1
|
Oliveira TB, Braga CL, Battaglini D, Pelosi P, Rocco PRM, Silva PL, Cruz FF. Comparison between sevoflurane and propofol on immunomodulation in an in vitro model of sepsis. Front Med (Lausanne) 2023; 10:1225179. [PMID: 37575989 PMCID: PMC10414536 DOI: 10.3389/fmed.2023.1225179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Patients with sepsis often require sedation and/or anesthesia. Although the immunomodulatory effects of anesthetics have been increasingly recognized, the molecular mechanisms require better elucidation. We compared the effects of sevoflurane with propofol on the expression of pro- and anti-inflammatory biomarkers released by monocytes/macrophages and blood/bronchoalveolar lavage fluid (BALF) neutrophils, the phagocytic capacity of monocytes/ macrophages, and neutrophil migration, as well as mediators associated with alveolar epithelial and endothelial cells obtained from rats with sepsis. Methods Polymicrobial sepsis was induced by cecal ligation and puncture in nine male Wistar rats. After 48 h, animals were euthanized and their monocytes/alveolar macrophages, blood and BALF neutrophils, as well as alveolar epithelial and endothelial cells were extracted, and then exposed to (1) sevoflurane (1 minimal alveolar concentration), (2) propofol (50 μM), or (3) saline, control (CTRL) for 1 h. Results Sevoflurane reduced interleukin (IL)-6 mRNA expression in monocytes and alveolar macrophages (p = 0.007, p = 0.029), whereas propofol decreased IL-6 mRNA only in alveolar macrophages (p = 0.027) compared with CTRL. Sevoflurane increased IL-10 expression (p = 0.0002) in monocytes compared with propofol and increased IL-10 mRNA and transforming growth factor (TGF)-β mRNA (p = 0.037, p = 0.045) compared with CTRL. Both sevoflurane and propofol did not affect mRNA expression of IL-10 and TGF-β in alveolar macrophages. The phagocytic capacity of monocytes (p = 0.0006) and alveolar macrophages (p = 0.0004) was higher with sevoflurane compared with propofol. Sevoflurane, compared with CTRL, reduced IL-1β mRNA (p = 0.003, p = 0.009) and C-X-C chemokine receptor 2 mRNA (CXCR2, p = 0.032 and p = 0.042) in blood and BALF neutrophils, and increased CXCR4 mRNA only in BALF neutrophils (p = 0.004). Sevoflurane increased blood neutrophil migration (p = 0.015) compared with propofol. Both sevoflurane and propofol increased zonula occludens-1 mRNA (p = 0.046, p = 0.003) in alveolar epithelial cells and reduced Toll-like receptor 4 mRNA (p = 0.043, p = 0.006) in alveolar endothelial cells compared with CTRL. Only propofol reduced surfactant protein B mRNA (p = 0.028) in alveolar epithelial cells. Discussion Sevoflurane, compared with propofol, increased anti-inflammatory biomarkers in monocytes, but not in alveolar macrophages, enhanced monocyte/alveolar macrophage phagocytic capacity and increased neutrophil migration in in vitro experimental sepsis. Both propofol and sevoflurane protected lung epithelial and endothelial cells.
Collapse
Affiliation(s)
- Tainá B. Oliveira
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cassia L. Braga
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Battaglini
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, University of Genoa, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda F. Cruz
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Simonato M, Padalino M, Vedovelli L, Carollo C, Sartori A, Vida V, Gregori D, Carnielli V, Cogo P. Effect of preoperative pulmonary hemodynamic and cardiopulmonary bypass on lung function in children with congenital heart disease. Eur J Pediatr 2023:10.1007/s00431-023-04926-0. [PMID: 36933017 PMCID: PMC10257631 DOI: 10.1007/s00431-023-04926-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023]
Abstract
In children with congenital heart disease (CHD), pulmonary blood flow (Qp) contributes to alterations of pulmonary mechanics and gas exchange, while cardiopulmonary bypass (CPB) induces lung edema. We aimed to determine the effect of hemodynamics on lung function and lung epithelial lining fluid (ELF) biomarkers in biventricular CHD children undergoing CPB. CHD children were classified as high Qp (n = 43) and low Qp (n = 17), according to preoperative cardiac morphology and arterial oxygen saturation. We measured ELF surfactant protein B (SP-B) and myeloperoxidase activity (MPO) as indexes of lung inflammation and ELF albumin as index of alveolar capillary leak in tracheal aspirate (TA) samples collected before surgery and in 6 hourly intervals within 24 h after surgery. At the same time points, we recorded dynamic compliance and oxygenation index (OI). The same biomarkers were measured in TA samples collected from 16 infants with no cardiorespiratory diseases at the time of endotracheal intubation for elective surgery. Preoperative ELF biomarkers in CHD children were significantly increased than those found in controls. In the high Qp, ELF MPO and SP-B peaked 6 h after surgery and tended to decrease afterward, while they tended to increase within the first 24 h in the low Qp. ELF albumin peaked 6 h after surgery and decreased afterwards in both CHD groups. Dynamic compliance/kg and OI significantly improved after surgery only in the High Qp. Conclusion: In CHD children, lung mechanics, OI, and ELF biomarkers were significantly affected by CPB, according to the preoperative pulmonary hemodynamics. What is Known: • Congenital heart disease children, before cardiopulmonary run, exhibit changes in respiratory mechanics, gas exchange, and lung inflammatory biomarkers that are related to the preoperative pulmonary hemodynamics. • Cardiopulmonary bypass induces alteration of lung function and epithelial lining fluid biomarkers according to preoperative hemodynamics. What is New: • Our findings can help to identify children with congenital heart disease at high risk of postoperative lung injury who may benefit of tailored intensive care strategies, such as non-invasive ventilation techniques, fluid management, and anti-inflammatory drugs that can improve cardiopulmonary interaction in the perioperative period.
Collapse
Affiliation(s)
- Manuela Simonato
- Department of Women's and Children's Health, University of Padova, Corso Stati Uniti 4, 35127, Padua, Italy.,PCare Laboratory, Fondazione Istituto Di Ricerca Pediatrica, "Città Della Speranza", Padua, Italy
| | - Massimo Padalino
- Pediatric and Congenital Cardiac Surgical Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy
| | - Cristiana Carollo
- Anesthesiology and Intensive Care Unit, Department of Medicine-DIMED, University of Padova, Padua, Italy
| | - Anna Sartori
- Department of Women's and Children's Health, University of Padova, Corso Stati Uniti 4, 35127, Padua, Italy.
| | - Vladimiro Vida
- Pediatric and Congenital Cardiac Surgical Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy
| | - Virgilio Carnielli
- Division of Neonatology, Polytechnic University of Marche and "G. Salesi" Children's Hospital, Ancona, Italy
| | - Paola Cogo
- Department of Medicine, University Hospital S. Maria Della Misericordia, University of Udine, Udine, Italy
| |
Collapse
|
3
|
Ghitoi SA, Așchie M, Cozaru GC, Enciu M, Matei E, Nicolau AA, Bălțătescu GI, Dobrin N, Cîrjaliu RE, Fildan AP. Surfactant proteins analysis in perinatal deceased preterm twins among the Romanian population. Medicine (Baltimore) 2022; 101:e29701. [PMID: 35905206 PMCID: PMC9333506 DOI: 10.1097/md.0000000000029701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The molecular basis of the evaluation of children suspected of having disorders of surfactant proteins is still under discussion. In this study, we aimed to describe the morphological characteristics and to evaluate the immunohistochemical expression of surfactant proteins (surfactant protein A [SPA], surfactant protein B, and pro-surfactant protein C) in the preterm twins that deceased due to unexplained respiratory distress syndrome (n = 12). Results showed statistically significant positive correlations between surfactant protein B expressions and pulmonary hemorrhage (ρ = 0.678; P < .05), SPA levels, and Apgar score (ρ = 0.605; P < .05) and also expressions of SPA and bronchopneumonia (ρ = 0.695; P < .05). The fetuses and neonates of the same gestational age showed differences among surfactant proteins regarding the immunostaining expression. Our data evidence a marked interindividual variability in the expression of all 3 surfactant proteins among the cases analyzed (n = 12), suggesting the intervention of some individual and epigenetic factors during gestation that might influence surfactant protein production and consequently survival rate.
Collapse
Affiliation(s)
- Sinziana-Andra Ghitoi
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Mariana Așchie
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, CEDMOG, Constanta, Romania
- Medicine Faculty, “Ovidius” University of Constanta, Constanta, Romania
| | - Georgeta Camelia Cozaru
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, CEDMOG, Constanta, Romania
| | - Manuela Enciu
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
- Medicine Faculty, “Ovidius” University of Constanta, Constanta, Romania
| | - Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, CEDMOG, Constanta, Romania
- *Correspondence: Elena Matei, Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, CEDMOG, 145 Tomis Blvd., Constanta 900591, Romania (e-mail: )
| | - Antonela-Anca Nicolau
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, CEDMOG, Constanta, Romania
| | - Gabriela Izabela Bălțătescu
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, CEDMOG, Constanta, Romania
| | - Nicolae Dobrin
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, CEDMOG, Constanta, Romania
- Medicine Faculty, “Ovidius” University of Constanta, Constanta, Romania
| | | | | |
Collapse
|
4
|
Zhou P, Kong Y, Cui X. Inhalation Bioaccessibility of Polycyclic Aromatic Hydrocarbons in PM 2.5 under Various Lung Environments: Implications for Air Pollution Control during Coronavirus Disease-19 Outbreak. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4272-4281. [PMID: 35333512 PMCID: PMC8982496 DOI: 10.1021/acs.est.1c08052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 05/25/2023]
Abstract
Global spread of coronavirus disease-19 (COVID-19) is placing an unprecedented pressure on the environment and health. In this study, a new perspective is proposed to assess the inhalation bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 for people with various lung health conditions. In vitro bioaccessibility (IVBA) was measured using modified epithelial lung fluids simulating the extracellular environment of patients with severe and mild lung inflammation. The average PAH IVBA in PM2.5 of 24.5 ± 4.52% under healthy conditions increased (p = 0.06) to 28.6 ± 3.17% and significantly (p < 0.05) to 32.3 ± 5.32% under mild and severe lung inflammation conditions. A mechanistic study showed that lung inflammation decreased the critical micelle concentrations of main pulmonary surfactants (i.e., from 67.8 (for dipalmitoyl phosphatidylcholine) and 53.3 mg/L (for bovine serum albumin) to 44.5 mg/L) and promoted the formation of micelles, which enhanced the solubilization and competitive desorption of PAHs from PM2.5 in the lung fluids. In addition, risk assessment considering different IVBA values suggested that PAH contamination levels in PM2.5, which were safe for healthy people, may not be acceptable for patients with lung inflammation. Because of the large number of COVID-19 infections, and the fact that some survivors of COVID-19 were observed to still show symptoms of interstitial lung inflammation, the finding here can provide important implications for both the scientific community and policy makers in addressing health risk and air pollution control during the COVID-19 outbreak.
Collapse
Affiliation(s)
- Pengfei Zhou
- State Key Laboratory of Pollution
Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Yi Kong
- State Key Laboratory of Pollution
Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Xinyi Cui
- State Key Laboratory of Pollution
Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
5
|
Padalino MA, Vedovelli L, Simonato M, Bandini A, Paganini G, Mezzalira L, Faganello N, Carollo C, Gregori D, Vida V, Cogo P. OUP accepted manuscript. Interact Cardiovasc Thorac Surg 2022; 35:6554032. [PMID: 35333340 PMCID: PMC9297524 DOI: 10.1093/icvts/ivac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/08/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Massimo A Padalino
- Pediatric and Congenital Cardiac Surgery Unit, Department of Cardiac, Thoracic, and Vascular Sciences, and Public health, University of Padova, Padova, Italy
- Corresponding author. Pediatric and Congenital Cardiac Surgery Unit, Department of Cardiac, Thoracic, and Vascular Sciences, and Public Health, University of Padova, Via Giustiniani 2, Padova 35128, Italy. Tel: +39-049-8212424; e-mail: (M.A. Padalino)
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, and Vascular Sciences, and Public health, University of Padova, Padova, Italy
| | - Manuela Simonato
- PCare Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Andrea Bandini
- Anesthesia and Resuscitation Institute, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Greta Paganini
- Anesthesia and Resuscitation Institute, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Laura Mezzalira
- Anesthesia and Resuscitation Institute, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Nicola Faganello
- Anesthesia and Resuscitation Institute, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Cristiana Carollo
- Anesthesia and Resuscitation Institute, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, and Vascular Sciences, and Public health, University of Padova, Padova, Italy
| | - Vladimiro Vida
- Pediatric and Congenital Cardiac Surgery Unit, Department of Cardiac, Thoracic, and Vascular Sciences, and Public health, University of Padova, Padova, Italy
| | - Paola Cogo
- Division of Pediatrics, Department of Medicine, University Hospital Santa Maria della Misericordia, University of Udine, Udine, Italy
| |
Collapse
|
6
|
Pioselli B, Salomone F, Mazzola G, Amidani D, Sgarbi E, Amadei F, Murgia X, Catinella S, Villetti G, De Luca D, Carnielli V, Civelli M. Pulmonary surfactant: a unique biomaterial with life-saving therapeutic applications. Curr Med Chem 2021; 29:526-590. [PMID: 34525915 DOI: 10.2174/0929867328666210825110421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome. This paper reviews the main biophysical concepts of surfactant activity and its inactivation mechanisms, and describes the past, present and future roles of surfactant replacement therapy, focusing on the exogenous surfactant preparations marketed worldwide and new formulations under development. The closing section describes the pulmonary surfactant in the context of drug delivery. Thanks to its peculiar composition, biocompatibility, and alveolar spreading capability, the surfactant may work not only as a shuttle to the branched anatomy of the lung for other drugs but also as a modulator for their release, opening to innovative therapeutic avenues for the treatment of several respiratory diseases.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Sgarbi
- Preclinical R&D, Chiesi Farmaceutici, Parma. Italy
| | | | - Xabi Murgia
- Department of Biotechnology, GAIKER Technology Centre, Zamudio. Spain
| | | | | | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Antoine Béclère Medical Center, APHP, South Paris University Hospitals, Paris, France; Physiopathology and Therapeutic Innovation Unit-U999, South Paris-Saclay University, Paris. France
| | - Virgilio Carnielli
- Division of Neonatology, G Salesi Women and Children's Hospital, Polytechnical University of Marche, Ancona. Italy
| | | |
Collapse
|
7
|
De Luca D, Autilio C. Strategies to protect surfactant and enhance its activity. Biomed J 2021; 44:654-662. [PMID: 34365021 PMCID: PMC8847817 DOI: 10.1016/j.bj.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
The knowledge about surfactant biology is now deeper and recent research has allowed to clarify its role in several human lung disorders. The balance between surfactant production and consumption is better known and the same applies to their regulatory mechanisms. This has allowed to hypothesize and investigate several new and original strategies to protect surfactant and enhance its activity. These interventions are potentially useful for several disorders and particularly for acute respiratory distress syndrome. We here highlight the mechanisms regulating surfactant consumption, encompassing surfactant catabolism but also surfactant injury due to other mechanisms, in a physiopathology-driven fashion. We then analyze each corresponding strategy to protect surfactant and enhance its activity. Some of these strategies are more advanced in terms of research & development pathway, some others are still investigational, but all are promising and deserve a joint effort from clinical-academic researchers and the industry.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Paediatrics and Neonatal Critical Care, "A.Béclère" Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France; Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France.
| | - Chiara Autilio
- Dpt. of Biochemistry and Molecular Biology and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| |
Collapse
|
8
|
Li X, Chen Z. Correlation between serum levels of C-reactive protein and neonatal pneumonia: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25977. [PMID: 34011087 PMCID: PMC8137101 DOI: 10.1097/md.0000000000025977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Few studies have reported the correlation between serum levels of C-reactive protein (CRP) and neonatal pneumonia. The purpose of the present meta-analysis was to clarify whether an increased serum level of CRP accelerates the development of neonatal pneumonia. METHODS This protocol is conducted according to the preferred reporting items for systematic reviews and meta-analysis protocol (PRISMA-P) statement guidelines. Related articles were identified by searching PubMed, Embase, Cochrane Library, Web of Science, Science Direct, and CNKI databases. Two investigators extracted information according to the selection criteria and used a set of predefined criteria based on the Newcastle-Ottawa Scale (NOS) criteria to assess the studies. All calculations were carried out with Stata 12.0 (Stata Corp, College Station, TX). RESULTS The results of this systematic review and meta-analysis will be published in a peer-reviewed journal. CONCLUSION We hypothesized that a higher serum CRP level is closely correlated with the progression of neonatal pneumonia. CRP as a general systemic inflammation biomarker may help clinicians to make difficult therapeutic decisions for neonatal pneumonia. OPEN SCIENCE FRAMEWORK REGISTRATION NUMBER 10.17605/OSF.IO/RGBMX.
Collapse
Affiliation(s)
- Xiaowen Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhong Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
9
|
Qian L, Yin X, Ji J, Chen Z, Fang H, Li H, Zhu F, Chang F. Tumor necrosis factor-α small interfering RNA alveolar epithelial cell-targeting nanoparticles reduce lung injury in C57BL/6J mice with sepsis. J Int Med Res 2021; 49:300060520984652. [PMID: 33435767 PMCID: PMC7809319 DOI: 10.1177/0300060520984652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background The role of tumor necrosis factor (TNF)-α small interfering (si)RNA alveolar epithelial cell (AEC)-targeting nanoparticles in lung injury is unclear. Methods Sixty C57BL/6J mice with sepsis were divided into normal, control, sham, 25 mg/kg, 50 mg/kg, and 100 mg/kg siRNA AEC-targeting nanoparticles groups (n = 10 per group). The wet:dry lung weight ratio, and hematoxylin and eosin staining, western blotting, and enzyme-linked immunosorbent assays for inflammatory factors were conducted to compare differences among groups. Results The wet:dry ratio was significantly lower in control and sham groups than other groups. TNF-α siRNA AEC-targeting nanoparticles significantly reduced the number of eosinophils, with significantly lower numbers in the 50 mg/kg group than in 25 mg/kg and 100 mg/kg groups. The nanoparticles also significantly reduced the expression of TNF-α, B-cell lymphoma-2, caspase 3, interleukin (IL)-1β, and IL-6, with TNF-α expression being significantly lower in the 50 mg/kg group than in 25 mg/kg and 100 mg/kg groups. Conclusion TNF-α siRNA AEC-targeting nanoparticles appear to be effective at improving lung injury-related sepsis, and 50 mg/kg may be a preferred dose option for administration.
Collapse
Affiliation(s)
- Like Qian
- Department of Burn and Plastic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Xi Yin
- Department of Burn and Plastic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Jiahao Ji
- Department of Burn and Plastic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Zhengli Chen
- Burn Institute of PLA, Department of Burn Surgery, The First Affiliated Hospital. Naval Medical University, Shanghai, China
| | - He Fang
- Burn Institute of PLA, Department of Burn Surgery, The First Affiliated Hospital. Naval Medical University, Shanghai, China
| | - Hu Li
- Department of Burn and Plastic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Feng Zhu
- Burn Institute of PLA, Department of Burn Surgery, The First Affiliated Hospital. Naval Medical University, Shanghai, China
| | - Fei Chang
- Department of Burn and Plastic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| |
Collapse
|
10
|
Autilio C, Echaide M, Shankar-Aguilera S, Bragado R, Amidani D, Salomone F, Pérez-Gil J, De Luca D. Surfactant Injury in the Early Phase of Severe Meconium Aspiration Syndrome. Am J Respir Cell Mol Biol 2020; 63:327-337. [PMID: 32348683 DOI: 10.1165/rcmb.2019-0413oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
No in vivo data are available regarding the effect of meconium on human surfactant in the early stages of severe meconium aspiration syndrome (MAS). In the present study, we sought to characterize the changes in surfactant composition, function, and structure during the early phase of meconium injury. We designed a translational prospective cohort study of nonbronchoscopic BAL of neonates with severe MAS (n = 14) or no lung disease (n = 18). Surfactant lipids were analyzed by liquid chromatography-high-resolution mass spectrometry. Secretory phospholipase A2 subtypes IB, V, and X and SP-A (surfactant protein A) were assayed by ELISA. SP-B and SP-C were analyzed by Western blotting under both nonreducing and reducing conditions. Surfactant function was assessed by adsorption test and captive bubble surfactometry, and lung aeration was evaluated by semiquantitative lung ultrasound. Surfactant nanostructure was studied using cryo-EM and atomic force microscopy. Several changes in phospholipid subclasses were detected during MAS. Lysophosphatidylcholine species released by phospholipase A2 hydrolysis were increased. SP-B and SP-C were significantly increased together with some shorter immature forms of SP-B. Surfactant function was impaired and correlated with poor lung aeration. Surfactant nanostructure was significantly damaged in terms of vesicle size, tridimensional complexity, and compactness. Various alterations of surfactant phospholipids and proteins were detected in the early phase of severe meconium aspiration and were due to hydrolysis and inflammation and a defensive response. This impairs both surfactant structure and function, finally resulting in reduced lung aeration. These findings support the development of new surfactant protection and antiinflammatory strategies for severe MAS.
Collapse
Affiliation(s)
- Chiara Autilio
- Department of Biochemistry and Molecular Biology and Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain
| | - Mercedes Echaide
- Department of Biochemistry and Molecular Biology and Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain
| | - Shivani Shankar-Aguilera
- Division of Pediatrics and Neonatal Critical Care, A. Béclère Medical Center, Paris Saclay University Hospitals, APHP, Paris, France
| | - Rafael Bragado
- Research Institute "Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS FJD)", Madrid, Spain
| | - Davide Amidani
- Pharmacology and Toxicology Department Preclinical R&D, Chiesi Farmaceutici, Parma, Italy; and
| | - Fabrizio Salomone
- Pharmacology and Toxicology Department Preclinical R&D, Chiesi Farmaceutici, Parma, Italy; and
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology and Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain
| | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, A. Béclère Medical Center, Paris Saclay University Hospitals, APHP, Paris, France.,Physiopathology and Therapeutic Innovation Unit, INSERM U999, Paris-Saclay University, Paris, France
| |
Collapse
|
11
|
De Luca D, Shankar-Aguilera S, Autilio C, Raschetti R, Vedovelli L, Fitting C, Payré C, Jeammet L, Perez-Gil J, Cogo PE, Carnielli VP, Lambeau G, Touqui L. Surfactant-secreted phospholipase A2interplay and respiratory outcome in preterm neonates. Am J Physiol Lung Cell Mol Physiol 2020; 319:L95-L104. [DOI: 10.1152/ajplung.00462.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secreted phospholipase A2hydrolyzes surfactant phospholipids and is crucial for the inflammatory cascade; preterm neonates are treated with exogenous surfactant, but the interaction between surfactant and phospholipase is unknown. We hypothesize that this interplay is complex and the enzyme plays a relevant role in neonates needing surfactant replacement. We aimed to: 1) identify phospholipases A2isoforms expressed in preterm lung; 2) study the enzyme role on surfactant retreatment and function and the effect of exogenous surfactant on the enzyme system; and 3) verify whether phospholipase A2is linked to respiratory outcomes. In bronchoalveolar lavages of preterm neonates, we measured enzyme activity (alone or with inhibitors), enzyme subtypes, surfactant protein-A, and inflammatory mediators. Surfactant function and phospholipid profile were also tested. Urea ratio was used to obtain epithelial lining fluid concentrations. Follow-up data were prospectively collected. Subtype-IIA is the main phospholipase isoform in preterm lung, although subtype-IB may be significantly expressed. Neonates needing surfactant retreatment have higher enzyme activity ( P = 0.021) and inflammatory mediators ( P always ≤ 0.001) and lower amounts of phospholipids ( P always < 0.05). Enzyme activity was inversely correlated to surfactant adsorption (ρ = −0.6; P = 0.008; adjusted P = 0.009), total phospholipids (ρ = −0.475; P = 0.05), and phosphatidylcholine (ρ = −0.622; P = 0.017). Exogenous surfactant significantly reduced global phospholipase activity ( P < 0.001) and subtype-IIA ( P = 0.005) and increased dioleoylphosphatidylglycerol ( P < 0.001) and surfactant adsorption ( P < 0.001). Enzyme activity correlated with duration of ventilation (ρ = 0.679, P = 0.005; adjusted P = 0.04) and respiratory morbidity score at 12 mo postnatal age (τ-b = 0.349, P = 0.037; adjusted P = 0.043) but was not associated with mortality, bronchopulmonary dysplasia, or other long-term respiratory outcomes.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, “A.Béclère” Medical Center, South Paris University Hospitals, Assistance Publique – Hôpitaux de Paris (APHP), Paris, France
- Physiopathology and Therapeutic Innovation Unit-INSERM U999, South Paris-Saclay University, Paris, France
- Cystic fibrosis and Bronchial diseases team-INSERM U938, Institut Pasteur, Paris, France
| | - Shivani Shankar-Aguilera
- Division of Pediatrics and Neonatal Critical Care, “A.Béclère” Medical Center, South Paris University Hospitals, Assistance Publique – Hôpitaux de Paris (APHP), Paris, France
- Cystic fibrosis and Bronchial diseases team-INSERM U938, Institut Pasteur, Paris, France
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institut-Hospital “12 de Octubre,” Complutense University, Madrid, Spain
| | - Roberto Raschetti
- Division of Pediatrics and Neonatal Critical Care, “A.Béclère” Medical Center, South Paris University Hospitals, Assistance Publique – Hôpitaux de Paris (APHP), Paris, France
| | - Luca Vedovelli
- PCare Laboratory, Fondazione Istituto di Ricerca Pediatrica “Città della Speranza,” Padua, Italy
| | | | - Christine Payré
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Valbonne Sophia Antipolis, France
| | - Louise Jeammet
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Valbonne Sophia Antipolis, France
| | - Jesus Perez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institut-Hospital “12 de Octubre,” Complutense University, Madrid, Spain
| | - Paola E. Cogo
- PCare Laboratory, Fondazione Istituto di Ricerca Pediatrica “Città della Speranza,” Padua, Italy
- Division of Pediatrics, Department of Medicine and Surgery, University of Udine, Udine, Italy
| | - Virgilio P. Carnielli
- PCare Laboratory, Fondazione Istituto di Ricerca Pediatrica “Città della Speranza,” Padua, Italy
- Division of Neonatology, “G. Salesi” Women’s and Children Hospital, Polytechnical University of Marche, Ancona, Italy
| | - Gérard Lambeau
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Valbonne Sophia Antipolis, France
| | - Lhousseine Touqui
- Cystic fibrosis and Bronchial diseases team-INSERM U938, Institut Pasteur, Paris, France
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| |
Collapse
|
12
|
Abstract
The application of nanotechnology, molecular biotechnologies, and nano-sciences for medical purposes has been termed nanomedicine, a promising growing area of medical research. The aim of this paper is to provide an overview of and discuss nanotechnology applications in the early epochs of life, from transplacental transfer to neonatal/pediatric conditions. Diagnostic and therapeutic applications, mainly related to the respiratory tract, the neurosensory system, and infections, are explored and discussed. Preclinical studies show promising results for a variety of conditions, including for the treatment of pregnancy complications and fetal, neonatal, and pediatric diseases. However, given the complexity of the functions and interactions between the placenta and the fetus, and the complex and incompletely understood determinants of tissue growth and differentiation during early life, there is a need for much more data to confirm the safety and efficacy of nanotechnology in this field.
Collapse
|
13
|
Yousef N, Vigo G, Shankar-Aguilera S, De Luca D. Semiquantitative Ultrasound Assessment of Lung Aeration Correlates With Lung Tissue Inflammation. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1258-1262. [PMID: 32081586 DOI: 10.1016/j.ultrasmedbio.2020.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/21/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
We studied the relationship between ultrasound-assessed lung aeration and inflammation in a particular population of ventilated preterm neonates with mild-to-moderate lung inflammation and no congenital heart defect. Lung aeration estimated by a semiquantitative lung ultrasound score significantly correlated with several inflammatory markers both at cellular (neutrophil count in bronchoalveolar lavage: ρ = 0.400, p = 0.018) and molecular level (total proteins: ρ = 0.524, p = 0.021; interleukine-8: ρ = 0.523, p = 0.021; granulocytes-macrophages colony stimulating factor: ρ = 0.493, p = 0.020; all measured in bronchoalveolar lavage and expressed as epithelial lining fluid concentrations). Lung ultrasound might detect changes in lung aeration attributable to mild-to-moderate local inflammation if cardiogenic lung edema is excluded. Thus, it is possible to describe some levels of lung inflammation with semiquantitative lung ultrasound.
Collapse
Affiliation(s)
- Nadya Yousef
- Division of Pediatrics and Neonatal Critical Care, "A. Béclère" Medical Center, South Paris University Hospitals, APHP, Paris, France
| | - Giulia Vigo
- Division of Pediatrics and Neonatal Critical Care, "A. Béclère" Medical Center, South Paris University Hospitals, APHP, Paris, France
| | - Shivani Shankar-Aguilera
- Division of Pediatrics and Neonatal Critical Care, "A. Béclère" Medical Center, South Paris University Hospitals, APHP, Paris, France
| | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, "A. Béclère" Medical Center, South Paris University Hospitals, APHP, Paris, France; Physiopathology and Therapeutic Innovation Unit-INSERM U999, South Paris-Saclay University, Paris - France.
| |
Collapse
|
14
|
Surfactant replacement therapy: from biological basis to current clinical practice. Pediatr Res 2020; 88:176-183. [PMID: 31926483 PMCID: PMC7223236 DOI: 10.1038/s41390-020-0750-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023]
Abstract
This review summarizes the current knowledge on the physiological action of endogenous and exogenous pulmonary surfactant, the role of different types of animal-derived and synthetic surfactants for RDS therapy, different modes of administration, potential risks and strategies of ventilation, and highlights the most promising aims for future development. Scientists have clarified the physicochemical properties and functions of the different components of surfactant, and part of this successful research is derived from the characterization of genetic diseases affecting surfactant composition or function. Knowledge from functional tests of surfactant action, its immunochemistry, kinetics and homeostasis are important also for improving therapy with animal-derived surfactant preparations and for the development of modified surfactants. In the past decade newly designed artificial surfactants and additives have gained much attention and have proven different advantages, but their particular role still has to be defined. For clinical practice, alternative administration techniques as well as postsurfactant ventilation modes, taking into account alterations in lung mechanics after surfactant placement, may be important in optimizing the potential of this most important drug in neonatology.
Collapse
|
15
|
Hong L, Liu Y, Huo S. Correlation of pulmonary alveolar surfactant protein-a gene polymorphism with asthma in children. Minerva Med 2019; 111:519-521. [PMID: 31256578 DOI: 10.23736/s0026-4806.19.06144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li Hong
- Department of Pediatrics, Liaocheng Second People's Hospital, Linqing, China
| | - Ya Liu
- Department of Pediatrics, Liaocheng Second People's Hospital, Linqing, China
| | - Shiguang Huo
- Department of Pediatrics, Liaocheng Second People's Hospital, Linqing, China -
| |
Collapse
|
16
|
Verlato G, Simonato M, Giambelluca S, Fantinato M, Correani A, Cavicchiolo ME, Priante E, Carnielli V, Cogo P. Surfactant Components and Tracheal Aspirate Inflammatory Markers in Preterm Infants with Respiratory Distress Syndrome. J Pediatr 2018; 203:442-446. [PMID: 30270169 DOI: 10.1016/j.jpeds.2018.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/11/2018] [Accepted: 08/09/2018] [Indexed: 12/16/2022]
Abstract
In 93 preterm infants ≤32 weeks of gestational age and 12 control infants, epithelial lining fluid disaturated-phosphatidylcholine, surfactant protein A and B, albumin, and myeloperoxidase activity were assessed after intubation and before exogenous surfactant administration. We found that disaturated-phosphatidylcholine, surfactant protein B, and myeloperoxidase were significantly higher in preterms with chorioamnionitis.
Collapse
Affiliation(s)
- Giovanna Verlato
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Manuela Simonato
- Pediatric Research Foundation Institute "Città della Speranza", Padova, Italy; Division of Pediatrics, Department of Medicine, University of Udine, Udine, Italy
| | - Sonia Giambelluca
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Margherita Fantinato
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Alessio Correani
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Maria Elena Cavicchiolo
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Elena Priante
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Virgilio Carnielli
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Paola Cogo
- Division of Pediatrics, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
17
|
Zhang Q, Chai X, Deng F, Ouyang W, Song T. The reduction in FOXA2 activity during lung development in fetuses from diabetic rat mothers is reversed by Akt inhibition. FEBS Open Bio 2018; 8:1594-1604. [PMID: 30338211 PMCID: PMC6168696 DOI: 10.1002/2211-5463.12517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/10/2018] [Accepted: 06/12/2018] [Indexed: 01/28/2023] Open
Abstract
Hyperglycemia during pregnancy is associated with fetal lung development disorders and surfactant protein (SP) deficiency. Here, we examined the role of FOXA2 and Akt signaling in fetal lung development during diabetic pregnancy. Sprague‐Dawley rats were injected with streptozocin (STZ) during pregnancy to induce diabetes (DM). DM‐exposed fetal lungs exhibited reduced numbers of alveoli, irregularities in the appearance and thickness of the alveolar septum, increased levels of glycogen and lipids in type II alveolar epithelial cells, fewer microvilli and mature lamellar bodies, and swollen mitochondria. SP‐B and SP‐C in DM amniotic fluid and DM lungs were lower than in the control group (P < 0.05). DM lung nuclear FOXA2 was lower compared with the control group (P < 0.05), but p‐FOXA2 was higher (P < 0.05). In murine lung epithelial (MLE) 12 cells, p‐AKT levels were increased by high glucose/insulin, but decreased by the Akt inhibitor MK2206 (P < 0.05). Expression of nuclear FOXA2 was increased by MK2206 compared with the high glucose/insulin group (P < 0.05). These results suggest that maternal diabetes induces fetal lung FOXA2 phosphorylation through the Akt pathway, and also affects the maturation of alveolar epithelial cells and reduces levels of SP‐B and SP‐C in the fetal lungs. An Akt inhibitor reversed the changes in SP expression in vitro.
Collapse
Affiliation(s)
- Qingmiao Zhang
- Department of Obstetrics and Gynecology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xinqun Chai
- Department of Hepatobiliary Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Feitao Deng
- Department of Obstetrics and Gynecology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Weixiang Ouyang
- Department of Obstetrics and Gynecology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ting Song
- Department of Obstetrics and Gynecology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
18
|
Influence of the type of congenital heart defects on epithelial lining fluid composition in infants undergoing cardiac surgery with cardiopulmonary bypass. Pediatr Res 2018; 83:791-797. [PMID: 29281616 DOI: 10.1038/pr.2017.326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
BackgroundIn children with congenital heart disease (CHD), altered pulmonary circulation compromises gas exchange. Moreover, pulmonary dysfunction is a complication of cardiac surgery with cardiopulmonary bypass (CPB). No data are available on the effect of different CHDs on lung injury. The aim of this study was to analyze epithelial lining fluid (ELF) surfactant composition in children with CHD.MethodsTracheal aspirates (TAs) from 72 CHD children (age 2.9 (0.4-5.7) months) were obtained before and after CPB. We measured ELF phospholipids, surfactant proteins A and B (SP-A, SP-B), albumin, and myeloperoxidase activity. TAs from 12 infants (age 1.0 (0.9-2.9) months) with normal heart/lung served as controls.ResultsHeart defects were transposition of great arteries (19), tetralogy of Fallot (TOF, 20), atrial/ventricular septal defect (ASD/VSD, 22), and hypoplastic left heart syndrome (11). Increased levels of ELF SP-B were found in all defects, increased myeloperoxidase activity in all except the TOF, and increased levels of ELF albumin and SP-A only in ASD/VSD patients. Postoperatively, ELF findings remained unchanged except for a further increase in myeloperoxidase activity.ConclusionELF composition has distinctive patterns in different CHD. We speculate that a better knowledge of the ELF biochemical changes may help to prevent respiratory complications.
Collapse
|
19
|
Carnielli VP, Giorgetti C, Simonato M, Vedovelli L, Cogo P. Neonatal Respiratory Diseases in the Newborn Infant: Novel Insights from Stable Isotope Tracer Studies. Neonatology 2016; 109:325-33. [PMID: 27251153 DOI: 10.1159/000444891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Respiratory distress syndrome is a common problem in preterm infants and the etiology is multifactorial. Lung underdevelopment, lung hypoplasia, abnormal lung water metabolism, inflammation, and pulmonary surfactant deficiency or disfunction play a variable role in the pathogenesis of respiratory distress syndrome. High-quality exogenous surfactant replacement studies and studies on surfactant metabolism are available; however, the contribution of surfactant deficiency, alteration or dysfunction in selected neonatal lung conditions is not fully understood. In this article, we describe a series of studies made by applying stable isotope tracers to the study of surfactant metabolism and lung water. In a first set of studies, which we call 'endogenous studies', using stable isotope-labelled intravenous surfactant precursors, we showed the feasibility of measuring surfactant synthesis and kinetics in infants using several metabolic precursors including plasma glucose, plasma fatty acids and body water. In a second set of studies, named 'exogenous studies', using stable isotope-labelled phosphatidylcholine tracer given endotracheally, we could estimate surfactant disaturated phosphatidylcholine pool size and half-life. Very recent studies are focusing on lung water and on the endogenous biosynthesis of the surfactant-specific proteins. Information obtained from these studies in infants will help to better tailor exogenous surfactant treatment in neonatal lung diseases.
Collapse
Affiliation(s)
- Virgilio P Carnielli
- Division of Neonatology, Salesi Hospital and Polytechnic University of Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|