1
|
Yonezawa H, Naka K, Imoto H. Open and Closed Cage Silsesquioxane Dimers. Chempluschem 2024; 89:e202400301. [PMID: 38967957 DOI: 10.1002/cplu.202400301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/06/2024]
Abstract
Polyhedral oligomeric silsesquioxane (POSS) is an organic-inorganic hybrid molecule with two structural variations, closed- and open-cage configurations, referred to as completely condensed POSS (CC-POSS) and corner-opened POSS (CO-POSS), respectively. In this study, we synthesized 12 dimers by combining CC- and CO-POSS variants decorated with isobutyl or phenyl substituents to explore their structure-property relationships. The choice of substituents, both at the cage vertices and open sites, significantly affected the thermal and optical properties of the materials. Modifying the substituents on CO- and CC-POSS, which are isomers, led to significant alterations in the material properties. Notably, isomer-bearing carbazole substituents exhibited a substantially higher quantum yield (0.32) than its counterpart isomer (0.13), underscoring the crucial role of structural nuances in determining material performance. These results offer valuable insights for the design of novel silsesquioxane-based materials.
Collapse
Affiliation(s)
- Honoka Yonezawa
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
- FOREST, Japan Science and Technology Corporation (JST), Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
2
|
Watanabe N, Imoto H, Naka K. Synthesis of a series of octaalkoxy-substituted cage silsesquioxanes catalyzed by zinc acetate. Dalton Trans 2024; 53:14986-14994. [PMID: 38817162 DOI: 10.1039/d4dt01008f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Octaalkoxy-substituted polyhedral oligomeric silsesquioxane (8RO-POSS) is an attractive starting material for producing silicone resins. However, polymers derived from 8RO-POSS via the sol-gel process have seldom been reported owing to their synthetic difficulty. In this study, we attempted to use zinc acetate (Zn(OAc)2) as the catalyst for the synthesis of a series of 8RO-POSS from octahydrido-POSS (8H-POSS). The reaction conditions were optimized using heptaisobutyl monohydride-POSS (7iBu1H-POSS) as a model reaction. The desired product was obtained in 96% yield under optimized conditions. The alkoxylation of 8H-POSS was performed using methanol (MeOH), ethanol (EtOH), isopropyl alcohol (i-PrOH), and tert-butyl alcohol (t-BuOH) in the presence of Zn(OAc)2 as the catalyst. Although octamethoxy-POSS (8MeO-POSS) was isolated in the presence of a byproduct, octaethoxy-POSS (8EtO-POSS) and octaisopropoxy-POSS (8iPrO-POSS) were obtained in high yields. The degree of alkoxylation was 55% in the case of using t-BuOH. The structures of 8MeO-POSS, 8EtO-POSS, and 8iPrO-POSS were confirmed by FT-IR, 1H-, and 29Si-NMR and MALDI-TOF-MS analyses. Compared to the random silicate obtained by base-treated tetramethoxysilane (TMOS), base-treated 8EtO-POSS and 8iPrO-POSS showed that the cage structures were maintained even after the formation of condensed silicate structures via a condensation reaction.
Collapse
Affiliation(s)
- Naoki Watanabe
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- JNC Petrochemical Corporation, 5-1, Goikaigan, Ichihara, Chiba 290-8551, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
3
|
Karasiewicz J, Dutkiewicz M, Olejnik A, Leśniewska J, Janicka Z, Maciejewski H. POSS derivatives containing extremely different surface properties as emulsifiers in colloidal systems. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Double-cyclopolymerization using trifunctional incompletely condensed cage silsesquioxane with methacryloyl groups. Polym J 2022. [DOI: 10.1038/s41428-022-00737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Bilyachenko AN, Gutsul EI, Khrustalev VN, Astakhov GS, Zueva AY, Zubavichus YV, Kirillova MV, Shul'pina LS, Ikonnikov NS, Dorovatovskii PV, Shubina ES, Kirillov AM, Shul'pin GB. Acetone Factor in the Design of Cu 4-, Cu 6-, and Cu 9-Based Cage Coppersilsesquioxanes: Synthesis, Structural Features, and Catalytic Functionalization of Alkanes. Inorg Chem 2022; 61:14800-14814. [PMID: 36059209 DOI: 10.1021/acs.inorgchem.2c02217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study describes a new feature in the self-assembly of cagelike copperphenylsilsesquioxanes: the strong influence of acetone solvates on cage structure formation. By this simple approach, a series of novel tetra-, hexa-, or nonacoppersilsesquioxanes were isolated and characterized. In addition, several new complexes of Cu4 or Cu6 nuclearity bearing additional nitrogen-based ligands (ethylenediamine, 2,2'-bipyridine, phenanthroline, bathophenanthroline, or neocuproine) were produced. Single-crystal X-ray diffraction studies established molecular architectures of all of the synthesized products. Several coppersilsesquioxanes represent a novel feature of cagelike metallasilsesquioxane (CLMS) in terms of molecular topology. A Cu4-silsesquioxane complex with ethylenediamine (En) ligands was isolated via the unprecedented self-assembly of a partly condensed framework of silsesquioxane ligands, followed by the formation of a sandwich-like cage. Two prismatic Cu6 complexes represent the different conformers─regular and elliptical hexagonal prisms, "cylinders", determined by the different orientations of the coordinated acetone ligands ("shape-switch effect"). A heterometallic Cu4Na4-sandwich-like derivative represents the first example of a metallasilsesquioxane complex with diacetone alcohol ligands formed in situ due to acetone condensation reaction. As a selected example, the compound [(Ph6Si6O11)2Cu4En2]·(acetone)2 was explored in homogeneous oxidation catalysis. It catalyzes the oxidation of alkanes to alkyl hydroperoxides with hydrogen peroxide and the oxidation of alcohols to ketones with tert-butyl hydroperoxide. Radical species take part in the oxidation of alkanes. Besides, [(Ph6Si6O11)2Cu4En2]·(acetone)2 catalyzes the mild oxidative functionalization of gaseous alkanes (ethane, propane, n-butane, and i-butane). Two different model reactions were investigated: (1) the oxidation of gaseous alkanes with hydrogen peroxide to give a mixture of oxygenates (alcohols, ketones, or aldehydes) and (2) the carboxylation of Cn gaseous alkanes with carbon monoxide, water, and potassium peroxodisulfate to give Cn+1 carboxylic acids (main products), along with the corresponding Cn oxygenates. For these reactions, the effects of acid promoter, reaction time, and substrate scope were explored. As expected for free-radical-type reactions, the alkane reactivity follows the trend C2H6 < C3H8 < n-C4H10 < i-C4H10. The highest total product yields were observed in the carboxylation of i-butane (up to 61% based on i-C4H10). The product yields and catalyst turnover numbers (TONs) are remarkable, given an inertness of gaseous alkanes and very mild reaction conditions applied (low pressures, 50-60 °C temperatures).
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
| | - Evgenii I Gutsul
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Grigorii S Astakhov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Anna Y Zueva
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
| | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis SB RAS, Nikolskii prosp., 1, Koltsovo 630559, Russia
| | - Marina V Kirillova
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Lidia S Shul'pina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Nikolay S Ikonnikov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Elena S Shubina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Georgiy B Shul'pin
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina, dom 4, Moscow 119991, Russia.,Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi pereulok 36, Moscow 117997, Russia
| |
Collapse
|
6
|
Olejnik A, Sztorch B, Brząkalski D, Przekop RE. Silsesquioxanes in the Cosmetics Industry-Applications and Perspectives. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1126. [PMID: 35161068 PMCID: PMC8840497 DOI: 10.3390/ma15031126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022]
Abstract
The rising demand for innovative and sophisticated personal care products is a driving factor for manufacturers to obtain new formulations that will fulfill the customers' preferences. In recent years, silsesquioxanes have attracted the attention of the cosmetics industry. These compounds have been proposed to be used in novel cosmetic formulations as emollient, dispersant, and viscosity modifiers. Therefore, this publication aims to review the main important aspects of polyhedral oligosilsesquioxanes as ingredients of personal care formulations, taking into consideration different types of products. The methods of obtaining these compounds were also presented. Additionally, the detailed analysis of patents dedicated to the application of silsesquioxanes in cosmetic formulations was also performed.
Collapse
Affiliation(s)
- Anna Olejnik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland; (B.S.); (R.E.P.)
| | - Bogna Sztorch
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland; (B.S.); (R.E.P.)
| | - Dariusz Brząkalski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Robert E. Przekop
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland; (B.S.); (R.E.P.)
| |
Collapse
|
7
|
Jagannathan JR, Targos K, Franz AK. Synthesis of Functionalized Silsesquioxane Nanomaterials by Rhodium‐Catalyzed Carbene Insertion into Si−H Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jake R. Jagannathan
- Department of Chemistry University of California, Davis One Shields Avenue Davis CA USA
| | - Karina Targos
- Department of Chemistry University of California, Davis One Shields Avenue Davis CA USA
| | - Annaliese K. Franz
- Department of Chemistry University of California, Davis One Shields Avenue Davis CA USA
| |
Collapse
|
8
|
Igarashi A, Imoto H, Naka K. Polymethacrylates containing cage-silsesquioxanes in the side chains: effects of cage and linker structures on film properties. Polym Chem 2022. [DOI: 10.1039/d1py01709h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polymers in which cage-silsesquioxanes were tethered through urethane linkers, were newly synthesized. The free-standing films were supported by the hydrogen bonding networks. Their properties were dependent on the cage structure.
Collapse
Affiliation(s)
- Amato Igarashi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
9
|
Nagao M, Hayashi T, Imoto H, Naka K. Unsymmetric Dumbbell-Shaped Polyhedral Oligomeric Silsesquioxane (POSS) Compound as a Single-Component POSS Hybrid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14777-14784. [PMID: 34882423 DOI: 10.1021/acs.langmuir.1c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dumbbell-shaped polyhedral oligomeric silsesquioxane (POSS) derivatives, in which two POSS units are linked through a bridge, have attracted attention in the last decade. Here, we prepared an unsymmetric dumbbell-shaped POSS derivative (3Ph-iBu) in which isobutyl- and phenyl-substituted POSS units are linked by a disiloxane unit and compared its thermal properties with those of the corresponding symmetric isobutyl- and phenyl-substituted dumbbell-shaped POSS derivatives (3iBu-iBu and 3Ph-Ph, respectively). The symmetric isobutyl- and phenyl-substituted dumbbell-shaped POSS derivatives, 3iBu-iBu and 3Ph-Ph, were almost completely phase-separated during a mixing process. This phase separation is due to the limited solubility of phenyl-substituted POSS compounds, which are only soluble in tetrahydrofuran (THF) and insoluble in hydrocarbons such as n-hexane and toluene, while the isobutyl-substituted POSS derivatives exhibit a wider spectrum of soluble solvents. The unsymmetric dumbbell-shaped POSS, 3Ph-iBu, showed hybrid properties of solubility in solvents and thermal behaviors. Differential scanning calorimetric (DSC) analysis showed that enthalpy of the phase transition of 3Ph-iBu was significantly lower than those of the mixture of 3iBu-iBu and 3Ph-Ph. No apparent melting behavior was observed above the phase transition. The thermal degradation of the weakest isobutyl substituents improves in the present single-component hybrid structure.
Collapse
Affiliation(s)
- Mayu Nagao
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Taihei Hayashi
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
10
|
Jagannathan JR, Targos K, Franz AK. Synthesis of Functionalized Silsesquioxane Nanomaterials by Rhodium-Catalyzed Carbene Insertion into Si-H bonds. Angew Chem Int Ed Engl 2021; 61:e202110417. [PMID: 34693589 DOI: 10.1002/anie.202110417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/10/2021] [Indexed: 12/12/2022]
Abstract
We report carbene insertion into Si-H bonds of polyhedral oligomeric silsesquioxanes (POSS) for the synthesis of highly functionalized siloxane nanomaterials. Dirhodium(II) carboxylates catalyze insertion of aryl-diazoacetates as carbene precursors to afford POSS structures containing both ester and aryl groups as orthogonal functional handles for further derivatization of POSS materials. Four diverse and structurally varied silsesquioxane core scaffolds with one, three, or eight Si-H bonds were evaluated with diazo reactants to produce a total of 20 new POSS compounds. Novel diazo compounds containing a fluorinated octyl group and boron-dipyrromethene (BODIPY) chromophore demonstrate the use of highly functionalized substrates. Transformations of aryl(ester)-functionalized POSS compounds derived from this method are demonstrated, including ester hydrolysis and Suzuki-Miyaura cross-coupling.
Collapse
Affiliation(s)
- Jake R Jagannathan
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Karina Targos
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Annaliese K Franz
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| |
Collapse
|
11
|
Stefanowska K, Szyling J, Walkowiak J, Franczyk A. Alkenyl-Functionalized Open-Cage Silsesquioxanes (RSiMe 2O) 3R' 7Si 7O 9: A Novel Class of Building Nanoblocks. Inorg Chem 2021; 60:11006-11013. [PMID: 34133151 PMCID: PMC8335724 DOI: 10.1021/acs.inorgchem.1c00689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Trifunctional incompletely
condensed polyhedral oligomeric silsesquioxanes
(RSiMe2O)3R′7Si7O9 (IC-POSSs) are considered as intriguing
building nanoblocks dedicated to constructing highly advanced organic–inorganic
molecules and polymers. Up to now, they have been mainly obtained via hydrosilylation of olefins, while the hydrosilylation
of the C≡C bonds has not been studied at all, despite the enormous
potential of this approach resulting from the possibility of introducing
3, 6, or even more functional groups into the IC-POSS structure. Therefore, in this work, we present a highly selective
and efficient synthesis of the first example of tripodal alkenyl-functionalized IC-POSSs, obtained via platinum-catalyzed
hydrosilylation of the terminal and internal alkynes, as well as symmetrically
and nonsymmetrically 1,4-disubstituted buta-1,3-diynes with silsesquioxanes
(HSiMe2O)3R′7Si7O9 (R′ = i-C4H9 (1a), (H3C)3CH2C(H3C)HCH2C (1b)). The resulting
products are synthetic intermediates that contain C=C bonds
and functional groups (e.g., OSiMe3, SiR3, Br,
F, B(O(C(CH3)2)2 (Bpin)), thienyl),
which make them suitable for application in the synthesis of novel,
complex, hybrid materials with unique properties. The first example of the synthesis of
alkenyl-functionalized
open-cage silsesquioxanes (IC-POSS) via platinum-catalyzed
hydrosilylation of C−C triple bonds in alkynes and buta-1,3-diynes
is presented. The optimized synthetic procedure allowed for the selective
and efficient synthesis of 20 new functional molecules capable of
further modification by hydrosilylation, hydroboration, or other chemical
processes.
Collapse
Affiliation(s)
- Kinga Stefanowska
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland.,Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland.,Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Adrian Franczyk
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
12
|
Igarashi A, Ueda Y, Katoh R, Imoto H, Naka K. Highly selective mono‐functionalization of open‐cage silsesquioxane toward film‐formable homopolymer. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amato Igarashi
- Faculty of Molecular Chemistry and Engineering Kyoto Institute of Technology Kyoto Japan
| | - Yukiho Ueda
- Faculty of Molecular Chemistry and Engineering Kyoto Institute of Technology Kyoto Japan
| | - Ryoichi Katoh
- Faculty of Molecular Chemistry and Engineering Kyoto Institute of Technology Kyoto Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering Kyoto Institute of Technology Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Kyoto Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering Kyoto Institute of Technology Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Kyoto Japan
| |
Collapse
|
13
|
Ueda Y, Imoto H, Okada A, Xu H, Yamane H, Naka K. Hybrid polyurethanes composed of isobutyl-substituted open-cage silsesquioxane in the main chains: synthesis, properties and surface segregation in a polymer matrix. Polym Chem 2021. [DOI: 10.1039/d1py00329a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The resulting polyurethanes exhibited excellent optical transparency and surface hydrophobicity and acted as effective surface modifiers in poly(methyl methacrylate) (PMMA) by surface segregation.
Collapse
Affiliation(s)
- Yukiho Ueda
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Arifumi Okada
- Faculty of Materials Science and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Huaizhong Xu
- Faculty of Fiber Science and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Hideki Yamane
- Faculty of Fiber Science and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto
- Japan
| |
Collapse
|
14
|
Li L, Imoto H, Naka K. Soluble network polymers based on
trifluoropropyl‐substituted open‐cage
silsesquioxane: Synthesis, properties, and application for surface modifiers. J Appl Polym Sci 2020. [DOI: 10.1002/app.50167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lina Li
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Kyoto Japan
| |
Collapse
|
15
|
Sato Y, Imoto H, Naka K. Soluble and film‐formable homopolymer tethering side‐opened cage silsesquioxane pendants. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuri Sato
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Kyoto Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Kyoto Japan
| |
Collapse
|
16
|
Preparation of Tri(alkenyl)functional Open-Cage Silsesquioxanes as Specific Polymer Modifiers. Polymers (Basel) 2020; 12:polym12051063. [PMID: 32384702 PMCID: PMC7285154 DOI: 10.3390/polym12051063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/23/2023] Open
Abstract
The scientific reports on polyhedral oligomeric silsesquioxanes are mostly focused on the formation of completely condensed T8 cubic type structures and recently so-called double-decker derivatives. Herein, we report on efficient synthetic routes leading to trifunctionalized, open-cage silsesquioxanes with alkenyl groups of varying chain lengths from -vinyl to -dec-9-enyl and two types of inert groups (iBu, Ph) at the silsesquioxane core. The presented methodology was focused on hydrolytic condensation reaction and it enabled obtaining titled compounds with high yields and purity. A parallel synthetic methodology that was based on the hydrosilylation reaction was also studied. Additionally, a thorough characterization of the obtained compounds was performed, also in terms of their thermal stability, melting and crystallization temperatures (TGA and DSC) in order to show the changes in the abovementioned parameters dependent on the type of reactive as well as inert groups at Si-O-Si core. The presence of unsaturated alkenyl groups has a profound impact on the application potential of these systems, i.e., as modifiers or comonomers for copolymerization reaction.
Collapse
|
17
|
Imoto H, Ueda Y, Sato Y, Nakamura M, Mitamura K, Watase S, Naka K. Corner‐ and Side‐Opened Cage Silsesquioxanes: Structural Effects on the Materials Properties. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| | - Yukiho Ueda
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| | - Yuri Sato
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| | - Masashi Nakamura
- Morinomiya Center Osaka Research Institute of Industrial Science and Technology Morinomiya Center 1‐6–50 Morinomiya, Joto‐ku 536‐8553 Osaka Japan
| | - Koji Mitamura
- Morinomiya Center Osaka Research Institute of Industrial Science and Technology Morinomiya Center 1‐6–50 Morinomiya, Joto‐ku 536‐8553 Osaka Japan
| | - Seiji Watase
- Morinomiya Center Osaka Research Institute of Industrial Science and Technology Morinomiya Center 1‐6–50 Morinomiya, Joto‐ku 536‐8553 Osaka Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| |
Collapse
|
18
|
Imoto H, Ishida A, Hashimoto M, Mizoue Y, Yusa SI, Naka K. Soluble Network Polymers Based on Trifunctional Open-cage Silsesquioxanes. CHEM LETT 2019. [DOI: 10.1246/cl.190536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ayano Ishida
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mari Hashimoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yoko Mizoue
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
19
|
Wada S, Imoto H, Naka K. Palladium-Catalyzed Arylation of Open-Cage Silsesquioxanes toward Thermally Stable and Highly Dispersible Nanofillers. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Satoshi Wada
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
20
|
Yuasa S, Sato Y, Imoto H, Naka K. Thermal Properties of Open-Cage Silsesquioxanes: The Effect of Substituents at the Corners and Opening Moieties. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sota Yuasa
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuri Sato
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
21
|
Katoh R, Imoto H, Naka K. One-pot strategy for synthesis of open-cage silsesquioxane monomers. Polym Chem 2019. [DOI: 10.1039/c9py00036d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel synthetic strategy to access POSS monomers has been proposed; one reaction site of an open-cage POSS was capped, and the remaining two silanol groups were functionalized for polymerization. Importantly, the monomer can be obtained by one-pot synthesis without any troublesome isolation process.
Collapse
Affiliation(s)
- Ryoichi Katoh
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| |
Collapse
|
22
|
Morimoto S, Imoto H, Kanaori K, Naka K. Effect of Mono-Substituents in Heptaisobutyl-Substituted Polyhedral Octasilsesquioxanes on Orientationally Disordered Phase Transition. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Satoshi Morimoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kenji Kanaori
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
23
|
Imoto H. Development of macromolecules and supramolecules based on silicon and arsenic chemistries. Polym J 2018. [DOI: 10.1038/s41428-018-0068-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Yuasa S, Imoto H, Naka K. Synthesis and properties of hyperbranched polymers by polymerization of an AB3-type incompletely condensed cage silsesquioxane (IC-POSS) monomer. Polym J 2018. [DOI: 10.1038/s41428-018-0071-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
|
26
|
Self-association behavior of amphiphilic molecules based on incompletely condensed cage silsesquioxanes and poly(ethylene glycol)s. Polym J 2018. [DOI: 10.1038/s41428-017-0021-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Yuasa S, Sato Y, Imoto H, Naka K. Fabrication of composite films with poly(methyl methacrylate) and incompletely condensed cage-silsesquioxane fillers. J Appl Polym Sci 2017. [DOI: 10.1002/app.46033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sota Yuasa
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology; Kyoto Institute of Technology; Sakyo-ku Kyoto 606-8585 Japan
| | - Yuri Sato
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology; Kyoto Institute of Technology; Sakyo-ku Kyoto 606-8585 Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology; Kyoto Institute of Technology; Sakyo-ku Kyoto 606-8585 Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology; Kyoto Institute of Technology; Sakyo-ku Kyoto 606-8585 Japan
| |
Collapse
|
28
|
Amphiphilic silsesquioxane nanoparticles by hydrolytic condensation of Y-shaped triethoxysilanes having hydroxyl and fluoroalkyl groups: Synthesis, self-assembly, and surface properties. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Gon M, Sato K, Tanaka K, Chujo Y. Controllable intramolecular interaction of 3D arranged π-conjugated luminophores based on a POSS scaffold, leading to highly thermally-stable and emissive materials. RSC Adv 2016. [DOI: 10.1039/c6ra14971e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This manuscript describes the inorganic cubic core as an advantageous scaffold for realizing solid-state emissive materials with high thermal stability.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Keita Sato
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
30
|
Yusa S, Ohno S, Honda T, Imoto H, Nakao Y, Naka K, Nakamura Y, Fujii S. Synthesis of silsesquioxane-based element-block amphiphiles and their self-assembly in water. RSC Adv 2016. [DOI: 10.1039/c6ra13995g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of silsesquioxane-based amphiphiles in water was investigated.
Collapse
Affiliation(s)
- S. Yusa
- Department of Applied Chemistry
- University of Hyogo
- Himeji
- Japan
| | - S. Ohno
- Department of Applied Chemistry
- University of Hyogo
- Himeji
- Japan
| | - T. Honda
- Department of Applied Chemistry
- University of Hyogo
- Himeji
- Japan
| | - H. Imoto
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Y. Nakao
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - K. Naka
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Y. Nakamura
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka Institute of Technology
- Osaka 535-8585
- Japan
| | - S. Fujii
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka Institute of Technology
- Osaka 535-8585
- Japan
| |
Collapse
|