature-responsive magnetotocosome as a magnetic targeting drug delivery system for sorafenib tosylate anticancer drug. Heliyon 2023; 9:e21794. [PMID: 38027677 PMCID: PMC10658271 DOI: 10.1016/j.heliyon.2023.e21794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/15/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
In this investigation, a polymeric fusion of chitosan (CS) and thermosensitive poly (N-isopropyl acrylamide) - PNIPAAm - encapsulated a magnetotocosome, biocompatible nanocarrier. This encapsulation strategy demonstrated improved drug entrapment efficiency, achieving up to 98.8 %. Additionally, it exhibited extended stability, optimal particle dimensions, and the potential for industrial scaling, thus facilitating controlled drug delivery of sorafenib tosylate to cancerous tissue. Reversible Addition-Fragmentation Chain Transfer (RAFT) techniques were employed to synthesize PNIPAAm. The effects of polymer molecular weight and polydispersity index on the lower critical solution temperature (LCST) were evaluated. The resulting polymeric amalgamation, involving the thermosensitive PNIPAAm synthesized using RAFT techniques and CS that coated the magnetotocosome (CS-Raft PNIPAAm-magnetotocosome) with an LCST approximately at 45 °C, holds the potential to enhance drug bioavailability and enable applications in hyperthermia treatment, controlled release, and targeted drug delivery.
Collapse
Affiliation(s)
- Fariba Razmimanesh
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
- Laboratory of Biotechnology and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran
- Biotechnology Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| | - Gholamhossein Sodeifian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
- Laboratory of Biotechnology and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran
- Biotechnology Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| |
Collapse
|
2
|
Razmimanesh F, Sodeifian G. Investigation of temperature-responsive tocosomal nanocarriers as the efficient and robust drug delivery system for Sunitinib malate anti-cancer drug: Effects of MW and chain length of PNIPAAm on LCST and dissolution rate. J Pharm Sci 2021; 111:1937-1951. [PMID: 34963573 DOI: 10.1016/j.xphs.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
In this study, for the first time, the coated tocosome by blend of chitosan, CS, and poly(N-isopropylacrylamide), PNIPAAm, was developed as the efficient and robust drug delivery system with improved drug encapsulation efficiency, extended stability, proper particle size and industrial upscaling for Sunitinib malate anti-cancer drug. Tocosome was synthesized by using Mozafari method as a scalable and robust method and without the need for organic solvents. The effects of tocosome composition and drug concentration on the stability, particle size of tocosome, zeta potential, encapsulation efficacy and loading of drug into it were investigated by Taguchi method, and optimum composition was selected for combining with the polymeric blend. Homopolymer of PNIPAAm was synthesized by two different polymerization methods, including free radical and reversible addition-fragmentation chain transfer (RAFT). Effects of molecular weight (MW) and chain length of the polymers on lower critical solution temperature (LCST) were examined. The developed nanocarrier in this research, CS-Raft-PNIPAAm-tocosome, indicated LCST value beyond 37°C (about 45°C) and this is suitable for hyperthermia and spatio-temporal release of drug particles.
Collapse
Affiliation(s)
- Fariba Razmimanesh
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran; Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran; Biotechnology Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| | - Gholamhossein Sodeifian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran; Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran; Biotechnology Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran.
| |
Collapse
|
3
|
Dabiri SMH, Samiei E, Shojaei S, Karperien L, Khun Jush B, Walsh T, Jahanshahi M, Hassanpour S, Hamdi D, Seyfoori A, Ahadian S, Khademhosseini A, Akbari M. Multifunctional Thermoresponsive Microcarriers for High-Throughput Cell Culture and Enzyme-Free Cell Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103192. [PMID: 34558181 DOI: 10.1002/smll.202103192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
An effective treatment of human diseases using regenerative medicine and cell therapy approaches requires a large number of cells. Cultivation of cells on microcarriers is a promising approach due to the high surface-to-volume ratios that these microcarriers offer. Here, multifunctional temperature-responsive microcarriers (cytoGel) made of an interpenetrating hydrogel network composed of poly(N-isopropylacrylamide) (PNIPAM), poly(ethylene glycol) diacrylate (PEGDA), and gelatin methacryloyl (GelMA) are developed. A flow-focusing microfluidic chip is used to produce microcarriers with diameters in the range of 100-300 μm and uniform size distribution (polydispersity index of ≈0.08). The mechanical properties and cells adhesion properties of cytoGel are adjusted by changing the composition hydrogel composition. Notably, GelMA regulates the temperature response and enhances microcarrier stiffness. Human-derived glioma cells (U87) are grown on cytoGel in static and dynamic culture conditions with cell viabilities greater than 90%. Enzyme-free cell detachment is achieved at room temperature with up to 70% detachment efficiency. Controlled release of bioactive molecules from cytoGel is accomplished for over a week to showcase the potential use of microcarriers for localized delivery of growth factors to cell surfaces. These microcarriers hold great promise for the efficient expansion of cells for the industrial-scale culture of therapeutic cells.
Collapse
Affiliation(s)
- Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Ehsan Samiei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Shahla Shojaei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Lucas Karperien
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Bardia Khun Jush
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Maryam Jahanshahi
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Sadegh Hassanpour
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - David Hamdi
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland
| |
Collapse
|
4
|
Darge HF, Chuang SH, Lai JY, Lin SY, Tsai HC. Preparation of thermosensitive PNIPAm-based copolymer coated cytodex 3 microcarriers for efficient nonenzymatic cell harvesting during 3D culturing. Biotechnol Bioeng 2021; 118:4076-4091. [PMID: 34251680 DOI: 10.1002/bit.27885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/09/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022]
Abstract
Enzymatic detachment of cells might damage important features and functions of cells and could affect subsequent cell-based applications. Therefore, nonenzymatic cell detachment using thermosensitive polymer matrix is necessary for maintaining cell quality after harvesting. In this study, we prepared thermosensitive PNIPAm-co-AAc-b-PS and PNIPAm-co-AAm-b-PS copolymers and low critical solution temperature (LCST) was tuned near to body temperature. Then, spin coated polymer films were prepared for cell adhesion and thermal-induced cell detachment. The alpha-step analysis and scanning electron microscope image of the films suggested that the thickness of the films depends on the molecular weight and concentration which ranged from 206 to 1330 nm for PNIPAm-co-AAc-b-PS and 97.5-497 nm for PNIPAm-co-AAm-b-PS. The contact angles of the films verified that the polymer surface was moderately hydrophilic at 37°C. Importantly, RAW264.7 cells were convincingly proliferated on the films to a confluent of >80% within 48 h and abled to detach by reducing the temperature. However, relatively more cells were grown on PNIPAm-co-AAm-b-PS (5%w/v) films and thermal-induced cell detachment was more abundant in this formulation. As a result, PNIPAm-co-AAm-b-PS (5%w/v) was further used to coat commercial cytodex 3 microcarriers for 3D cell culturing and interestingly enhanced cell detachment with preserved potential of recovery was observed at a temperature of below LCST. Thus, surface modification of microcarriers with thermosensitive PNIPAm-co-AAm-b-PS could be vital strategy for nonenzymatic cell detachment and to achieve adequate number of cells with maximum cell viability and functionality.
Collapse
Affiliation(s)
- Haile F Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan.,College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Shun-Hao Chuang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan
| | - Shuian-Yin Lin
- Biomedical Technology and Device Research Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan
| |
Collapse
|
5
|
de Bournonville S, Geris L, Kerckhofs G. Micro computed tomography with and without contrast enhancement for the characterization of microcarriers in dry and wet state. Sci Rep 2021; 11:2819. [PMID: 33531524 PMCID: PMC7854591 DOI: 10.1038/s41598-021-81998-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
In the field of regenerative medicine, microcarriers are used as support matrix for the growth of adherent cells. They are increasingly recognised as promising biomaterials for large scale, cost-effective cell expansion bioreactor processes. However, their individual morphologies can be highly heterogeneous which increases bioprocesses' variability. Additionally, only limited information is available on the microcarriers' 3D morphology and how it affects cell proliferation. Most imaging modalities do not provide sufficient 3D information or have a too limited field of view to appropriately study the 3D morphology. While microfocus X-ray computed tomography (microCT) could be appropriate, many microcarriers are hydrated before in-vitro use. This wet state makes them swell, changing considerably their morphology and making them indistinguishable from the culture solution in regular microCT images due to their physical density close to water. The use of contrast-enhanced microCT (CE-CT) has been recently reported for 3D imaging of soft materials. In this study, we selected a range of commercially available microcarrier types and used a combination of microCT and CE-CT for full 3D morphological characterization of large numbers of microcarriers, both in their dry and wet state. With in-house developed image processing and analysis tools, morphometrics of individual microcarriers were collected. Also, the morphology in wet state was assessed and related to accessible attachment surface area as a function of cell size. The morphological information on all microcarriers was collected in a publicly available database. This work provides a quantitative basis for optimization and modelling of microcarrier based cell expansion processes.
Collapse
Affiliation(s)
- Sébastien de Bournonville
- Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Research Unit, ULiège, Liège, Belgium
| | - Liesbet Geris
- Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Research Unit, ULiège, Liège, Belgium
| | - Greet Kerckhofs
- Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium.
- Department Materials Engineering, KU Leuven, Leuven, Belgium.
- Institute of Experimental and Clinical Research, UCLouvain, Woluwé-Saint-Lambert, Belgium.
| |
Collapse
|
6
|
Yang L, Fan X, Zhang J, Ju J. Preparation and Characterization of Thermoresponsive Poly( N-Isopropylacrylamide) for Cell Culture Applications. Polymers (Basel) 2020; 12:E389. [PMID: 32050412 PMCID: PMC7077488 DOI: 10.3390/polym12020389] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm) is a typical thermoresponsive polymer used widely and studied deeply in smart materials, which is attractive and valuable owing to its reversible and remote "on-off" behavior adjusted by temperature variation. PNIPAAm usually exhibits opposite solubility or wettability across lower critical solution temperature (LCST), and it is readily functionalized making it available in extensive applications. Cell culture is one of the most prospective and representative applications. Active attachment and spontaneous detachment of targeted cells are easily tunable by surface wettability changes and volume phase transitions of PNIPAAm modified substrates with respect to ambient temperature. The thermoresponsive culture platforms and matching thermal-liftoff method can effectively substitute for the traditional cell harvesting ways like enzymatic hydrolysis and mechanical scraping, and will improve the stable and high quality of recovered cells. Therefore, the establishment and detection on PNIPAAm based culture systems are of particular importance. This review covers the important developments and recommendations for future work of the preparation and characterization of temperature-responsive substrates based on PNIPAAm and analogues for cell culture applications.
Collapse
Affiliation(s)
- Lei Yang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| | - Xiaoguang Fan
- College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Zhang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| | - Jia Ju
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| |
Collapse
|
7
|
Derakhti S, Safiabadi-Tali SH, Amoabediny G, Sheikhpour M. Attachment and detachment strategies in microcarrier-based cell culture technology: A comprehensive review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109782. [DOI: 10.1016/j.msec.2019.109782] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/11/2019] [Accepted: 05/20/2019] [Indexed: 12/27/2022]
|
8
|
Pan J, Liu H, Ting W, Hsu H, Chen K. Surface modification by deposition of IPA plasma and gellan gum/chitosan hybrid hydrogel onto thermoplastic polyurethane for controlled release of N‐acetylcysteine. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiunn‐An Pan
- Graduate Institution of Engineering Technology‐Doctoral DepartmentNational Taipei University of Technology Taipei Taiwan
- Department of physics and chemistry, New Taipei Municipal Yonghe Junior High School New Taipei Taiwan
| | - Hsuan‐Liang Liu
- Department of Chemical Engineering and BiotechnologyNational Taipei University of Technology Taipei Taiwan
| | - Wei‐Ting Ting
- Department of Chemical EngineeringNational Taiwan University of Science and Technology Taipei Taiwan
| | - Hong‐Kai Hsu
- Department of Materials EngineeringTatung University Taipei Taiwan
| | - Ko‐Shao Chen
- Department of Materials EngineeringTatung University Taipei Taiwan
| |
Collapse
|
9
|
Chen KS, Chang SJ, Feng CK, Lin WL, Liao SC. Plasma Deposition and UV Light Induced Surface Grafting Polymerization of NIPAAm on Stainless Steel for Enhancing Corrosion Resistance and Its Drug Delivery Property. Polymers (Basel) 2018; 10:E1009. [PMID: 30960934 PMCID: PMC6403935 DOI: 10.3390/polym10091009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
Abstract
When stainless steel is implanted in human bodies, the corrosion resistance and biocompatibility must be considered. In this study, first, a protective organic silicone film was coated on the surface of stainless steel by a plasma deposition technique with a precursor of hexamethyldisilazane (HMDSZ). Then, ultraviolet (UV) light-induced graft polymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) in different molar ratios were applied onto the organic silicone film in order to immobilize thermos-/pH-sensitive composite hydrogels on the surface. The thermo-/pH-sensitive composite hydrogels were tested at pH values of 4, 7.4 and 10 of a phosphate buffer saline (PBS) solution at a fixed temperature of 37 °C to observe the swelling ratio and drug delivery properties of caffeine which served as a drug delivery substance. According to the results of Fourier Transformation Infrared (FTIR) spectra and a potential polarization dynamic test, the silicone thin film formed by plasma deposition not only improved the adhesion ability between the substrate and hydrogels but also exhibited a high corrosion resistance. Furthermore, the composite hydrogels have an excellent release ratio of up to 90% of the absorbed amount after 8h at a pH of 10. In addition, the results of potential polarization dynamic tests showed that the corrosion resistance of stainless steel could be improved by the HMDSZ plasma deposition.
Collapse
Affiliation(s)
- Ko-Shao Chen
- Department of Materials Engineering, Tatung University, Taipei 104, Taiwan.
| | - Shu-Ju Chang
- Department of Materials Engineering, Tatung University, Taipei 104, Taiwan.
| | - Chi-Kuang Feng
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Win-Li Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Shu-Chuan Liao
- Institute of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
- Bachelor Program for Design and Materials for Medical Equipment and Devices, Da Yeh University, Changhua 515, Taiwan.
| |
Collapse
|
10
|
Khine YY, Ganda S, Stenzel MH. Covalent Tethering of Temperature Responsive pNIPAm onto TEMPO-Oxidized Cellulose Nanofibrils via Three-Component Passerini Reaction. ACS Macro Lett 2018; 7:412-418. [PMID: 35619354 DOI: 10.1021/acsmacrolett.8b00051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A critical challenge in the application of functional cellulose fibrils is to perform efficient surface modification without disrupting the original properties. Three-component Passerini reaction (Passerini 3-CR) is regarded as an effective functionalization approach which can be carried out under mild and fast reaction condition. In this study, we investigated the application of Passerini 3-CR for the synthesis of thermoresponsive cellulose fibrils by covalently tethering poly(N-isopropylacrylamide) in aqueous condition at ambient temperature. The three components, a TEMPO-oxidized cellulose nanofiber bearing carboxylic acid moieties (TOCN-COOH), a functionalized polymer with aldehyde group (pNIPAm-COH) and a cyclohexyl isocyanide, were reacted in one pot resulting in 36% of grafting efficiency within 30 min. The chemical coupling was evidenced by improved aqueous dispersibility, which was further confirmed by FT-IR, TGA, UV-vis, and turbidity study. It was observed that the grafting efficiency is strongly dependent on the chain length of the polymer. Furthermore, AFM and X-ray diffraction measurements affirmed the suitability of the proposed method for chemical modification of cellulose nanofibers without significantly compromising the original morphology and structural integrity.
Collapse
Affiliation(s)
- Yee Yee Khine
- Center for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, Australia
| | - Sylvia Ganda
- Center for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, Australia
| | - Martina H. Stenzel
- Center for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Sudo Y, Kawai R, Sakai H, Kikuchi R, Nabae Y, Hayakawa T, Kakimoto MA. Star-Shaped Thermoresponsive Polymers with Various Functional Groups for Cell Sheet Engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:653-662. [PMID: 29257892 DOI: 10.1021/acs.langmuir.7b04213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study demonstrates the facile preparation of poly(N-isopropylacrylamide) (PNIPAM)-immobilized Petri dishes by drop-casting a star-shaped copolymer of hyperbranched polystyrene (HBPS) possessing PNIPAM arms (HBPS-g-PNIPAM) functionalized with polar groups. HBPS was synthesized via reversible addition-fragmentation chain transfer (RAFT) self-condensing vinyl polymerization (SCVP), and HBPS polymers with different terminal structures were prepared by changing the monomer structure. HBPS-g-PNIPAM was synthesized by the grafting of PNIPAM from each terminal of HBPS. To tune the cell adhesion and detachment properties, polar functional groups such as carboxylic acid and dimethylamino groups were introduced to HBPS-g-PNIPAM. Based on surface characterization using scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements, the advantage of the hyperbranched structure for the PNIPAM immobilization was evident in terms of the uniformity, stability, and thermoresponsiveness. Successful cell sheet harvesting was demonstrated on dishes coated with HBPS-g-PNIPAM. In addition, the cell adhesion and detachment properties could be tuned by the introduction of polar functional groups.
Collapse
Affiliation(s)
- Yu Sudo
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryuki Kawai
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hideaki Sakai
- Zellech Inc. , Studio3 10F, KFC-Bldg., 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015, Japan
| | - Ryohei Kikuchi
- Ookayama Materials Analysis Division, Technical Department, Tokyo Institute of Technology , 2-12-1 S7-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuta Nabae
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Masa-Aki Kakimoto
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
12
|
Affiliation(s)
- Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry; Rzeszow University of Technology; Al. Powstańców Warszawy 6 35-959 Rzeszow Poland
| |
Collapse
|
13
|
Li J, Fan X, Yang L, Wang F, Zhang J, Wang Z. A review on thermoresponsive cell culture systems based on poly(N-isopropylacrylamide) and derivatives. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1327436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiaxing Li
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun, People’s Republic of China
| | - Xiaoguang Fan
- College of Engineering, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Lei Yang
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun, People’s Republic of China
| | - Fei Wang
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun, People’s Republic of China
| | - Jing Zhang
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun, People’s Republic of China
| | - Zhanyong Wang
- School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun, People’s Republic of China
| |
Collapse
|
14
|
Sudo Y, Sakai H, Nabae Y, Hayakawa T, Kakimoto MA. Role of hyperbranched polystyrene on thermo-responsive cell culture dishes prepared by hyperbranched polystyrene-g-poly(N-isopropylacrylamide). POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Gillet R, Sakai H, Nabae Y, Hayakawa T, Kakimoto MA. Synthesis of hyperbranched-linear poly(N-isopropylacrylamide) polymers with a poly(siloxysilane) hyperbranched macroinitiator, and their application to cell culture on glass substrates. Polym J 2016. [DOI: 10.1038/pj.2016.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Morikawa A. Comparison of Properties among Dendritic and Hyperbranched Poly(ether ether ketone)s and Linear Poly(ether ketone)s. Molecules 2016; 21:molecules21020219. [PMID: 26891288 PMCID: PMC6274044 DOI: 10.3390/molecules21020219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/28/2016] [Accepted: 02/05/2016] [Indexed: 12/04/2022] Open
Abstract
Poly(ether ether ketone) dendrimers and hyperbranched polymers were prepared from 3,5-dimethoxy-4′-(4-fluorobenzoyl)diphenyl ether and 3,5-dihydroxy-4′-(4-fluorobenzoyl)diphenyl ether through aromatic nucleophilic substitution reactions. 1-(tert-Butyldimethylsiloxy)-3,5-bis(4-fluorobenzoyl)benzene was polycondensed with bisphenols, followed by cleavage of the protective group to form linear poly(ether ketone)s having the same hydroxyl groups in the side chains as the chain ends of the dendrimer and hyperbranched polymers. Their properties, such as solubilities, reduced viscosities, and thermal properties, were compared with one another. Similar comparisons were also carried out among the corresponding methoxy group polymers, and the size of the molecules was shown to affect the properties.
Collapse
Affiliation(s)
- Atsushi Morikawa
- Department Biomolecular Functional Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan.
| |
Collapse
|
17
|
Preparation of hyperbranched polystyrene-g-poly(N-isopropylacrylamide) copolymers and its application to novel thermo-responsive cell culture dishes. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.06.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Zhang J, Cui Z, Field R, Moloney MG, Rimmer S, Ye H. Thermo-responsive microcarriers based on poly(N-isopropylacrylamide). Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Wu L, Glebe U, Böker A. Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polym Chem 2015. [DOI: 10.1039/c5py00525f] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes recent progress in surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles.
Collapse
Affiliation(s)
- Lei Wu
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
- DWI – Leibniz Institute for Interactive Materials e.V
- Lehrstuhl für Makromolekulare Materialien und Oberflächen
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie
- Universität Potsdam
| |
Collapse
|
20
|
|
21
|
Moraes J, Ohno K, Maschmeyer T, Perrier S. Synthesis of silica–polymer core–shell nanoparticles by reversible addition–fragmentation chain transfer polymerization. Chem Commun (Camb) 2013; 49:9077-88. [DOI: 10.1039/c3cc45319g] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|