1
|
Anishchenko DV, Vereshchagin AA, Kalnin AY, Novoselova JV, Rubicheva LG, Potapenkov VV, Lukyanov DA, Levin OV. Thermodynamic model for voltammetric responses in conducting redox polymers. Phys Chem Chem Phys 2024; 26:11893-11909. [PMID: 38568204 DOI: 10.1039/d4cp00222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Electroactive polymer materials are known to play important roles in a vast spectrum of modern applications such as in supercapacitors, fuel cells, batteries, medicine, and smart materials, etc. They are usually divided into two main groups: first, conducting π-conjugated organic polymers, which conduct electricity by cation-radicals delocalized over a polymer chain; second, redox polymers, which conduct electricity via an electron-hopping mechanism. Polymer materials belonging to these two main groups have been thoroughly studied and their thermodynamic and kinetic models have been built. However, in recent decades a lot of mixed-type materials have been discovered and investigated. To the best of our knowledge, a thermodynamic-based description of conducting redox polymers (CRPs) has not been provided yet. In this work, we present a thermodynamic model for voltammetric responses of conducting redox polymers. The derived model allows one to extract thermodynamic parameters of a CRP including the polaron delocalization degree and redox active groups interaction constant. The model was verified with voltammetric experiments on three recently synthesized CRPs and showed a satisfactory predictive ability. The simulated data are in good agreement with the experiment. We believe that developing theoretical descriptions for CRPs and other types of electroactive materials with the ability to simulate their electrochemical responses may help in future realization of new systems with superior characteristics for electrochemical energy storage, chemical sensors, pharmacological applications, etc.
Collapse
Affiliation(s)
- Dmitrii V Anishchenko
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia.
| | - Anatoliy A Vereshchagin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia.
- Berlin Joint EPR Lab, Fachbereich Physik Freie Universität Berlin, 14195 Berlin, Germany
| | - Arseniy Y Kalnin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia.
| | - Julia V Novoselova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia.
| | - Lyubov G Rubicheva
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Vasiliy V Potapenkov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia.
| | - Daniil A Lukyanov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia.
| | - Oleg V Levin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia.
| |
Collapse
|
2
|
Hatakeyama-Sato K, Oyaizu K. Redox: Organic Robust Radicals and Their Polymers for Energy Conversion/Storage Devices. Chem Rev 2023; 123:11336-11391. [PMID: 37695670 DOI: 10.1021/acs.chemrev.3c00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Persistent radicals can hold their unpaired electrons even under conditions where they accumulate, leading to the unique characteristics of radical ensembles with open-shell structures and their molecular properties, such as magneticity, radical trapping, catalysis, charge storage, and electrical conductivity. The molecules also display fast, reversible redox reactions, which have attracted particular attention for energy conversion and storage devices. This paper reviews the electrochemical aspects of persistent radicals and the corresponding macromolecules, radical polymers. Radical structures and their redox reactions are introduced, focusing on redox potentials, bistability, and kinetic constants for electrode reactions and electron self-exchange reactions. Unique charge transport and storage properties are also observed with the accumulated form of redox sites in radical polymers. The radical molecules have potential electrochemical applications, including in rechargeable batteries, redox flow cells, photovoltaics, diodes, and transistors, and in catalysts, which are reviewed in the last part of this paper.
Collapse
Affiliation(s)
- Kan Hatakeyama-Sato
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552, Japan
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
3
|
Abstract
Organic batteries using redox-active polymers and small organic compounds have become promising candidates for next-generation energy storage devices due to the abundance, environmental benignity, and diverse nature of organic resources. To date, tremendous research efforts have been devoted to developing advanced organic electrode materials and understanding the material structure-performance correlation in organic batteries. In contrast, less attention was paid to the correlation between electrolyte structure and battery performance, despite the critical roles of electrolytes for the dissolution of organic electrode materials, the formation of the electrode-electrolyte interphase, and the solvation/desolvation of charge carriers. In this review, we discuss the prospects and challenges of organic batteries with an emphasis on electrolytes. The differences between organic and inorganic batteries in terms of electrolyte property requirements and charge storage mechanisms are elucidated. To provide a comprehensive and thorough overview of the electrolyte development in organic batteries, the electrolytes are divided into four categories including organic liquid electrolytes, aqueous electrolytes, inorganic solid electrolytes, and polymer-based electrolytes, to introduce different components, concentrations, additives, and applications in various organic batteries with different charge carriers, interphases, and separators. The perspectives and outlook for the future development of advanced electrolytes are also discussed to provide a guidance for the electrolyte design and optimization in organic batteries. We believe that this review will stimulate an in-depth study of electrolytes and accelerate the commercialization of organic batteries.
Collapse
Affiliation(s)
- Mengjie Li
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Robert Paul Hicks
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States
| | - Zifeng Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Chao Luo
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States
| | - Juchen Guo
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States
- Materials Science and Engineering Program, University of California-Riverside, Riverside, California 92521, United States
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yunhua Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Key Features of TEMPO-Containing Polymers for Energy Storage and Catalytic Systems. ENERGIES 2022. [DOI: 10.3390/en15072699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The need for environmentally benign portable energy storage drives research on organic batteries and catalytic systems. These systems are a promising replacement for commonly used energy storage devices that rely on limited resources such as lithium and rare earth metals. The redox-active TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl) fragment is a popular component of organic systems, as its benefits include remarkable electrochemical performance and decent physical properties. TEMPO is also known to be an efficient catalyst for alcohol oxidation, oxygen reduction, and various complex organic reactions. It can be attached to various aliphatic and conductive polymers to form high-loading catalysis systems. The performance and efficiency of TEMPO-containing materials strongly depend on the molecular structure, and thus rational design of such compounds is vital for successful implementation. We discuss synthetic approaches for producing electroactive polymers based on conductive and non-conductive backbones with organic radical substituents, fundamental aspects of electrochemistry of such materials, and their application in energy storage devices, such as batteries, redox-flow cells, and electrocatalytic systems. We compare the performance of the materials with different architectures, providing an overview of diverse charge interactions for hybrid materials, and presenting promising research opportunities for the future of this area.
Collapse
|
5
|
Rohland P, Schröter E, Nolte O, Newkome GR, Hager MD, Schubert US. Redox-active polymers: The magic key towards energy storage – a polymer design guideline progress in polymer science. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Xu D, Liang M, Qi S, Sun W, Lv LP, Du FH, Wang B, Chen S, Wang Y, Yu Y. The Progress and Prospect of Tunable Organic Molecules for Organic Lithium-Ion Batteries. ACS NANO 2021; 15:47-80. [PMID: 33382596 DOI: 10.1021/acsnano.0c05896] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Compared to inorganic electrodes, organic materials are regarded as promising electrodes for lithium-ion batteries (LIBs) due to the attractive advantages of light elements, molecular-level structural design, fast electron/ion transferring, favorable environmental impacts, and flexible feature, etc. Not only specific capacities but also working potentials of organic electrodes are reasonably tuned by polymerization, electron-donating/withdrawing groups, and multifunctional groups as well as conductive additives, which have attracted intensive attention. However, organic LIBs (OLIBs) are also facing challenges on capacity loss, side reactions, electrode dissolution, low electronic conductivity, and short cycle life, etc. Many strategies have been applied to tackle those challenges, and many inspiring results have been achieved in the last few decades. In this review, we have introduced the basic concepts of LIBs and OLIBs, followed by the typical cathode and anode materials with various physicochemical properties, redox reaction mechanisms, and evolutions of functional groups. Typical charge-discharge behaviors and molecular structures of organic electrodes are displayed. Moreover, effective strategies on addressing problems of organic electrodes are summarized to give some guidance on the synthesis of optimized organic electrodes for practical applications of OLIBs.
Collapse
Affiliation(s)
- Danying Xu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Minxia Liang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Shuo Qi
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Weiwei Sun
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Li-Ping Lv
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Fei-Hu Du
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Baofeng Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Shuangqiang Chen
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Vereshchagin AA, Vlasov PS, Konev AS, Yang P, Grechishnikova GA, Levin OV. Novel highly conductive cathode material based on stable-radical organic framework and polymerized nickel complex for electrochemical energy storage devices. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Lu Y, Zhang Q, Li L, Niu Z, Chen J. Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries. Chem 2018. [DOI: 10.1016/j.chempr.2018.09.005] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Aqil M, Ouhib F, Aqil A, El Idrissi A, Detrembleur C, Jérôme C. Polymer ionic liquid bearing radicals as an active material for organic batteries with ultrafast charge-discharge rate. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Hansen KA, Blinco JP. Nitroxide radical polymers – a versatile material class for high-tech applications. Polym Chem 2018. [DOI: 10.1039/c7py02001e] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A comprehensive summary of synthetic strategies for the preparation of nitroxide radical polymer materials and a state-of-the-art perspective on their latest and most exciting applications.
Collapse
Affiliation(s)
- Kai-Anders Hansen
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - James P. Blinco
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| |
Collapse
|
11
|
Emanuelsson R, Karlsson C, Huang H, Kosgei C, Strømme M, Sjödin M. Quinone based conducting redox polymers for electrical energy storage. RUSS J ELECTROCHEM+ 2017. [DOI: 10.1134/s1023193517010050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Liedel C, Ober CK. Nanopatterning of Stable Radical Containing Block Copolymers for Highly Ordered Functional Nanomeshes. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Clemens Liedel
- Department
of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14476 Potsdam, Germany
| | - Christopher K. Ober
- Materials
Science and Engineering, Cornell University, 310 Bard Hall, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Yamaguchi D, Eimura H, Yoshio M, Kato T. Redox-active Supramolecular Fibers of a Nitronyl Nitroxide-based Gelator. CHEM LETT 2016. [DOI: 10.1246/cl.160441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Hoang TKA, Doan TNL, Sun KEK, Chen P. Corrosion chemistry and protection of zinc & zinc alloys by polymer-containing materials for potential use in rechargeable aqueous batteries. RSC Adv 2015. [DOI: 10.1039/c5ra00594a] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The chemistry, methods, and results of corrosion studies on zinc coating using polymer-containing materials may be exploited in the development of the next generations of hybrid rechargeable aqueous batteries.
Collapse
Affiliation(s)
- Tuan K. A. Hoang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - The Nam Long Doan
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Kyung Eun Kate Sun
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - P. Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
16
|
Aqil M, Aqil A, Ouhib F, El Idrissi A, Detrembleur C, Jérôme C. RAFT polymerization of an alkoxyamine bearing acrylate, towards a well-defined redox active polyacrylate. RSC Adv 2015. [DOI: 10.1039/c5ra16839b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new strategy for the synthesis of a well-defined redox active polymer, a polyacrylate bearing TEMPO, and its grafting onto a gold substrate is described.
Collapse
Affiliation(s)
- M. Aqil
- Center for Education and Research on Macromolecules (CERM)
- University of Liege
- 4000 Liege
- Belgium
- LCAE-URAC 18
| | - A. Aqil
- Center for Education and Research on Macromolecules (CERM)
- University of Liege
- 4000 Liege
- Belgium
| | - F. Ouhib
- Center for Education and Research on Macromolecules (CERM)
- University of Liege
- 4000 Liege
- Belgium
| | - A. El Idrissi
- LCAE-URAC 18
- Faculty of Science
- University of Mohammed Premier
- 60000 Oujda
- Morocco
| | - C. Detrembleur
- Center for Education and Research on Macromolecules (CERM)
- University of Liege
- 4000 Liege
- Belgium
| | - C. Jérôme
- Center for Education and Research on Macromolecules (CERM)
- University of Liege
- 4000 Liege
- Belgium
| |
Collapse
|