1
|
Galetin A, Brouwer KLR, Tweedie D, Yoshida K, Sjöstedt N, Aleksunes L, Chu X, Evers R, Hafey MJ, Lai Y, Matsson P, Riselli A, Shen H, Sparreboom A, Varma MVS, Yang J, Yang X, Yee SW, Zamek-Gliszczynski MJ, Zhang L, Giacomini KM. Membrane transporters in drug development and as determinants of precision medicine. Nat Rev Drug Discov 2024; 23:255-280. [PMID: 38267543 PMCID: PMC11464068 DOI: 10.1038/s41573-023-00877-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
The effect of membrane transporters on drug disposition, efficacy and safety is now well recognized. Since the initial publication from the International Transporter Consortium, significant progress has been made in understanding the roles and functions of transporters, as well as in the development of tools and models to assess and predict transporter-mediated activity, toxicity and drug-drug interactions (DDIs). Notable advances include an increased understanding of the effects of intrinsic and extrinsic factors on transporter activity, the application of physiologically based pharmacokinetic modelling in predicting transporter-mediated drug disposition, the identification of endogenous biomarkers to assess transporter-mediated DDIs and the determination of the cryogenic electron microscopy structures of SLC and ABC transporters. This article provides an overview of these key developments, highlighting unanswered questions, regulatory considerations and future directions.
Collapse
Affiliation(s)
- Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK.
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Kenta Yoshida
- Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, CA, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Lauren Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc., Rahway, NJ, USA
| | - Raymond Evers
- Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, PA, USA
| | - Michael J Hafey
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc., Rahway, NJ, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Pär Matsson
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrew Riselli
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hong Shen
- Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, CT, USA
| | - Jia Yang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Fele-Paranj A, Saboury B, Uribe C, Rahmim A. Physiologically based radiopharmacokinetic (PBRPK) modeling to simulate and analyze radiopharmaceutical therapies: studies of non-linearities, multi-bolus injections, and albumin binding. EJNMMI Radiopharm Chem 2024; 9:6. [PMID: 38252191 PMCID: PMC10803696 DOI: 10.1186/s41181-023-00236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND We aimed to develop a publicly shared computational physiologically based pharmacokinetic (PBPK) model to reliably simulate and analyze radiopharmaceutical therapies (RPTs), including probing of hot-cold ligand competitions as well as alternative injection scenarios and drug designs, towards optimal therapies. RESULTS To handle the complexity of PBPK models (over 150 differential equations), a scalable modeling notation called the "reaction graph" is introduced, enabling easy inclusion of various interactions. We refer to this as physiologically based radiopharmacokinetic (PBRPK) modeling, fine-tuned specifically for radiopharmaceuticals. As three important applications, we used our PBRPK model to (1) study the effect of competition between hot and cold species on delivered doses to tumors and organs at risk. In addition, (2) we evaluated an alternative paradigm of utilizing multi-bolus injections in RPTs instead of prevalent single injections. Finally, (3) we used PBRPK modeling to study the impact of varying albumin-binding affinities by ligands, and the implications for RPTs. We found that competition between labeled and unlabeled ligands can lead to non-linear relations between injected activity and the delivered dose to a particular organ, in the sense that doubling the injected activity does not necessarily result in a doubled dose delivered to a particular organ (a false intuition from external beam radiotherapy). In addition, we observed that fractionating injections can lead to a higher payload of dose delivery to organs, though not a differential dose delivery to the tumor. By contrast, we found out that increased albumin-binding affinities of the injected ligands can lead to such a differential effect in delivering more doses to tumors, and this can be attributed to several factors that PBRPK modeling allows us to probe. CONCLUSIONS Advanced computational PBRPK modeling enables simulation and analysis of a variety of intervention and drug design scenarios, towards more optimal delivery of RPTs.
Collapse
Affiliation(s)
- Ali Fele-Paranj
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, US
| | - Carlos Uribe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Functional Imaging, BC Cancer, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Arman Rahmim
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Melillo N, Scotcher D, Kenna JG, Green C, Hines CDG, Laitinen I, Hockings PD, Ogungbenro K, Gunwhy ER, Sourbron S, Waterton JC, Schuetz G, Galetin A. Use of In Vivo Imaging and Physiologically-Based Kinetic Modelling to Predict Hepatic Transporter Mediated Drug-Drug Interactions in Rats. Pharmaceutics 2023; 15:896. [PMID: 36986758 PMCID: PMC10057977 DOI: 10.3390/pharmaceutics15030896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Gadoxetate, a magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 and multidrug resistance-associated protein 2. Six drugs, with varying degrees of transporter inhibition, were used to assess gadoxetate dynamic contrast enhanced MRI biomarkers for transporter inhibition in rats. Prospective prediction of changes in gadoxetate systemic and liver AUC (AUCR), resulting from transporter modulation, were performed by physiologically-based pharmacokinetic (PBPK) modelling. A tracer-kinetic model was used to estimate rate constants for hepatic uptake (khe), and biliary excretion (kbh). The observed median fold-decreases in gadoxetate liver AUC were 3.8- and 1.5-fold for ciclosporin and rifampicin, respectively. Ketoconazole unexpectedly decreased systemic and liver gadoxetate AUCs; the remaining drugs investigated (asunaprevir, bosentan, and pioglitazone) caused marginal changes. Ciclosporin decreased gadoxetate khe and kbh by 3.78 and 0.09 mL/min/mL, while decreases for rifampicin were 7.20 and 0.07 mL/min/mL, respectively. The relative decrease in khe (e.g., 96% for ciclosporin) was similar to PBPK-predicted inhibition of uptake (97-98%). PBPK modelling correctly predicted changes in gadoxetate systemic AUCR, whereas underprediction of decreases in liver AUCs was evident. The current study illustrates the modelling framework and integration of liver imaging data, PBPK, and tracer-kinetic models for prospective quantification of hepatic transporter-mediated DDI in humans.
Collapse
Affiliation(s)
- Nicola Melillo
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
- SystemsForecastingUK Ltd., Lancaster LA1 5DD, UK
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
| | | | - Claudia Green
- MR & CT Contrast Media Research, Bayer AG, 13353 Berlin, Germany
| | | | - Iina Laitinen
- Sanofi-Aventis Deutschland GmbH, Bioimaging Germany, 65929 Frankfurt am Main, Germany
- Antaros Medical, 431 83 Mölndal, Sweden
| | - Paul D. Hockings
- Antaros Medical, 431 83 Mölndal, Sweden
- MedTech West, Chalmers University of Technology, 413 45 Gothenburg, Sweden
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
| | - Ebony R. Gunwhy
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TA, UK
| | - Steven Sourbron
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TA, UK
| | - John C. Waterton
- Bioxydyn Ltd., Manchester M15 6SZ, UK
- Centre for Imaging Sciences, Division of Informatics Imaging & Data Sciences, School of Health Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Gunnar Schuetz
- MR & CT Contrast Media Research, Bayer AG, 13353 Berlin, Germany
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
| |
Collapse
|
4
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
5
|
Siebinga H, de Wit-van der Veen BJ, Stokkel MD, Huitema AD, Hendrikx JJ. Current use and future potential of (physiologically based) pharmacokinetic modelling of radiopharmaceuticals: a review. Theranostics 2022; 12:7804-7820. [PMID: 36451855 PMCID: PMC9706588 DOI: 10.7150/thno.77279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/27/2022] [Indexed: 12/02/2022] Open
Abstract
Rationale: Physiologically based pharmacokinetic (PBPK) and population pharmacokinetic (PK) modelling approaches are widely accepted in non-radiopharmaceutical drug development and research, while there is no major role for these approaches in radiopharmaceutical development yet. In this review, a literature search was performed to specify different research purposes and questions that have previously been answered using both PBPK and population PK modelling for radiopharmaceuticals. Methods: The literature search was performed using the databases PubMed and Embase. Wide search terms included radiopharmaceutical, tracer, radioactivity, physiologically based pharmacokinetic model, PBPK, population pharmacokinetic model and nonlinear mixed-effects model. Results: Eight articles and twenty articles were included for this review based on this literature search for population PK modelling and PBPK modelling, respectively. Included population PK analyses showed to have an added value to develop predictive models for a population and to describe individual variability sources. Main purposes of PBPK models appeared related to optimizing treatment (planning), or more specifically: to find the optimal combination of peptide amount and radioactivity, to optimize treatment planning by reducing the number of measurements, to individualize treatment, to get insights in differences between pre-therapeutic and therapeutic scans or to understand inter-patient differences. Other main research subjects were regarding radiopharmaceutical comparisons, selecting ligands based on their peptide characteristics and gaining a better understanding of drug-drug interactions. Conclusions: The use of PK modelling approaches in radiopharmaceutical research remains scarce, but can be expanded to obtain a better understanding of PK and whole-body distribution of radiopharmaceuticals in general. PK modelling of radiopharmaceuticals has great potential for the nearby future and could contribute to the evolving research of radiopharmaceuticals.
Collapse
Affiliation(s)
- Hinke Siebinga
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Marcel D.M. Stokkel
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin D.R. Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jeroen J.M.A. Hendrikx
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Boekestijn I, van Oosterom MN, Dell'Oglio P, van Velden FHP, Pool M, Maurer T, Rietbergen DDD, Buckle T, van Leeuwen FWB. The current status and future prospects for molecular imaging-guided precision surgery. Cancer Imaging 2022; 22:48. [PMID: 36068619 PMCID: PMC9446692 DOI: 10.1186/s40644-022-00482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/21/2022] [Indexed: 01/19/2023] Open
Abstract
Molecular imaging technologies are increasingly used to diagnose, monitor, and guide treatment of i.e., cancer. In this review, the current status and future prospects of the use of molecular imaging as an instrument to help realize precision surgery is addressed with focus on the main components that form the conceptual basis of intraoperative molecular imaging. Paramount for successful interventions is the relevance and accessibility of surgical targets. In addition, selection of the correct combination of imaging agents and modalities is critical to visualize both microscopic and bulk disease sites with high affinity and specificity. In this context developments within engineering/imaging physics continue to drive the growth of image-guided surgery. Particularly important herein is enhancement of sensitivity through improved contrast and spatial resolution, features that are critical if sites of cancer involvement are not to be overlooked during surgery. By facilitating the connection between surgical planning and surgical execution, digital surgery technologies such as computer-aided visualization nicely complement these technologies. The complexity of image guidance, combined with the plurality of technologies that are becoming available, also drives the need for evaluation mechanisms that can objectively score the impact that technologies exert on the performance of healthcare professionals and outcome improvement for patients.
Collapse
Affiliation(s)
- Imke Boekestijn
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paolo Dell'Oglio
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Floris H P van Velden
- Medical Physics, Department of Radiology , Leiden University Medical Center, Leiden, the Netherlands
| | - Martin Pool
- Department of Clinical Farmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tobias Maurer
- Martini-Klinik Prostate Cancer Centre Hamburg, Hamburg, Germany
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
7
|
Marie S, Hernández-Lozano I, Le Vée M, Breuil L, Saba W, Goislard M, Goutal S, Truillet C, Langer O, Fardel O, Tournier N. Pharmacokinetic Imaging Using 99mTc-Mebrofenin to Untangle the Pattern of Hepatocyte Transporter Disruptions Induced by Endotoxemia in Rats. Pharmaceuticals (Basel) 2022; 15:ph15040392. [PMID: 35455390 PMCID: PMC9028474 DOI: 10.3390/ph15040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Endotoxemia-induced inflammation may impact the activity of hepatocyte transporters, which control the hepatobiliary elimination of drugs and bile acids. 99mTc-mebrofenin is a non-metabolized substrate of transporters expressed at the different poles of hepatocytes. 99mTc-mebrofenin imaging was performed in rats after the injection of lipopolysaccharide (LPS). Changes in transporter expression were assessed using quantitative polymerase chain reaction of resected liver samples. Moreover, the particular impact of pharmacokinetic drug–drug interactions in the context of endotoxemia was investigated using rifampicin (40 mg/kg), a potent inhibitor of hepatocyte transporters. LPS increased 99mTc-mebrofenin exposure in the liver (1.7 ± 0.4-fold). Kinetic modeling revealed that endotoxemia did not impact the blood-to-liver uptake of 99mTc-mebrofenin, which is mediated by organic anion-transporting polypeptide (Oatp) transporters. However, liver-to-bile and liver-to-blood efflux rates were dramatically decreased, leading to liver accumulation. The transcriptomic profile of hepatocyte transporters consistently showed a downregulation of multidrug resistance-associated proteins 2 and 3 (Mrp2 and Mrp3), which mediate the canalicular and sinusoidal efflux of 99mTc-mebrofenin in hepatocytes, respectively. Rifampicin effectively blocked both the Oatp-mediated influx and the Mrp2/3-related efflux of 99mTc-mebrofenin. The additive impact of endotoxemia and rifampicin led to a 3.0 ± 1.3-fold increase in blood exposure compared with healthy non-treated animals. 99mTc-mebrofenin imaging is useful to investigate disease-associated change in hepatocyte transporter function.
Collapse
Affiliation(s)
- Solène Marie
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
- Faculté de Pharmacie, Université Paris-Saclay, 92296 Châtenay-Malabry, France
- AP-HP, Université Paris-Saclay, Hôpital Bicêtre, Pharmacie Clinique, 94270 Le Kremlin Bicêtre, France
| | | | - Marc Le Vée
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35043 Rennes, France
| | - Louise Breuil
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Wadad Saba
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Maud Goislard
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Sébastien Goutal
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Olivier Fardel
- Univ. Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35043 Rennes, France
| | - Nicolas Tournier
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| |
Collapse
|
8
|
Marie S, Hernández-Lozano I, Langer O, Tournier N. Repurposing 99mTc-Mebrofenin as a Probe for Molecular Imaging of Hepatocyte Transporters. J Nucl Med 2021; 62:1043-1047. [PMID: 33674399 DOI: 10.2967/jnumed.120.261321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocyte transporters control the hepatobiliary elimination of many drugs, metabolites, and endogenous substances. Hepatocyte transporter function is altered in several pathophysiologic situations and can be modulated by certain drugs, with a potential impact for pharmacokinetics and drug-induced liver injury. The development of substrate probes with optimal properties for selective and quantitative imaging of hepatic transporters remains a challenge. 99mTc-mebrofenin has been used for decades for hepatobiliary scintigraphy, but the specific transporters controlling its liver kinetics have not been characterized until recently. These include sinusoidal influx transporters (organic anion-transporting polypeptides) responsible for hepatic uptake of 99mTc-mebrofenin, and efflux transporters (multidrug resistance-associated proteins) mediating its canalicular (liver-to-bile) and sinusoidal (liver-to-blood) excretion. Pharmacokinetic modeling enables molecular interpretation of 99mTc-mebrofenin scintigraphy data, thus offering a widely available translational method to investigate transporter-mediated drug-drug interactions in vivo. 99mTc-mebrofenin allows for phenotyping transporter function at the different poles of hepatocytes as a biomarker of liver function.
Collapse
Affiliation(s)
| | | | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale, BioMaps, Université Paris-Saclay, CEA, CNRS, INSERM, Service Hospitalier Frédéric Joliot, Orsay, France
| |
Collapse
|
9
|
Scotcher D, Melillo N, Tadimalla S, Darwich AS, Ziemian S, Ogungbenro K, Schütz G, Sourbron S, Galetin A. Physiologically Based Pharmacokinetic Modeling of Transporter-Mediated Hepatic Disposition of Imaging Biomarker Gadoxetate in Rats. Mol Pharm 2021; 18:2997-3009. [PMID: 34283621 PMCID: PMC8397403 DOI: 10.1021/acs.molpharmaceut.1c00206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Physiologically based
pharmacokinetic (PBPK) models are increasingly
used in drug development to simulate changes in both systemic and
tissue exposures that arise as a result of changes in enzyme and/or
transporter activity. Verification of these model-based simulations
of tissue exposure is challenging in the case of transporter-mediated
drug–drug interactions (tDDI), in particular as these may lead
to differential effects on substrate exposure in plasma and tissues/organs
of interest. Gadoxetate, a promising magnetic resonance imaging (MRI)
contrast agent, is a substrate of organic-anion-transporting polypeptide
1B1 (OATP1B1) and multidrug resistance-associated protein 2 (MRP2).
In this study, we developed a gadoxetate PBPK model and explored the
use of liver-imaging data to achieve and refine in vitro–in
vivo extrapolation (IVIVE) of gadoxetate hepatic transporter kinetic
data. In addition, PBPK modeling was used to investigate gadoxetate
hepatic tDDI with rifampicin i.v. 10 mg/kg. In vivo dynamic contrast-enhanced
(DCE) MRI data of gadoxetate in rat blood, spleen, and liver were
used in this analysis. Gadoxetate in vitro uptake kinetic data were
generated in plated rat hepatocytes. Mean (%CV) in vitro hepatocyte
uptake unbound Michaelis–Menten constant (Km,u) of gadoxetate was 106 μM (17%) (n = 4 rats), and active saturable uptake accounted for 94% of total
uptake into hepatocytes. PBPK–IVIVE of these data (bottom-up
approach) captured reasonably systemic exposure, but underestimated
the in vivo gadoxetate DCE–MRI profiles and elimination from
the liver. Therefore, in vivo rat DCE–MRI liver data were subsequently
used to refine gadoxetate transporter kinetic parameters in the PBPK
model (top-down approach). Active uptake into the hepatocytes refined
by the liver-imaging data was one order of magnitude higher than the
one predicted by the IVIVE approach. Finally, the PBPK model was fitted
to the gadoxetate DCE–MRI data (blood, spleen, and liver) obtained
with and without coadministered rifampicin. Rifampicin was estimated
to inhibit active uptake transport of gadoxetate into the liver by
96%. The current analysis highlighted the importance of gadoxetate
liver data for PBPK model refinement, which was not feasible when
using the blood data alone, as is common in PBPK modeling applications.
The results of our study demonstrate the utility of organ-imaging
data in evaluating and refining PBPK transporter IVIVE to support
the subsequent model use for quantitative evaluation of hepatic tDDI.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Nicola Melillo
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Sirisha Tadimalla
- Division of Medical Physics, University of Leeds, Leeds LS2 9JT, U.K
| | - Adam S Darwich
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Sabina Ziemian
- MR & CT Contrast Media Research, Bayer AG, Berlin 13342, Germany
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Gunnar Schütz
- MR & CT Contrast Media Research, Bayer AG, Berlin 13342, Germany
| | - Steven Sourbron
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, U.K
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
10
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Hernández Lozano I, Langer O. Use of imaging to assess the activity of hepatic transporters. Expert Opin Drug Metab Toxicol 2020; 16:149-164. [PMID: 31951754 PMCID: PMC7055509 DOI: 10.1080/17425255.2020.1718107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Introduction: Membrane transporters of the SLC and ABC families are abundantly expressed in the liver, where they control the transfer of drugs/drug metabolites across the sinusoidal and canalicular hepatocyte membranes and play a pivotal role in hepatic drug clearance. Noninvasive imaging methods, such as PET, SPECT or MRI, allow for measuring the activity of hepatic transporters in vivo, provided that suitable transporter imaging probes are available.Areas covered: We give an overview of the working principles of imaging-based assessment of hepatic transporter activity. We discuss different currently available PET/SPECT radiotracers and MRI contrast agents and their applications to measure hepatic transporter activity in health and disease. We cover mathematical modeling approaches to obtain quantitative parameters of transporter activity and provide a critical assessment of methodological limitations and challenges associated with this approach.Expert opinion: PET in combination with pharmacokinetic modeling can be potentially applied in drug development to study the distribution of new drug candidates to the liver and their clearance mechanisms. This approach bears potential to mechanistically assess transporter-mediated drug-drug interactions, to assess the influence of disease on hepatic drug disposition and to validate and refine currently available in vitro-in vivo extrapolation methods to predict hepatic clearance of drugs.
Collapse
Affiliation(s)
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| |
Collapse
|
12
|
Ishida S. Requirements for designing organ-on-a-chip platforms to model the pathogenesis of liver disease. ORGAN-ON-A-CHIP 2020:181-213. [DOI: 10.1016/b978-0-12-817202-5.00005-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Vildhede A, Kimoto E, Pelis RM, Rodrigues AD, Varma MV. Quantitative Proteomics and Mechanistic Modeling of Transporter‐Mediated Disposition in Nonalcoholic Fatty Liver Disease. Clin Pharmacol Ther 2019; 107:1128-1137. [DOI: 10.1002/cpt.1699] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Anna Vildhede
- Medicine Design Worldwide R&D Pfizer Inc. Groton Connecticut USA
| | - Emi Kimoto
- Medicine Design Worldwide R&D Pfizer Inc. Groton Connecticut USA
| | - Ryan M. Pelis
- Department of Pharmaceutical Sciences Binghamton University Binghamton New York USA
| | | | | |
Collapse
|
14
|
Tod M, Bourguignon L, Bleyzac N, Goutelle S. Quantitative Prediction of Interactions Mediated by Transporters and Cytochromes: Application to Organic Anion Transporting Polypeptides, Breast Cancer Resistance Protein and Cytochrome 2C8. Clin Pharmacokinet 2019; 59:757-770. [DOI: 10.1007/s40262-019-00853-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Billington S, Shoner S, Lee S, Clark-Snustad K, Pennington M, Lewis D, Muzi M, Rene S, Lee J, Nguyen TB, Kumar V, Ishida K, Chen L, Chu X, Lai Y, Salphati L, Hop CECA, Xiao G, Liao M, Unadkat JD. Positron Emission Tomography Imaging of [ 11 C]Rosuvastatin Hepatic Concentrations and Hepatobiliary Transport in Humans in the Absence and Presence of Cyclosporin A. Clin Pharmacol Ther 2019; 106:1056-1066. [PMID: 31102467 DOI: 10.1002/cpt.1506] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/25/2019] [Indexed: 01/16/2023]
Abstract
Using positron emission tomography imaging, we determined the hepatic concentrations and hepatobiliary transport of [11 C]rosuvastatin (RSV; i.v. injection) in the absence (n = 6) and presence (n = 4 of 6) of cyclosporin A (CsA; i.v. infusion) following a therapeutic dose of unlabeled RSV (5 mg, p.o.) in healthy human volunteers. The sinusoidal uptake, sinusoidal efflux, and biliary efflux clearance (CL; mL/minute) of [11 C]RSV, estimated through compartment modeling were 1,205.6 ± 384.8, 16.2 ± 11.2, and 5.1 ± 1.8, respectively (n = 6). CsA (blood concentration: 2.77 ± 0.24 μM), an organic-anion-transporting polypeptide, Na+ -taurocholate cotransporting polypeptide, and breast cancer resistance protein inhibitor increased [11 C]RSV systemic blood exposure (45%; P < 0.05), reduced its biliary efflux CL (52%; P < 0.05) and hepatic uptake (25%; P > 0.05) but did not affect its distribution into the kidneys. CsA increased plasma concentrations of coproporphyrin I and III and total bilirubin by 297 ± 69%, 384 ± 102%, and 81 ± 39%, respectively (P < 0.05). These data can be used in the future to verify predictions of hepatic concentrations and hepatobiliary transport of RSV.
Collapse
Affiliation(s)
- Sarah Billington
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA.,Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals (Europe) Ltd., Abingdon-on-Thames, UK
| | - Steven Shoner
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Scott Lee
- Inflammatory Bowel Disease Program, University of Washington, Seattle, Washington, USA
| | - Kindra Clark-Snustad
- Inflammatory Bowel Disease Program, University of Washington, Seattle, Washington, USA
| | - Matthew Pennington
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, USA
| | - David Lewis
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Shirley Rene
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jean Lee
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Tot Bui Nguyen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Vineet Kumar
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Kazuya Ishida
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA.,Pharmacokinetics and Drug Metabolism, Amgen, Cambridge, Massachusetts, USA
| | - Laigao Chen
- Early Clinical Development, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Xiaoyan Chu
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey, USA
| | - Yurong Lai
- Department of Drug Metabolism, Gilead Sciences, Inc., Foster City, California, USA
| | - Laurent Salphati
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Cornelis E C A Hop
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Guangqing Xiao
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, Massachusetts, USA.,Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Mingxiang Liao
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Evaluation of Drug Biliary Excretion Using Sandwich-Cultured Human Hepatocytes. Eur J Drug Metab Pharmacokinet 2019; 44:13-30. [PMID: 30167999 DOI: 10.1007/s13318-018-0502-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evaluation of hepatobiliary transport of drugs is an important challenge, notably during the development of new molecular identities. In this context, sandwich-cultured human hepatocytes (SCHH) have been proposed as an interesting and integrated tool for predicting in vitro biliary excretion of drugs. The present review was therefore designed to summarize key findings about SCHH, including their establishment, their main functional features and their use for the determination of canalicular transport and the prediction of in vivo biliary clearance and hepatobiliary excretion-related drug-drug interactions. Reviewed data highlight the fact that SCHH represent an original and probably unique holistic in vitro approach to predict biliary clearance in humans, through taking into account sinusoidal drug uptake, passive drug diffusion, drug metabolism and sinusoidal and canalicular drug efflux. Limits and proposed refinements for SCHH-based analysis of drug biliary excretion, as well as putative human alternative in vitro models to SCHH are also discussed.
Collapse
|
17
|
Bonnaventure P, Cusin F, Pastor CM. Hepatocyte Concentrations of Imaging Compounds Associated with Transporter Inhibition: Evidence in Perfused Rat Livers. Drug Metab Dispos 2019; 47:412-418. [PMID: 30674615 DOI: 10.1124/dmd.118.084624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/18/2019] [Indexed: 12/15/2022] Open
Abstract
In the liver, several approaches are used to investigate and predict the complex issue of drug-induced transporter inhibition. These approaches include in vitro assays and pharmacokinetic models that predict how inhibitors modify the systemic and liver concentrations of the victim drugs. Imaging is another approach that shows how inhibitors might alter liver concentrations stronger than systemic concentrations. In perfused rat livers associated with a gamma counter that measures liver concentrations continuously, we previously showed how fluxes across transporters generate the hepatocyte concentrations of two clinical imaging compounds, one with a low extraction ratio [gadobenate dimeglumine (BOPTA)] and one with a high extraction ratio [mebrofenin (MEB)]. BOPTA and MEB are transported by rat organic anion transporting polypeptide and multiple resistance-associated protein 2, which are both inhibited by rifampicin. The aim of the study is to measure how rifampicin modifies the hepatocyte concentrations and membrane clearances of BOPTA and MEB and to determine whether these compounds might be used to investigate transporter-mediated drug-drug interactions in clinical studies. We show that rifampicin coperfusion greatly decreases BOPTA hepatocyte concentrations, but increases those of MEB. Rifampicin strongly decreases BOPTA hepatic clearance. In contrast, rifampicin decreases moderately MEB hepatic clearance and blocks the biliary intrinsic clearance, increasing MEB hepatocyte concentrations. In conclusion, low concentrations prevent the quantification of BOPTA biliary intrinsic clearance, while MEB is a promising imaging probe substrate to evidence transporter-mediated drug-drug interactions when inhibitors act on influx and efflux transporters.
Collapse
Affiliation(s)
- Pierre Bonnaventure
- Department of Radiology, Hôpitaux Universitaires de Genève, Geneva, Switzerland (P.B., F.C., C.M.P.); and Laboratory of Imaging Biomarkers, Centre of Research on Inflammation, Unité Mixte de Recherche 1149, Institut National de la santé et de la Recherche Médicale and University Paris Diderot, Paris, France (C.M.P.)
| | - Fabien Cusin
- Department of Radiology, Hôpitaux Universitaires de Genève, Geneva, Switzerland (P.B., F.C., C.M.P.); and Laboratory of Imaging Biomarkers, Centre of Research on Inflammation, Unité Mixte de Recherche 1149, Institut National de la santé et de la Recherche Médicale and University Paris Diderot, Paris, France (C.M.P.)
| | - Catherine M Pastor
- Department of Radiology, Hôpitaux Universitaires de Genève, Geneva, Switzerland (P.B., F.C., C.M.P.); and Laboratory of Imaging Biomarkers, Centre of Research on Inflammation, Unité Mixte de Recherche 1149, Institut National de la santé et de la Recherche Médicale and University Paris Diderot, Paris, France (C.M.P.)
| |
Collapse
|
18
|
Guo Y, Chu X, Parrott NJ, Brouwer KL, Hsu V, Nagar S, Matsson P, Sharma P, Snoeys J, Sugiyama Y, Tatosian D, Unadkat JD, Huang SM, Galetin A. Advancing Predictions of Tissue and Intracellular Drug Concentrations Using In Vitro, Imaging and Physiologically Based Pharmacokinetic Modeling Approaches. Clin Pharmacol Ther 2018; 104:865-889. [PMID: 30059145 PMCID: PMC6197917 DOI: 10.1002/cpt.1183] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This white paper examines recent progress, applications, and challenges in predicting unbound and total tissue and intra/subcellular drug concentrations using in vitro and preclinical models, imaging techniques, and physiologically based pharmacokinetic (PBPK) modeling. Published examples, regulatory submissions, and case studies illustrate the application of different types of data in drug development to support modeling and decision making for compounds with transporter-mediated disposition, and likely disconnects between tissue and systemic drug exposure. The goals of this article are to illustrate current best practices and outline practical strategies for selecting appropriate in vitro and in vivo experimental methods to estimate or predict tissue and plasma concentrations, and to use these data in the application of PBPK modeling for human pharmacokinetic (PK), efficacy, and safety assessment in drug development.
Collapse
Affiliation(s)
- Yingying Guo
- Investigational Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, DC0714, Indianapolis, IN 46285, USA; Tel: 317-277-4324
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey 07033, USA; 732-594-0977
| | - Neil J. Parrott
- Pharmaceutical Sciences, Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Kim L.R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, CB #7569 Kerr Hall, Chapel Hill, NC 27599-7569, USA; Tel: (919) 962-7030
| | - Vicky Hsu
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA; 301-796-1541
| | - Swati Nagar
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, 3307 N Broad Street, Philadelphia PA 19140, USA; 215-707-9110
| | - Pär Matsson
- Department of Pharmacy, Uppsala University, Box 580, SE-75123 Uppsala, Sweden +46-(0)18-471 46 30
| | - Pradeep Sharma
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca R&D, Cambridge CB4 0WG, UK
| | - Jan Snoeys
- Department of Pharmacokinetics, Dynamics and Metabolism, Janssen R&D, Beerse, Belgium; Tel: +32-14606812
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Research Cluster for Innovation, Yokohama 230-0045, Japan; Tel: (045) 506-1814
| | - Daniel Tatosian
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey 07033, USA; 908-464-2375
| | - Jashvant D. Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA; 206-685-2869
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA; 301-796-1541
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester M13 9PT, UK; + 44-161-275-6886
| |
Collapse
|
19
|
Ali I, Slizgi JR, Kaullen JD, Ivanovic M, Niemi M, Stewart PW, Barritt AS, Brouwer KLR. Transporter-Mediated Alterations in Patients With NASH Increase Systemic and Hepatic Exposure to an OATP and MRP2 Substrate. Clin Pharmacol Ther 2017; 104:10.1002/cpt.997. [PMID: 29271075 PMCID: PMC6014861 DOI: 10.1002/cpt.997] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
The expression of hepatic transporters, including organic anion transporting polypeptides (OATPs) and multidrug resistance-associated proteins (MRPs), is altered in nonalcoholic steatohepatitis (NASH); however, functional data in humans are lacking. In this study, 99m Tc-mebrofenin (MEB) was used to evaluate OATP1B1/1B3 and MRP2 function in NASH patients. Healthy subjects (n = 14) and NASH patients (n = 7) were administered MEB (∼2.5 mCi). A population pharmacokinetic model was developed to describe systemic and hepatic MEB disposition. Study subjects were genotyped for SLCO1B1 variants. NASH increased systemic and hepatic exposure (median ± 2 SE, healthy vs. NASH) to MEB (AUC0-300,blood : 1,780 ± 242 vs. 2,440 ± 775 μCi*min/L, P = 0.006; AUC0-180,liver : 277 ± 36.9 vs. 433 ± 40.3 kcounts*min/sec, P < 0.0001) due to decreased biliary clearance (0.035 ± 0.008 vs. 0.017 ± 0.002 L/min, P = 0.0005) and decreased Vcentral (11.1 ± 0.57 vs. 6.32 ± 1.02 L, P < 0.0001). MEB hepatic CLuptake was reduced in NASH and also in healthy subjects with SLCO1B1 *15/*15 and *1A/*15 genotypes. The pharmacokinetics of drugs that are OATP1B1/1B3 and MRP2 substrates may be substantially altered in NASH.
Collapse
Affiliation(s)
- Izna Ali
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina (UNC) Eshelman School of Pharmacy, UNC at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Jason R Slizgi
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina (UNC) Eshelman School of Pharmacy, UNC at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Josh D Kaullen
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina (UNC) Eshelman School of Pharmacy, UNC at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Marija Ivanovic
- Department of Radiology, UNC Health Care, UNC-CH, Chapel Hill, North Carolina, USA
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| | - Paul W Stewart
- Department of Biostatistics, UNC Gillings School of Global Public Health, UNC-CH, Chapel Hill, North Carolina, USA
| | - Alfred S Barritt
- Division of Gastroenterology and Hepatology, UNC School of Medicine, UNC-CH, Chapel Hill, North Carolina, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina (UNC) Eshelman School of Pharmacy, UNC at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Bauer M, Matsuda A, Wulkersdorfer B, Philippe C, Traxl A, Özvegy-Laczka C, Stanek J, Nics L, Klebermass EM, Poschner S, Jäger W, Patik I, Bakos É, Szakács G, Wadsak W, Hacker M, Zeitlinger M, Langer O. Influence of OATPs on Hepatic Disposition of Erlotinib Measured With Positron Emission Tomography. Clin Pharmacol Ther 2017; 104:139-147. [PMID: 28940241 PMCID: PMC6083370 DOI: 10.1002/cpt.888] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/09/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
Abstract
To assess the hepatic disposition of erlotinib, we performed positron emission tomography (PET) scans with [11 C]erlotinib in healthy volunteers without and with oral pretreatment with a therapeutic erlotinib dose (300 mg). Erlotinib pretreatment significantly decreased the liver exposure to [11 C]erlotinib with a concomitant increase in blood exposure, pointing to the involvement of a carrier-mediated hepatic uptake mechanism. Using cell lines overexpressing human organic anion-transporting polypeptides (OATPs) 1B1, 1B3, or 2B1, we show that [11 C]erlotinib is selectively transported by OATP2B1. Our data suggest that at PET microdoses hepatic uptake of [11 C]erlotinib is mediated by OATP2B1, whereas at therapeutic doses OATP2B1 transport is saturated and hepatic uptake occurs mainly by passive diffusion. We propose that [11 C]erlotinib may be used as a hepatic OATP2B1 probe substrate and erlotinib as an OATP2B1 inhibitor in clinical drug-drug interaction studies, allowing the contribution of OATP2B1 to the hepatic uptake of drugs to be revealed.
Collapse
Affiliation(s)
- Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Akihiro Matsuda
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Cécile Philippe
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Traxl
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Johann Stanek
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Lukas Nics
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva-Maria Klebermass
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Poschner
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Izabel Patik
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Center for Biomarker Research in Medicine, CBmed GmbH, Graz, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| |
Collapse
|
21
|
Prediction of drug–drug interaction potential using physiologically based pharmacokinetic modeling. Arch Pharm Res 2017; 40:1356-1379. [DOI: 10.1007/s12272-017-0976-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022]
|
22
|
Guo C, Yang K, Liao M, Xia CQ, Brouwer KR, Brouwer KLR. Prediction of Hepatic Efflux Transporter-Mediated Drug Interactions: When Is it Optimal to Measure Intracellular Unbound Fraction of Inhibitors? J Pharm Sci 2017; 106:2401-2406. [PMID: 28465154 PMCID: PMC5617730 DOI: 10.1016/j.xphs.2017.04.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 01/03/2023]
Abstract
The intracellular unbound inhibitor concentration ([I]unbound,cell) is the most relevant concentration for predicting the inhibition of hepatic efflux transporters. However, the intracellular unbound fraction of inhibitor in hepatocytes (fu,cell,inhibitor) is not routinely determined. Studies are needed to evaluate the benefit of measuring fu,cell,inhibitor and using [I]unbound,cell versus intracellular total inhibitor concentration ([I]total,cell) when predicting inhibitory effects. This study examined the benefit of using [I]unbound,cell to predict hepatocellular bile acid disposition. Cellular total concentrations of taurocholate ([TCA]total,cell), a prototypical bile acid, were simulated using pharmacokinetic parameters estimated from sandwich-cultured human hepatocytes. The effect of various theoretical inhibitors was simulated by varying ([I]total,cell/ half maximal inhibitory concentration [IC50]) values. In addition, the fold change was calculated as the simulated [TCA]total,cell when fu,cell,inhibitor = 1 divided by the simulated [TCA]total,cell when fu,cell,inhibitor = 0.5-0.01. The lowest ([I]total,cell/IC50) value leading to a >2-fold change in [TCA]total,cell was chosen as a cutoff, and a framework was developed to categorize risk inhibitors for which the measurement of fu,cell,inhibitor is optimal. Fifteen compounds were categorized, 5 of which were compared with experimental observations. Future work is needed to evaluate this framework based on additional experimental data. In conclusion, the benefit of measuring fu,cell,inhibitor to predict hepatic efflux transporter-mediated drug-bile acid interactions can be determined a priori.
Collapse
Affiliation(s)
- Cen Guo
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kyunghee Yang
- DILIsym Services Inc., Research Triangle Park, North Carolina 27709
| | - Mingxiang Liao
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts 02139
| | - Cindy Q Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts 02139
| | | | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
23
|
Sandwich-Cultured Hepatocytes as a Tool to Study Drug Disposition and Drug-Induced Liver Injury. J Pharm Sci 2016; 105:443-459. [PMID: 26869411 DOI: 10.1016/j.xphs.2015.11.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Sandwich-cultured hepatocytes (SCH) are metabolically competent and have proper localization of basolateral and canalicular transporters with functional bile networks. Therefore, this cellular model is a unique tool that can be used to estimate biliary excretion of compounds. SCH have been used widely to assess hepatobiliary disposition of endogenous and exogenous compounds and metabolites. Mechanistic modeling based on SCH data enables estimation of metabolic and transporter-mediated clearances, which can be used to construct physiologically based pharmacokinetic models for prediction of drug disposition and drug-drug interactions in humans. In addition to pharmacokinetic studies, SCH also have been used to study cytotoxicity and perturbation of biological processes by drugs and hepatically generated metabolites. Human SCH can provide mechanistic insights underlying clinical drug-induced liver injury (DILI). In addition, data generated in SCH can be integrated into systems pharmacology models to predict potential DILI in humans. In this review, applications of SCH in studying hepatobiliary drug disposition and bile acid-mediated DILI are discussed. An example is presented to show how data generated in the SCH model were used to establish a quantitative relationship between intracellular bile acids and cytotoxicity, and how this information was incorporated into a systems pharmacology model for DILI prediction.
Collapse
|
24
|
Guo C, Yang K, Brouwer KR, St Claire RL, Brouwer KLR. Prediction of Altered Bile Acid Disposition Due to Inhibition of Multiple Transporters: An Integrated Approach Using Sandwich-Cultured Hepatocytes, Mechanistic Modeling, and Simulation. J Pharmacol Exp Ther 2016; 358:324-33. [PMID: 27233294 DOI: 10.1124/jpet.116.231928] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/26/2016] [Indexed: 01/11/2023] Open
Abstract
Transporter-mediated alterations in bile acid disposition may have significant toxicological implications. Current methods to predict interactions are limited by the interplay of multiple transporters, absence of protein in the experimental system, and inaccurate estimates of inhibitor concentrations. An integrated approach was developed to predict altered bile acid disposition due to inhibition of multiple transporters using the model bile acid taurocholate (TCA). TCA pharmacokinetic parameters were estimated by mechanistic modeling using sandwich-cultured human hepatocyte data with protein in the medium. Uptake, basolateral efflux, and biliary clearance estimates were 0.63, 0.034, and 0.074 mL/min/g liver, respectively. Cellular total TCA concentrations (Ct,Cells) were selected as the model output based on sensitivity analysis. Monte Carlo simulations of TCA Ct,Cells in the presence of model inhibitors (telmisartan and bosentan) were performed using inhibition constants for TCA transporters and inhibitor concentrations, including cellular total inhibitor concentrations ([I]t,cell) or unbound concentrations, and cytosolic total or unbound concentrations. For telmisartan, the model prediction was accurate with an average fold error (AFE) of 0.99-1.0 when unbound inhibitor concentration ([I]u) was used; accuracy dropped when total inhibitor concentration ([I]t) was used. For bosentan, AFE was 1.2-1.3 using either [I]u or [I]t This difference was evaluated by sensitivity analysis of the cellular unbound fraction of inhibitor (fu,cell,inhibitor), which revealed higher sensitivity of fu,cell,inhibitor for predicting TCA Ct,Cells when inhibitors exhibited larger ([I]t,cell/IC50) values. In conclusion, this study demonstrated the applicability of a framework to predict hepatocellular bile acid concentrations due to drug-mediated inhibition of transporters using mechanistic modeling and cytosolic or cellular unbound concentrations.
Collapse
Affiliation(s)
- Cen Guo
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Kyunghee Yang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Kenneth R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Robert L St Claire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| |
Collapse
|
25
|
Giovinazzo H, Kumar P, Sheikh A, Brooks KM, Ivanovic M, Walsh M, Caron WP, Kowalsky RJ, Song G, Whitlow A, Clarke-Pearson DL, Brewster WR, Van Le L, Zamboni BA, Bae-Jump V, Gehrig PA, Zamboni WC. Technetium Tc 99m sulfur colloid phenotypic probe for the pharmacokinetics and pharmacodynamics of PEGylated liposomal doxorubicin in women with ovarian cancer. Cancer Chemother Pharmacol 2016; 77:565-73. [PMID: 26822231 DOI: 10.1007/s00280-015-2945-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/11/2015] [Indexed: 11/24/2022]
Abstract
PURPOSE Significant variability in the pharmacokinetics and pharmacodynamics of PEGylated liposomal doxorubicin (PLD) exists. PLD undergoes clearance via the mononuclear phagocyte system (MPS). Technetium Tc 99m sulfur colloid (TSC) is approved for imaging MPS cells. We investigated TSC as a phenotypic probe of PLD pharmacokinetics and pharmacodynamics in women with epithelial ovarian cancer. METHODS TSC 10 mCi IVP was administered and followed by dynamic planar and SPECT/CT imaging and blood pharmacokinetics sampling. PLD 30-40 mg/m(2) IV was administered with or without carboplatin, followed by plasma pharmacokinetics sampling. RESULTS There was a linear relationship between TSC clearance and encapsulated doxorubicin clearance (R(2) = 0.61, p = 0.02), particularly in patients receiving PLD alone (R(2) = 0.81, p = 0.04). There was a positive relationship (ρ = 0.81, p = 0.01) between maximum grade palmar-plantar erythrodysesthesia toxicity developed and estimated encapsulated doxorubicin concentration in hands. CONCLUSIONS TSC is a phenotypic probe for PLD pharmacokinetics and pharmacodynamics and may be used to individualize PLD therapy in ovarian cancer and for other nanoparticles in development.
Collapse
Affiliation(s)
- Hugh Giovinazzo
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill-Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC, 27599-7361, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, 21205, USA
| | - Parag Kumar
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill-Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC, 27599-7361, USA
- Clinical Pharmacokinetics Research Laboratory, National Institutes of Health, Clinical Center Pharmacy Department, 10 Center Drive Bldg. 10, 1C-240G, Bethesda, MD, 20892, USA
| | - Arif Sheikh
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
| | - Kristina M Brooks
- Clinical Pharmacokinetics Research Laboratory, National Institutes of Health, Clinical Center Pharmacy Department, 10 Center Drive Bldg. 10, 1C-240G, Bethesda, MD, 20892, USA
| | - Marija Ivanovic
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
| | - Mark Walsh
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill-Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC, 27599-7361, USA
| | - Whitney P Caron
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill-Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC, 27599-7361, USA
| | - Richard J Kowalsky
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
| | - Gina Song
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill-Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC, 27599-7361, USA
| | - Ann Whitlow
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
| | - Daniel L Clarke-Pearson
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC Lineberger Comprehensive Cancer Center, 103B Physicians' Office Building CB# 7572, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - Wendy R Brewster
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC Lineberger Comprehensive Cancer Center, 103B Physicians' Office Building CB# 7572, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - Linda Van Le
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC Lineberger Comprehensive Cancer Center, 103B Physicians' Office Building CB# 7572, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - Beth A Zamboni
- Department of Mathematics, Carlow University, Pittsburgh, PA, USA
| | - Victoria Bae-Jump
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC Lineberger Comprehensive Cancer Center, 103B Physicians' Office Building CB# 7572, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - Paola A Gehrig
- UNC School of Medicine, 321 S. Columbia St., Chapel Hill, NC, 27599, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC Lineberger Comprehensive Cancer Center, 103B Physicians' Office Building CB# 7572, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill-Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC, 27599-7361, USA.
- UNC Lineberger Comprehensive Cancer Center, 101 Manning Drive, Chapel Hill, NC, 27514, USA.
- UNC Institute for Pharmacogenomics and Individualized Therapy, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
- Carolina Center of Cancer Nanotechnology Excellence, 1079 Genetic Medicine Building, Chapel Hill, NC, 27599, USA.
- North Carolina Biomedical Innovation Network, 013 Genetic Medicine Building CB#7361, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
26
|
Snoeys J, Beumont M, Monshouwer M, Ouwerkerk-Mahadevan S. Mechanistic understanding of the nonlinear pharmacokinetics and intersubject variability of simeprevir: A PBPK-guided drug development approach. Clin Pharmacol Ther 2015; 99:224-34. [PMID: 26259716 DOI: 10.1002/cpt.206] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/06/2015] [Accepted: 08/05/2015] [Indexed: 01/09/2023]
Abstract
Simeprevir, a hepatitis C virus (HCV) NS3/4A protease inhibitor, displays nonlinear pharmacokinetics (PK) at therapeutic doses. Using physiologically based PK modeling, various drug-drug interactions were simulated with simeprevir as victim drug to identify whether saturation of the predominant metabolic enzyme (CYP3A4) or the active hepatic transporters (organic anion-transporting polypeptide (OATP)1B1/3) could account for the nonlinear PK. Interactions with ritonavir, a strong CYP3A4 inhibitor that does not affect OATP (at 100 mg dose), erythromycin, a moderate CYP3A4 inhibitor, and efavirenz, a moderate CYP3A inducer that does not affect OATP, demonstrated the involvement of CYP3A4. Interaction studies with low-dose cyclosporine confirmed the role of OATP. The interplay between hepatic uptake and CYP3A4 metabolism was verified by simulations with rifampicin, a potent CYP3A4 inducer and OATP1B1/3 inhibitor, and maintenance doses of cyclosporine. Saturation of gut and liver metabolism by CYP3A4, and saturation of hepatic uptake by OATP1B1/3, seem to account for the observed nonlinear PK of simeprevir.
Collapse
Affiliation(s)
- J Snoeys
- Janssen Research and Development, Beerse, Belgium
| | - M Beumont
- Janssen Research and Development, Beerse, Belgium
| | - M Monshouwer
- Janssen Research and Development, Beerse, Belgium
| | | |
Collapse
|
27
|
Keemink J, Augustijns P, Annaert P. Unbound Ritonavir Concentrations in Rat and Human Hepatocytes. J Pharm Sci 2015; 104:2378-87. [DOI: 10.1002/jps.24477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 12/17/2022]
|
28
|
Ferslew BC, Johnston CK, Tsakalozou E, Bridges AS, Paine MF, Jia W, Stewart PW, Barritt AS, Brouwer KLR. Altered morphine glucuronide and bile acid disposition in patients with nonalcoholic steatohepatitis. Clin Pharmacol Ther 2015; 97:419-27. [PMID: 25669174 DOI: 10.1002/cpt.66] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/06/2014] [Indexed: 12/13/2022]
Abstract
The functional impact of altered drug transport protein expression on the systemic pharmacokinetics of morphine, hepatically derived morphine glucuronide (morphine-3- and morphine-6-glucuronide), and fasting bile acids was evaluated in patients with biopsy-confirmed nonalcoholic steatohepatitis (NASH) compared to healthy subjects. The maximum concentration (Cmax ) and area under the concentration-time curve (AUC0-last ) of morphine glucuronide in serum were increased in NASH patients (343 vs. 225 nM and 58.8 vs. 37.2 µM*min, respectively; P ≤ 0.005); morphine pharmacokinetics did not differ between groups. Linear regression analyses detected an association of NASH severity with increased morphine glucuronide Cmax and AUC0-last (P < 0.001). Fasting serum glycocholate, taurocholate, and total bile acid concentrations were associated with NASH severity (P < 0.006). Increased hepatic basolateral efflux of morphine glucuronide and bile acids is consistent with altered hepatic transport protein expression in patients with NASH and may partially explain differences in efficacy and/or toxicity of some highly transported anionic drugs/metabolites in this patient population.
Collapse
Affiliation(s)
- B C Ferslew
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Systems pharmacology modeling predicts delayed presentation and species differences in bile acid-mediated troglitazone hepatotoxicity. Clin Pharmacol Ther 2014; 96:589-98. [PMID: 25068506 PMCID: PMC4480860 DOI: 10.1038/clpt.2014.158] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/17/2014] [Indexed: 01/08/2023]
Abstract
Troglitazone (TGZ) causes delayed, life-threatening drug-induced liver injury in some patients but was not hepatotoxic in rats. This study investigated altered bile acid homeostasis as a mechanism of TGZ hepatotoxicity using a systems pharmacology model incorporating drug/metabolite disposition, bile acid physiology/pathophysiology, hepatocyte life cycle, and liver injury biomarkers. In the simulated human population, TGZ (200-600 mg/day × 6 months) resulted in delayed increases in serum alanine transaminase >3× the upper limit of normal in 0.3-5.1%, with concomitant bilirubin elevations >2× the upper limit of normal in 0.3-3.6%, of the population. By contrast, pioglitazone (15-45 mg/day × 6 months) did not elicit hepatotoxicity, consistent with clinical data. TGZ was not hepatotoxic in the simulated rat population. In summary, mechanistic modeling based only on bile acid effects accurately predicted the incidence, delayed presentation, and species differences in TGZ hepatotoxicity, in addition to predicting the relative liver safety of pioglitazone. Systems pharmacology models integrating physiology and experimental data can evaluate drug-induced liver injury mechanisms and may be useful to predict the hepatotoxic potential of drug candidates.
Collapse
|
30
|
Li R, Barton HA, Varma MV. Prediction of Pharmacokinetics and Drug–Drug Interactions When Hepatic Transporters are Involved. Clin Pharmacokinet 2014; 53:659-78. [DOI: 10.1007/s40262-014-0156-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Pastor CM, Müllhaupt B, Stieger B. The Role of Organic Anion Transporters in Diagnosing Liver Diseases by Magnetic Resonance Imaging. Drug Metab Dispos 2014; 42:675-84. [DOI: 10.1124/dmd.113.055707] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
32
|
Pfeifer ND, Hardwick RN, Brouwer KLR. Role of hepatic efflux transporters in regulating systemic and hepatocyte exposure to xenobiotics. Annu Rev Pharmacol Toxicol 2013; 54:509-35. [PMID: 24160696 DOI: 10.1146/annurev-pharmtox-011613-140021] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatic efflux transporters include numerous well-known and emerging proteins localized to the canalicular or basolateral membrane of the hepatocyte that are responsible for the excretion of drugs into the bile or blood, respectively. Altered function of hepatic efflux transporters due to drug-drug interactions, genetic variation, and/or disease states may lead to changes in xenobiotic exposure in the hepatocyte and/or systemic circulation. This review focuses on transport proteins involved in the hepatocellular efflux of drugs and metabolites, discusses mechanisms of altered transporter function as well as the interplay between multiple transport pathways, and highlights the importance of considering intracellular unbound concentrations of transporter substrates and/or inhibitors. Methods to evaluate hepatic efflux transport and predict the effects of impaired transporter function on systemic and hepatocyte exposure are discussed, and the sandwich-cultured hepatocyte model to evaluate comprehensively the role of hepatic efflux in the hepatobiliary disposition of xenobiotics is characterized.
Collapse
Affiliation(s)
- Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; ,
| | | | | |
Collapse
|
33
|
Pfeifer ND, Harris KB, Yan GZ, Brouwer KLR. Determination of intracellular unbound concentrations and subcellular localization of drugs in rat sandwich-cultured hepatocytes compared with liver tissue. Drug Metab Dispos 2013; 41:1949-56. [PMID: 23990525 DOI: 10.1124/dmd.113.052134] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prediction of clinical efficacy, toxicity, and drug-drug interactions may be improved by accounting for the intracellular unbound drug concentration (C(unbound)) in vitro and in vivo. Furthermore, subcellular drug distribution may aid in predicting efficacy, toxicity, and risk assessment. The present study was designed to quantify the intracellular C(unbound) and subcellular localization of drugs in rat sandwich-cultured hepatocytes (SCH) compared with rat isolated perfused liver (IPL) tissue. Probe drugs with distinct mechanisms of hepatocellular uptake and accumulation were selected for investigation. Following drug treatment, SCH and IPL tissues were homogenized and fractionated by differential centrifugation to enrich for subcellular compartments. Binding in crude lysate and cytosol was determined by equilibrium dialysis; the C(unbound) and intracellular-to-extracellular C(unbound) ratio (K(pu,u)) were used to describe accumulation of unbound drug. Total accumulation (K(pobserved)) in whole tissue was well predicted by the SCH model (within 2- to 3-fold) for the selected drugs. Ritonavir (K(pu,u) ∼1) was evenly distributed among cellular compartments, but highly bound, which explained the observed accumulation within liver tissue. Rosuvastatin was recovered primarily in the cytosolic fraction, but did not exhibit extensive binding, resulting in a K(pu,u) >1 in liver tissue and SCH, consistent with efficient hepatic uptake. Despite extensive binding and sequestration of furamidine within liver tissue, a significant portion of cellular accumulation was attributed to unbound drug (K(pu,u) >16), as expected for a charged, hepatically derived metabolite. Data demonstrate the utility of SCH to predict quantitatively total tissue accumulation and elucidate mechanisms of hepatocellular drug accumulation such as active uptake versus binding/sequestration.
Collapse
Affiliation(s)
- Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
34
|
Chu X, Korzekwa K, Elsby R, Fenner K, Galetin A, Lai Y, Matsson P, Moss A, Nagar S, Rosania GR, Bai JPF, Polli JW, Sugiyama Y, Brouwer KLR. Intracellular drug concentrations and transporters: measurement, modeling, and implications for the liver. Clin Pharmacol Ther 2013; 94:126-41. [PMID: 23588320 DOI: 10.1038/clpt.2013.78] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Intracellular concentrations of drugs and metabolites are often important determinants of efficacy, toxicity, and drug interactions. Hepatic drug distribution can be affected by many factors, including physicochemical properties, uptake/efflux transporters, protein binding, organelle sequestration, and metabolism. This white paper highlights determinants of hepatocyte drug/metabolite concentrations and provides an update on model systems, methods, and modeling/simulation approaches used to quantitatively assess hepatocellular concentrations of molecules. The critical scientific gaps and future research directions in this field are discussed.
Collapse
Affiliation(s)
- X Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Rahway, New Jersey, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|