1
|
Tamura T, Shimojima Yamamoto K, Tohyama J, Morioka I, Kanno H, Yamamoto T. Reciprocal chromosome translocation t(3;4)(q27;q31.2) with deletion of 3q27 and reduced FBXW7 expression in a patient with developmental delay, hypotonia, and seizures. J Hum Genet 2024; 69:639-644. [PMID: 39123068 DOI: 10.1038/s10038-024-01286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Reciprocal chromosomal translocation is one of genomic variations. When cytogenetically de novo reciprocal translocations are identified in patients with some clinical manifestations, the genes in the breakpoints are considered to be related to the clinical features. In this study, we encountered a patient with severe developmental delay, intractable epilepsy, growth failure, distinctive features, and skeletal manifestations. Conventional karyotyping revealed a de novo translocation described as 46,XY,t(3;4)(q27;q31.2). Chromosomal microarray testing detected a 1.25-Mb microdeletion at 3q27.3q28. Although the skeletal manifestations may have been affected by this deletion, the neurological features of this patient were severe and could not be fully explained by this deletion. Since no genomic copy number aberration was detected on chromosome 4, long-read whole-genome sequencing analysis was performed and a precise breakpoint was confirmed. A 460-bp deletion was detected between the two breakpoints; however, no gene was disrupted. FBXW7, the gene responsible for developmental delay, hypotonia, and impaired language, is in the 0.5-Mb telomeric region. Most of the patient's clinical features were considered consistent with symptoms of FBXW7-related disorders, but were more severe. FBXW7 expression in the immortalized lymphoblasts of the patient was reduced compared to that in controls. Based on these findings, we suspect that FBXW7 is affected by downstream position effects of chromosomal translocations. The severe neurological features of the patient may have been affected not only by the 3q27-q28 deletion but also by impaired expression of FBXW7 derived from the breakage of chromosome 4.
Collapse
Affiliation(s)
- Takeaki Tamura
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Shimojima Yamamoto
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Jun Tohyama
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
2
|
Shimojima Yamamoto K, Shimomura R, Shoji H, Yamamoto T. Glass syndrome derived from chromosomal breakage downstream region of SATB2. Brain Dev 2024; 46:281-285. [PMID: 38972777 DOI: 10.1016/j.braindev.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Glass syndrome, derived from chromosomal 2q33.1 microdeletions, manifests with intellectual disability, microcephaly, epilepsy, and distinctive features, including micrognathia, down-slanting palpebral fissures, cleft palate, and crowded teeth. Recently, SATB2 located within the deletion region, was identified as the causative gene responsible for Glass syndrome. Numerous disease-causing variants within the SATB2 coding region have been reported. OBJECTIVE Given the presentation of intellectual disability and multiple congenital anomalies in a patient with a de novo reciprocal translocation between chromosomes 1 and 2, disruption of the causative gene(s) was suspected. This study sought to identify the causative gene in the patient. METHODS Long-read whole-genome sequencing was performed, and the expression level of the candidate gene was analyzed. RESULTS The detection of breakpoints was successful. While the breakpoint on chromosome 1 disrupted RNF220, it was not deemed to be a genetic cause. Conversely, SATB2 is located in the approximately 100-kb telomeric region of the breakpoint on chromosome 2. The patient's clinical features resembled those of previously reported cases of Glass syndrome, despite the lack of confirmed reduced SATB2 expression. CONCLUSION The patient was diagnosed with Glass syndrome due to the similarity in clinical features. This led us to hypothesize that disruption in the downstream region of SATB2 could result in Glass syndrome. The microhomologies identified in the breakpoint junctions indicate a potential molecular mechanism involving microhomology-mediated break-induced repair mechanism or template switching.
Collapse
Affiliation(s)
- Keiko Shimojima Yamamoto
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan; Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Division of Gene Medicine, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Rina Shimomura
- Division of Gene Medicine, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan; Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiromichi Shoji
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Division of Gene Medicine, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
3
|
Sapountzi E, Kotanidou EP, Tsinopoulou VR, Kalinderi K, Fidani L, Giannopoulos A, Galli-Tsinopoulou A. Kawasaki Disease: An update on Genetics and Pathophysiology. Genet Test Mol Biomarkers 2024; 28:373-383. [PMID: 39185556 DOI: 10.1089/gtmb.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Kawasaki disease (KD), a systemic vasculitic condition predominantly affecting children, remains a significant challenge in pediatric health care. First identified in 1967, KD is now recognized as the primary cause of pediatric ischemic heart disease in developed countries. This review provides a comprehensive update of KD, focusing on biomarkers, pathophysiology, and genetic associations. KD's clinical manifestation, including symptoms such as persistent fever and mucocutaneous changes, often overlaps with other pediatric conditions, complicating its diagnosis. This ambiguity, especially in cases of incomplete KD, highlights the critical need for specific biomarkers and more precise diagnostic methods. Recent studies have made promising advancements in identifying serum biomarkers and microRNAs, contributing to the development of rapid diagnostic tools. However, these are yet to be fully integrated into clinical practice. The article focuses on the pathophysiological aspects of KD, highlighting the potential for targeted therapies and personalized medicine approaches based on genetic predispositions. Collaborative efforts in global research and raising public awareness about KD are emphasized as key strategies for improving its management. This review presents the current understanding of KD while pointing out the gaps and future directions in research and clinical care. The ultimate goal is to enhance diagnostic accuracy, optimize treatment strategies, and improve patient outcomes, thereby addressing the complexities of this enigmatic and potentially life-threatening condition in pediatric medicine.
Collapse
Affiliation(s)
- Evdoxia Sapountzi
- Outpatient Rheumatology Unit, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - Eleni P Kotanidou
- 2 Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - Vasiliki-Rengina Tsinopoulou
- 2 Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - Kallirhoe Kalinderi
- Laboratory of Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Liana Fidani
- 2 Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
- Laboratory of Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Giannopoulos
- 2 Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - Assimina Galli-Tsinopoulou
- 2 Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| |
Collapse
|
4
|
Perrier S, Gauquelin L, Bernard G. Inherited white matter disorders: Hypomyelination (myelin disorders). HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:197-223. [PMID: 39322379 DOI: 10.1016/b978-0-323-99209-1.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Laurence Gauquelin
- Division of Pediatric Neurology, Department of Pediatrics, CHUL et Centre Mère-Enfant Soleil du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
5
|
Eto K, Machida O, Yanagishita T, Shimojima Yamamoto K, Chiba K, Aihara Y, Hasegawa Y, Nagata M, Ishihara Y, Miyashita Y, Asano Y, Nagata S, Yamamoto T. Novel BCL11B truncation variant in a patient with developmental delay, distinctive features, and early craniosynostosis. Hum Genome Var 2022; 9:43. [PMID: 36470856 PMCID: PMC9722650 DOI: 10.1038/s41439-022-00220-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 12/12/2022] Open
Abstract
Intellectual developmental disorder with dysmorphic facies, speech delay, and T-cell abnormalities (MIM # 618092) is a congenital disorder derived from pathogenic variants of the B-cell leukemia/lymphoma 11B gene (BCL11B). Several variants have been reported to date. Here, through comprehensive genomic analysis, a novel BCL11B truncation variant, NM_138576.4(BCL11B_v001): c.2439_2452dup [p.(His818Argfs*31)], was identified in a Japanese male patient with developmental delay, distinctive features, and early craniosynostosis.
Collapse
Affiliation(s)
- Kaoru Eto
- grid.410818.40000 0001 0720 6587Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
| | - Osamu Machida
- grid.410818.40000 0001 0720 6587Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan ,grid.410818.40000 0001 0720 6587Division of Gene Medicine, Tokyo Women’s Medical University Graduate School of Medicine, Tokyo, Japan
| | - Tomoe Yanagishita
- grid.410818.40000 0001 0720 6587Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
| | - Keiko Shimojima Yamamoto
- grid.410818.40000 0001 0720 6587Department of Transfusion Medicine and Cell Processing, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kentaro Chiba
- grid.410818.40000 0001 0720 6587Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yasuo Aihara
- grid.410818.40000 0001 0720 6587Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yuuki Hasegawa
- grid.410818.40000 0001 0720 6587Department of Plastic and Reconstructive Surgery, Tokyo Women’s Medical University, Tokyo, Japan
| | - Miho Nagata
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuki Ishihara
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yohei Miyashita
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan ,grid.410796.d0000 0004 0378 8307Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshihiro Asano
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan ,grid.410796.d0000 0004 0378 8307Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Satoru Nagata
- grid.410818.40000 0001 0720 6587Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- grid.410818.40000 0001 0720 6587Division of Gene Medicine, Tokyo Women’s Medical University Graduate School of Medicine, Tokyo, Japan ,grid.410818.40000 0001 0720 6587Institute of Medical Genetics, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
6
|
Narita K, Muramatsu H, Narumi S, Nakamura Y, Okuno Y, Suzuki K, Hamada M, Yamaguchi N, Suzuki A, Nishio Y, Shiraki A, Yamamori A, Tsumura Y, Sawamura F, Kawaguchi M, Wakamatsu M, Kataoka S, Kato K, Asada H, Kubota T, Muramatsu Y, Kidokoro H, Natsume J, Mizuno S, Nakata T, Inagaki H, Ishihara N, Yonekawa T, Okumura A, Ogi T, Kojima S, Kaname T, Hasegawa T, Saitoh S, Takahashi Y. Whole-exome analysis of 177 pediatric patients with undiagnosed diseases. Sci Rep 2022; 12:14589. [PMID: 36028527 PMCID: PMC9418234 DOI: 10.1038/s41598-022-14161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Recently, whole-exome sequencing (WES) has been used for genetic diagnoses of patients who remain otherwise undiagnosed. WES was performed in 177 Japanese patients with undiagnosed conditions who were referred to the Tokai regional branch of the Initiative on Rare and Undiagnosed Diseases (IRUD) (TOKAI-IRUD). This study included only patients who had not previously received genome-wide testing. Review meetings with specialists in various medical fields were held to evaluate the genetic diagnosis in each case, which was based on the guidelines of the American College of Medical Genetics and Genomics. WES identified diagnostic single-nucleotide variants in 66 patients and copy number variants (CNVs) in 11 patients. Additionally, a patient was diagnosed with Angelman syndrome with a complex clinical phenotype upon detection of a paternally derived uniparental disomy (UPD) [upd(15)pat] wherein the patient carried a homozygous DUOX2 p.E520D variant in the UPD region. Functional analysis confirmed that this DUOX2 variant was a loss-of-function missense substitution and the primary cause of congenital hypothyroidism. A significantly higher proportion of genetic diagnoses was achieved compared to previous reports (44%, 78/177 vs. 24-35%, respectively), probably due to detailed discussions and the higher rate of CNV detection.
Collapse
Affiliation(s)
- Kotaro Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health, Tokyo, Japan.,Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yuji Nakamura
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kyogo Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Motoharu Hamada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Naoya Yamaguchi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Atsushi Suzuki
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yosuke Nishio
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Anna Shiraki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ayako Yamamori
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yusuke Tsumura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Fumi Sawamura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masahiro Kawaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinsuke Kataoka
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kohji Kato
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hideyuki Asada
- Department of Pediatrics, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Tetsuo Kubota
- Department of Pediatrics, Anjo Kosei Hospital, Anjo, Japan
| | - Yukako Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Seiji Mizuno
- Department of Clinical Genetics, Aichi Developmental Disability Center Central Hospital, Kasugai, Japan
| | - Tomohiko Nakata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Naoko Ishihara
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takahiro Yonekawa
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihisa Okumura
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
7
|
A recurrent de novo ZSWIM6 variant in a Japanese patient with severe neurodevelopmental delay and frequent vomiting. Hum Genome Var 2021; 8:16. [PMID: 33958584 PMCID: PMC8102537 DOI: 10.1038/s41439-021-00148-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/30/2023] Open
Abstract
A recurrent ZSWIM6 variant, NM_020928.2:c.2737C>T [p.Arg913*], was identified in a Japanese male patient with severe neurodevelopmental delay, epilepsy, distinctive facial features, microcephaly, growth deficiency, abnormal behavior, and frequent vomiting but without frontonasal or limb malformations. In this patient, distinctive facial features gradually became apparent with age, and severe vomiting caused by gastroesophageal reflux continued even after percutaneous endoscopic gastrostomy.
Collapse
|
8
|
Deep intronic deletion in intron 3 of PLP1 is associated with a severe phenotype of Pelizaeus-Merzbacher disease. Hum Genome Var 2021; 8:14. [PMID: 33795668 PMCID: PMC8016919 DOI: 10.1038/s41439-021-00144-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 11/18/2022] Open
Abstract
Recently, altered PLP1 splicing was confirmed as a genetic cause of hypomyelination of early myelinating structures (HEMS). A novel deep intronic deletion in intron 3 of PLP1 (NM_000533.5: c.453+59_+259del) was identified, and an in vitro minigene assay detected abnormal splicing patterns. However, the clinical and radiological findings of the patient were compatible with a severe phenotype of Pelizaeus-Merzbacher disease rather than HEMS, which may be due to undetected abnormal PLP1 splicing.
Collapse
|
9
|
Yamamoto-Shimojima K, Osawa M, Saito MK, Yamamoto T. Induced pluripotent stem cells established from a female patient with Xq22 deletion confirm that BEX2 escapes from X-chromosome inactivation. Congenit Anom (Kyoto) 2021; 61:63-67. [PMID: 33244819 DOI: 10.1111/cga.12403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 11/27/2022]
Abstract
Large deletions in Xq22 are responsible for neurodevelopmental disorders, including severe intellectual disability and behavioral abnormalities. Although the deletion regions contain PLP1, the gene related to Pelizaeus-Merzbacher disease (PMD), patients with Xq22 deletions show no clinical features of PMD such as paraplegia and white matter abnormalities. This could be due to skewed X-chromosome inactivation (XCI) occurring predominantly in the affected allele. Isogenic pairs of wild type and mutant induced pluripotent stem cells (iPSCs) were established from the patient. In the iPSC line in which the wild type allele was inactivated, PLP1 was not expressed, but biallelic expression of BEX2 was identified. This suggests that BEX2 escaped from XCI and haploinsufficiency of BEX2 may be related to the phenotype of Xq22 deletions.
Collapse
Affiliation(s)
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical genetics, Tokyo, Japan
| |
Collapse
|
10
|
Yamamoto-Shimojima K, Ono H, Imaizumi T, Yamamoto T. Novel LAMA2 variants identified in a patient with white matter abnormalities. Hum Genome Var 2020; 7:16. [PMID: 32509318 PMCID: PMC7248065 DOI: 10.1038/s41439-020-0103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/24/2022] Open
Abstract
Comprehensive genomic analysis was performed in a patient with mild psychomotor developmental delay, elevated creatine kinase, and white matter abnormalities. The results revealed biallelic pathogenic variants in the gene related to merosin-deficient congenital muscular dystrophy, NM_000426.3(LAMA2):c.1338_1339del [p.Gly447Phefs*7] and c.2749 + 2dup, which consist of compound heterozygous involvement with predicted loss-of-function and splicing abnormalities.
Collapse
Affiliation(s)
- Keiko Yamamoto-Shimojima
- Japan Society for the Promotion of Science (RPD), Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women’s Medical University, Tokyo, Japan
- Tokyo Women’s Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Hiroaki Ono
- Department of Pediatrics, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Taichi Imaizumi
- Institute of Medical Genetics, Tokyo Women’s Medical University, Tokyo, Japan
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women’s Medical University, Tokyo, Japan
- Tokyo Women’s Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
11
|
Elakabawi K, Lin J, Jiao F, Guo N, Yuan Z. Kawasaki Disease: Global Burden and Genetic Background. Cardiol Res 2020; 11:9-14. [PMID: 32095191 PMCID: PMC7011927 DOI: 10.14740/cr993] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Kawasaki disease (KD) is a childhood vasculitides associated with serious coronary artery lesions. It is the most common cause of pediatric acquired heart disease in developed countries, and is increasingly reported from many rapidly industrializing developing countries. The incidence varies widely among different nations and is highest in North-East Asian countries, where almost 1 in 100 children in Japan having the disease by age of 5, where the lowest incidence reported in sub-Saharan Africa. The etiology of KD is still uncertain; interaction between a genetic predisposition and several environmental and immunological factors has been hypothesized. Several susceptibility genes were identified to be associated with the development of KD and increased risk of coronary artery lesions. Gene-gene associations and alteration of deoxyribonucleic acid (DNA) methylation are also found to play key roles in the pathogenesis and prognosis of KD. This article will focus on the global epidemiological patterns of KD, and the currently known genetic predisposition.
Collapse
Affiliation(s)
- Karim Elakabawi
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,Cardiovascular Department, Benha University, Benha 13518, Egypt.,These two authors contributed equally
| | - Jing Lin
- Department of Child and Adolescent Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,These two authors contributed equally
| | - Fuyong Jiao
- Children's Hospital, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710061, China
| | - Ning Guo
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zuyi Yuan
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
12
|
Yamamoto-Shimojima K, Imaizumi T, Akagawa H, Kanno H, Yamamoto T. Primrose syndrome associated with unclassified immunodeficiency and a novel ZBTB20 mutation. Am J Med Genet A 2019; 182:521-526. [PMID: 31821719 DOI: 10.1002/ajmg.a.61432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 12/29/2022]
Abstract
Primrose syndrome is a congenital malformation syndrome characterized by intellectual disability, developmental delay, progressive muscle wasting, and ear lobe calcification. Mutations in the ZBTB20 gene have been established as being accountable for this syndrome. In this study, a novel de novo ZBTB20 mutation, NM_001164342.2:c.1945C>T (p.Leu649Phe), has been identified through whole exome sequencing (WES) in a female patient presenting a typical Primrose phenotype. Because the present patient exhibited recurrent otitis media, detailed immunological examinations were performed in this study and subnormal immunoglobulin levels were firstly identified in a Primrose patient. Anatomical anomaly of the inner ear has never been reported in this patient and WES data did not include any relevant variants causally linked with the immunologic defect. Thus, there is a possibility of a relation between an unclassified immunodeficiency with selective IgG2 deficiency and Primrose syndrome and this may be the reason of recurrent otitis media frequently observed in Primrose patients. Because subnormal levels of IgG2 in this patient might be caused by an unrelated and still uncharacterized genetic cause, further studies are required to prove the causal link between aberrant ZBTB20 function and immunodeficiency.
Collapse
Affiliation(s)
- Keiko Yamamoto-Shimojima
- Japan Society for the Promotion of Science (RPD), Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.,Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Taichi Imaizumi
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.,Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroyuki Akagawa
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Hitoshi Kanno
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.,Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.,Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan.,Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|