1
|
Furukawa S, Arafuka S, Kato H, Ogi T, Ozaki N, Ikeda M, Kushima I. Treatment-resistant schizophrenia with 22q11.2 deletion and additional genetic defects. Neuropsychopharmacol Rep 2024. [PMID: 39189429 DOI: 10.1002/npr2.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
We report a case of a 61-year-old female with 22q11.2 deletion syndrome (22q11.2DS) and a novel heterozygous nonsense variant in MAP1A, identified through whole-genome sequencing (WGS). The patient presented with intellectual developmental disorder, treatment-resistant schizophrenia (SCZ), and multiple congenital anomalies. Despite aggressive pharmacotherapy, she experienced persistent auditory hallucinations and negative symptoms. WGS revealed a 3 Mb deletion at 22q11.2 and a nonsense variant in MAP1A (c.4652T>G, p.Leu1551*). MAP1A, encoding microtubule-associated protein 1A, is crucial for axon and dendrite development and has been implicated in autism spectrum disorder and SCZ. The MAP1A variant may contribute to the severe psychiatric phenotype, as it is thought to influence synaptic plasticity, a process also affected by 22q11.2 deletion. This case highlights the importance of WGS in identifying additional pathogenic variants that may explain phenotypic variability in 22q11.2DS. Thus, WGS can lead to a better understanding of the genetic architecture of 22q11.2DS. However, further studies are needed to elucidate the role of secondary genetic contributors in the diverse clinical presentations of 22q11.2DS.
Collapse
Affiliation(s)
- Sawako Furukawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shusei Arafuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Psychiatry for Parents and Children, Nagoya University Hospital, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
2
|
Hayashi Y, Okumura H, Arioka Y, Kushima I, Mori D, Lo T, Otgonbayar G, Kato H, Nawa Y, Kimura H, Aleksic B, Ozaki N. Analysis of human neuronal cells carrying ASTN2 deletion associated with psychiatric disorders. Transl Psychiatry 2024; 14:236. [PMID: 38830862 PMCID: PMC11148150 DOI: 10.1038/s41398-024-02962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Recent genetic studies have found common genomic risk variants among psychiatric disorders, strongly suggesting the overlaps in their molecular and cellular mechanism. Our research group identified the variant in ASTN2 as one of the candidate risk factors across these psychiatric disorders by whole-genome copy number variation analysis. However, the alterations in the human neuronal cells resulting from ASTN2 variants identified in patients remain unknown. To address this, we used patient-derived and genome-edited iPS cells with ASTN2 deletion; cells were further differentiated into neuronal cells. A comprehensive gene expression analysis using genome-edited iPS cells with variants on both alleles revealed that the expression level of ZNF558, a gene specifically expressed in human forebrain neural progenitor cells, was greatly reduced in ASTN2-deleted neuronal cells. Furthermore, the expression of the mitophagy-related gene SPATA18, which is repressed by ZNF558, and mitophagy activity were increased in ASTN2-deleted neuronal cells. These phenotypes were also detected in neuronal cells differentiated from patient-derived iPS cells with heterozygous ASTN2 deletion. Our results suggest that ASTN2 deletion is related to the common pathogenic mechanism of psychiatric disorders by regulating mitophagy via ZNF558.
Collapse
Affiliation(s)
- Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Okumura
- Department of Hospital Pharmacy, Nagoya University Hospital, Nagoya, Japan
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan.
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Büki G, Hadzsiev K, Bene J. Copy Number Variations in Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:13671. [PMID: 37761973 PMCID: PMC10530736 DOI: 10.3390/ijms241813671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Neuropsychiatric disorders are complex conditions that represent a significant global health burden with complex and multifactorial etiologies. Technological advances in recent years have improved our understanding of the genetic architecture of the major neuropsychiatric disorders and the genetic loci involved. Previous studies mainly investigated genome-wide significant SNPs to elucidate the cross-disorder and disorder-specific genetic basis of neuropsychiatric disorders. Although copy number variations represent a major source of genetic variations, they are known risk factors in developing a variety of human disorders, including certain neuropsychiatric diseases. In this review, we demonstrate the current understanding of CNVs contributing to liability for schizophrenia, bipolar disorder, and major depressive disorder.
Collapse
Affiliation(s)
| | | | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.B.); (K.H.)
| |
Collapse
|
4
|
Furukawa S, Kushima I, Aleksic B, Ozaki N. Case reports of two siblings with autism spectrum disorder and 15q13.3 deletions. Neuropsychopharmacol Rep 2023; 43:462-466. [PMID: 37264739 PMCID: PMC10496043 DOI: 10.1002/npr2.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/05/2023] [Accepted: 04/04/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Copy number variations (CNVs) have been implicated in psychiatric and neurodevelopmental disorders. Especially, 15q13.3 deletions are strongly associated with autism spectrum disorder (ASD), intellectual disability (ID), schizophrenia (SCZ), attention deficithyperactivity disorder (ADHD), and mood disorder. CASE PRESENTATION We present two siblings with ASD. They had a father with bipolar disorder (BD). Patient 1 is a 21-year-old female with ASD and mild ID, who had language delay and repetitive behavior in childhood, social difficulties, and refused to go to school because of bullying. She was hospitalized in a psychiatric hospital several times. Patient 2 is a 19-year-old male with ASD and ADHD. He did not have developmental delay, but had social difficulties and impulsiveness, then refused to go to school because of bullying. He was treated by a psychiatrist for anxiety and disrupted sleep rhythms. Array comparative genomic hybridization was performed for the siblings and parents. 15q13.3 deletions were detected in the siblings and their healthy mothers. No other pathogenic CNVs were detected. We performed whole-genome sequencing of the family and identified 13 rare missense variants in brain-expressed genes, which may be responsible for the phenotypic differences between the siblings and their mother. CONCLUSIONS This study shows incomplete penetrance and variable expressivity in 15q13.3 deletions. We detected second-hit variants that may explain the phenotypic differences within this family. In addition, detecting 15q13.3 deletions may lead to early diagnosis and a better prognosis with careful follow-up.
Collapse
Affiliation(s)
- Sawako Furukawa
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Itaru Kushima
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
- Medical Genomics CenterNagoya University HospitalNagoyaJapan
| | - Branko Aleksic
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Norio Ozaki
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
- Institute for Glyco‐core ResearchNagoya UniversityNagoyaJapan
| |
Collapse
|
5
|
Jiang L, Song M, Song F, Zhou Y, Yao H, Li G, Luo H. Characterization of loss of chromosome Y in peripheral blood cells in male Han Chinese patients with schizophrenia. BMC Psychiatry 2023; 23:469. [PMID: 37370034 DOI: 10.1186/s12888-023-04929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Schizophrenia (SCZ) has a global prevalence of 1% and increases the risk of mortality, reducing life expectancy. There is growing evidence that the risk of this disorder is higher in males than in females and it tends to develop in early adulthood. The Y chromosome is thought to be involved in biological processes other than sex determination and spermatogenesis. Studies have shown that loss of chromosome Y (LOY) in peripheral blood cells is associated with a variety of diseases (including cancer) and increased all-cause mortality. An analysis of the relationship between LOY and schizophrenia is warranted. METHODS A total of 442 Chinese males (271 patients with schizophrenia vs. 171 controls) were included in this study. The copy numbers of the Y and X chromosomes were detected by positive droplets targeting the amelogenin gene (AMEL) on the Y chromosome and X chromosome (AMELY and AMELX, respectively), using droplet digital PCR (ddPCR). The LOY percentage was defined as the difference between the concentration of AMELX and the concentration of AMELY divided by the concentration of AMELX, denoted as (X - Y)/X. RESULTS In the Han Chinese population, the LOY percentage was higher in the schizophrenia group than in the control group (p < 0.05), although there was no significant difference in the presence of LOY between the two groups. A strong correlation was found between the average of the disease duration and the average of the LOY percentage (R2 = 0.506, p = 0.032). The logistic regression analysis implied that the risk of LOY increases by 0.058 and 0.057 per year according to age at onset and duration of disease, respectively (ponset = 0.013, pduration = 0.017). CONCLUSIONS In the Han Chinese population, the LOY percentage of the disease group was significantly different from that of the control group. The age of onset and duration of schizophrenia might be risk factors for LOY in peripheral blood cells. A larger sample size and expanded clinical information are needed for more in-depth and specific analyses.
Collapse
Affiliation(s)
- Lanrui Jiang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Mengyuan Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yuxiang Zhou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Hewen Yao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Gangqin Li
- Department of Forensic Psychiatry, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
6
|
Abstract
Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors involved in its aetiology. Genetic liability contributing to the development of schizophrenia is a subject of extensive research activity, as reliable data regarding its aetiology would enable the improvement of its therapy and the development of new methods of treatment. A multitude of studies in this field focus on genetic variants, such as copy number variations (CNVs) or single-nucleotide variants (SNVs). Certain genetic disorders caused by CNVs including 22q11.2 microdeletion syndrome, Burnside-Butler syndrome (15q11.2 BP1-BP2 microdeletion) or 1q21.1 microduplication/microdeletion syndrome are associated with a higher risk of developing schizophrenia. In this article, we provide a unifying framework linking these CNVs and their associated genetic disorders with schizophrenia and its various neural and behavioural abnormalities.
Collapse
|
7
|
Kato H, Kimura H, Kushima I, Takahashi N, Aleksic B, Ozaki N. The genetic architecture of schizophrenia: review of large-scale genetic studies. J Hum Genet 2023; 68:175-182. [PMID: 35821406 DOI: 10.1038/s10038-022-01059-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Schizophrenia is a complex and often chronic psychiatric disorder with high heritability. Diagnosis of schizophrenia is still made clinically based on psychiatric symptoms; no diagnostic tests or biomarkers are available. Pathophysiology-based diagnostic scheme and treatments are also not available. Elucidation of the pathogenesis is needed for development of pathology-based diagnostics and treatments. In the past few decades, genetic research has made substantial advances in our understanding of the genetic architecture of schizophrenia. Rare copy number variations (CNVs) and rare single-nucleotide variants (SNVs) detected by whole-genome CNV analysis and whole-genome/-exome sequencing analysis have provided the great advances. Common single-nucleotide polymorphisms (SNPs) detected by large-scale genome-wide association studies have also provided important information. Large-scale genetic studies have been revealed that both rare and common genetic variants play crucial roles in this disorder. In this review, we focused on CNVs, SNVs, and SNPs, and discuss the latest research findings on the pathogenesis of schizophrenia based on these genetic variants. Rare variants with large effect sizes can provide mechanistic hypotheses. CRISPR-based genetics approaches and induced pluripotent stem cell technology can facilitate the functional analysis of these variants detected in patients with schizophrenia. Recent advances in long-read sequence technology are expected to detect variants that cannot be detected by short-read sequence technology. Various studies that bring together data from common variant and transcriptomic datasets provide biological insight. These new approaches will provide additional insight into the pathophysiology of schizophrenia and facilitate the development of pathology-based therapeutics.
Collapse
Affiliation(s)
- Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Nagahide Takahashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Abumadini MS, Al Ghamdi KS, Alqahtani AH, Almedallah DK, Callans L, Jarad JA, Cyrus C, Koeleman BPC, Keating BJ, Pankratz N, Al-Ali AK. Genome-wide copy number variant screening of Saudi schizophrenia patients reveals larger deletions in cases versus controls. Front Mol Neurosci 2023; 16:1069375. [PMID: 36846569 PMCID: PMC9950097 DOI: 10.3389/fnmol.2023.1069375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Genome-wide association studies have discovered common polymorphisms in regions associated with schizophrenia. No genome-wide analyses have been performed in Saudi schizophrenia subjects. Methods Genome-wide genotyping data from 136 Saudi schizophrenia cases and 97 Saudi controls in addition to 4,625 American were examined for copy number variants (CNVs). A hidden Markov model approach was used to call CNVs. Results CNVs in schizophrenia cases were twice as large on average than CNVs in controls (p = 0.04). The analyses focused on extremely large >250 kilobases CNVs or homozygous deletions of any size. One extremely large deletion was noted in a single case (16.5 megabases on chromosome 10). Two cases had an 814 kb duplication of chromosome 7 spanning a cluster of genes, including circadian-related loci, and two other cases had 277 kb deletions of chromosome 9 encompassing an olfactory receptors gene family. CNVs were also seen in loci previously associated with schizophrenia, namely a 16p11 proximal duplication and two 22q11.2 deletions. Discussion Runs of homozygosity (ROHs) were analyzed across the genome to investigate correlation with schizophrenia risk. While rates and sizes of these ROHs were similar in cases and controls, we identified 10 regions where multiple cases had ROHs and controls did not.
Collapse
Affiliation(s)
- Mahdi S. Abumadini
- Department of Psychiatry, King Fahd Hospital of the University, Al-Khobar and College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Kholoud S. Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdullah H. Alqahtani
- Department of Psychiatry, King Fahd Hospital of the University, Al-Khobar and College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dana K. Almedallah
- Department of Psychiatry, King Fahd Hospital of the University, Al-Khobar and College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Lauren Callans
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Jumanah A. Jarad
- Department of Psychiatry, King Fahd Hospital of the University, Al-Khobar and College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Cyril Cyrus
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Bobby P. C. Koeleman
- Department of Genetics, Division Lab, University Medical Center Utrecht, Utrecht, Netherlands
| | - Brendan J. Keating
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Amein K. Al-Ali
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia,*Correspondence: Amein K. Al-Ali, ✉
| |
Collapse
|
9
|
Lo T, Kushima I, Aleksic B, Yoshimi A, Someya T, Watanabe Y, Ozaki N. Clinical manifestations of schizophrenia in four patients with variants in voltage-gated calcium channel-encoding genes: a case series. Psychiatry Clin Neurosci 2023; 77:57-59. [PMID: 36271890 PMCID: PMC10099977 DOI: 10.1111/pcn.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/03/2022] [Accepted: 10/16/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Kushima I, Nakatochi M, Aleksic B, Okada T, Kimura H, Kato H, Morikawa M, Inada T, Ishizuka K, Torii Y, Nakamura Y, Tanaka S, Imaeda M, Takahashi N, Yamamoto M, Iwamoto K, Nawa Y, Ogawa N, Iritani S, Hayashi Y, Lo T, Otgonbayar G, Furuta S, Iwata N, Ikeda M, Saito T, Ninomiya K, Okochi T, Hashimoto R, Yamamori H, Yasuda Y, Fujimoto M, Miura K, Itokawa M, Arai M, Miyashita M, Toriumi K, Ohi K, Shioiri T, Kitaichi K, Someya T, Watanabe Y, Egawa J, Takahashi T, Suzuki M, Sasaki T, Tochigi M, Nishimura F, Yamasue H, Kuwabara H, Wakuda T, Kato TA, Kanba S, Horikawa H, Usami M, Kodaira M, Watanabe K, Yoshikawa T, Toyota T, Yokoyama S, Munesue T, Kimura R, Funabiki Y, Kosaka H, Jung M, Kasai K, Ikegame T, Jinde S, Numata S, Kinoshita M, Kato T, Kakiuchi C, Yamakawa K, Suzuki T, Hashimoto N, Ishikawa S, Yamagata B, Nio S, Murai T, Son S, Kunii Y, Yabe H, Inagaki M, Goto YI, Okumura Y, Ito T, Arioka Y, Mori D, Ozaki N. Cross-Disorder Analysis of Genic and Regulatory Copy Number Variations in Bipolar Disorder, Schizophrenia, and Autism Spectrum Disorder. Biol Psychiatry 2022; 92:362-374. [PMID: 35667888 DOI: 10.1016/j.biopsych.2022.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND We aimed to determine the similarities and differences in the roles of genic and regulatory copy number variations (CNVs) in bipolar disorder (BD), schizophrenia (SCZ), and autism spectrum disorder (ASD). METHODS Based on high-resolution CNV data from 8708 Japanese samples, we performed to our knowledge the largest cross-disorder analysis of genic and regulatory CNVs in BD, SCZ, and ASD. RESULTS In genic CNVs, we found an increased burden of smaller (<100 kb) exonic deletions in BD, which contrasted with the highest burden of larger (>500 kb) exonic CNVs in SCZ/ASD. Pathogenic CNVs linked to neurodevelopmental disorders were significantly associated with the risk for each disorder, but BD and SCZ/ASD differed in terms of the effect size (smaller in BD) and subtype distribution of CNVs linked to neurodevelopmental disorders. We identified 3 synaptic genes (DLG2, PCDH15, and ASTN2) as risk factors for BD. Whereas gene set analysis showed that BD-associated pathways were restricted to chromatin biology, SCZ and ASD involved more extensive and similar pathways. Nevertheless, a correlation analysis of gene set results indicated weak but significant pathway similarities between BD and SCZ or ASD (r = 0.25-0.31). In SCZ and ASD, but not BD, CNVs were significantly enriched in enhancers and promoters in brain tissue. CONCLUSIONS BD and SCZ/ASD differ in terms of CNV burden, characteristics of CNVs linked to neurodevelopmental disorders, and regulatory CNVs. On the other hand, they have shared molecular mechanisms, including chromatin biology. The BD risk genes identified here could provide insight into the pathogenesis of BD.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Developmental Disorders, National Institute of Mental Health National Center of Neurology and Psychiatry, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Ishizuka
- Health Support Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tanaka
- National Hospital Organization Higashi Owari National Hospital, National Hospital Organization Nagoya Medical Center, Nagoya, Japan; Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Miho Imaeda
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Nagahide Takahashi
- Department of Integrated Health Sciences, Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiro Iwamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nanayo Ogawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Okehazama Hospital Brain Research Institute, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sho Furuta
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kohei Ninomiya
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tomo Okochi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan; Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Medical Corporation Foster, Osaka, Japan
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan; Department of Psychiatry, Takatsuki Hospital, Tokyo, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan; Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tsukasa Sasaki
- Laboratory of Health Education, Graduate School of Education, University of Tokyo, Tokyo, Japan
| | - Mamoru Tochigi
- Department of Neuropsychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Fumichika Nishimura
- Center for Research on Counseling and Support Services, University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyasu Wakuda
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigenobu Kanba
- Japan Depression Center, Tokyo, Japan; Kyushu University, Fukuoka, Japan
| | - Hideki Horikawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Horikawa Hospital, Kurume, Japan
| | - Masahide Usami
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masaki Kodaira
- Department of Child and Adolescent Mental Health, Aiiku Clinic, Tokyo, Japan
| | - Kyota Watanabe
- Hiroshima City Center for Children's Health and Development, Hiroshima, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Ishikawa, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Ishikawa, Japan
| | - Ryo Kimura
- Department of Anatomy and Developmental Biology, Kyoto University, Kyoto, Japan
| | - Yasuko Funabiki
- Department of Cognitive and Behavioral Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Minyoung Jung
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Cognitive Science Group, Korea Brain Research Institute, Daegu, South Korea
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence at University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| | - Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Makoto Kinoshita
- Department of Psychiatry, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chihiro Kakiuchi
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshimitsu Suzuki
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Shuhei Ishikawa
- Department of Psychiatry, Hokkaido University Hospital, Hokkaido, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Nio
- Department of Psychiatry, Saiseikai Central Hospital, Tokyo, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuraku Son
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan; Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masumi Inagaki
- Department of Pediatrics, Tottori Prefecture Rehabilitation Center, Tottori, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuto Okumura
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Tomoya Ito
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain and Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research, Nagoya University, Nagoya, Japan.
| |
Collapse
|
11
|
Exome sequencing analysis of Japanese autism spectrum disorder case-control sample supports an increased burden of synaptic function-related genes. Transl Psychiatry 2022; 12:265. [PMID: 35811316 PMCID: PMC9271461 DOI: 10.1038/s41398-022-02033-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/16/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable, complex disorder in which rare variants contribute significantly to disease risk. Although many genes have been associated with ASD, there have been few genetic studies of ASD in the Japanese population. In whole exomes from a Japanese ASD sample of 309 cases and 299 controls, rare variants were associated with ASD within specific neurodevelopmental gene sets, including highly constrained genes, fragile X mental retardation protein target genes, and genes involved in synaptic function, with the strongest enrichment in trans-synaptic signaling (p = 4.4 × 10-4, Q-value = 0.06). In particular, we strengthen the evidence regarding the role of ABCA13, a synaptic function-related gene, in Japanese ASD. The overall results of this case-control exome study showed that rare variants related to synaptic function are associated with ASD susceptibility in the Japanese population.
Collapse
|
12
|
Kushima I, Uematsu M, Ishizuka K, Aleksic B, Ozaki N. Psychiatric patients with a de novo 17q12 deletion: Two case reports. Psychiatry Clin Neurosci 2022; 76:345-347. [PMID: 35429202 DOI: 10.1111/pcn.13367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Mariko Uematsu
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Kariya Hospital, Kariya, Japan
| | - Kanako Ishizuka
- Health Support Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
Hayashi Y, Kushima I, Aleksic B, Senaha T, Ozaki N. Variable psychiatric manifestations in patients with 16p11.2 duplication: a case series of 4 patients. Psychiatry Clin Neurosci 2022; 76:86-88. [PMID: 34940990 DOI: 10.1111/pcn.13324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/13/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsu Senaha
- Department of Psychiatry, KACHI Memorial Hospital, Toyohashi, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Lo T, Kushima I, Aleksic B, Kato H, Nawa Y, Hayashi Y, Otgonbayar G, Kimura H, Arioka Y, Mori D, Ozaki N. Sequencing of selected chromatin remodelling genes reveals increased burden of rare missense variants in ASD patients from the Japanese population. Int Rev Psychiatry 2022; 34:154-167. [PMID: 35699097 DOI: 10.1080/09540261.2022.2072193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chromatin remodelling is an important process in neural development and is related to autism spectrum disorder (ASD) and schizophrenia (SCZ) aetiology. To further elucidate the involvement of chromatin remodelling genes in the genetic aetiology of ASD and SCZ in the Japanese population, we performed a case-control study. Targeted sequencing was conducted on coding regions of four BAF chromatin remodelling complex genes: SMARCA2, SMARCA4, SMARCC2, and ARID1B in 185 ASD, 432 SCZ patients, and 517 controls. 27 rare non-synonymous variants were identified in ASD and SCZ patients, including 25 missense, one in-frame deletion in SMRACA4, and one frame-shift variant in SMARCC2. Association analysis was conducted to investigate the burden of rare variants in BAF genes in ASD and SCZ patients. Significant enrichment of rare missense variants in BAF genes, but not synonymous variants, was found in ASD compared to controls. Rare pathogenic variants indicated by in silico tools were significantly enriched in ASD, but not statistically significant in SCZ. Pathogenic-predicted variants were located in disordered binding regions and may confer risk for ASD and SCZ by disrupting protein-protein interactions. Our study supports the involvement of rare missense variants of BAF genes in ASD and SCZ susceptibility.
Collapse
Affiliation(s)
- Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
15
|
Onitsuka T, Hirano Y, Nemoto K, Hashimoto N, Kushima I, Koshiyama D, Koeda M, Takahashi T, Noda Y, Matsumoto J, Miura K, Nakazawa T, Hikida T, Kasai K, Ozaki N, Hashimoto R. Trends in big data analyses by multicenter collaborative translational research in psychiatry. Psychiatry Clin Neurosci 2022; 76:1-14. [PMID: 34716732 PMCID: PMC9306748 DOI: 10.1111/pcn.13311] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 12/01/2022]
Abstract
The underlying pathologies of psychiatric disorders, which cause substantial personal and social losses, remain unknown, and their elucidation is an urgent issue. To clarify the core pathological mechanisms underlying psychiatric disorders, in addition to laboratory-based research that incorporates the latest findings, it is necessary to conduct large-sample-size research and verify reproducibility. For this purpose, it is critical to conduct multicenter collaborative research across various fields, such as psychiatry, neuroscience, molecular biology, genomics, neuroimaging, cognitive science, neurophysiology, psychology, and pharmacology. Moreover, collaborative research plays an important role in the development of young researchers. In this respect, the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium and Cognitive Genetics Collaborative Research Organization (COCORO) have played important roles. In this review, we first overview the importance of multicenter collaborative research and our target psychiatric disorders. Then, we introduce research findings on the pathophysiology of psychiatric disorders from neurocognitive, neurophysiological, neuroimaging, genetic, and basic neuroscience perspectives, focusing mainly on the findings obtained by COCORO. It is our hope that multicenter collaborative research will contribute to the elucidation of the pathological basis of psychiatric disorders.
Collapse
Affiliation(s)
- Toshiaki Onitsuka
- Department of Neuroimaging Psychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michihiko Koeda
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Neuropsychiatry, Nippon Medical School, Tama Nagayama Hospital, Tokyo, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
16
|
Cheng MC, Chien WH, Huang YS, Fang TH, Chen CH. Translational Study of Copy Number Variations in Schizophrenia. Int J Mol Sci 2021; 23:ijms23010457. [PMID: 35008879 PMCID: PMC8745588 DOI: 10.3390/ijms23010457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Rare copy number variations (CNVs) are part of the genetics of schizophrenia; they are highly heterogeneous and personalized. The CNV Analysis Group of the Psychiatric Genomic Consortium (PGC) conducted a large-scale analysis and discovered that recurrent CNVs at eight genetic loci were pathogenic to schizophrenia, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.23, 15q13.3, distal 16p11.2, proximal 16p11.2, and 22q11.2. We adopted a two-stage strategy to translate this knowledge into clinical psychiatric practice. As a screening test, we first developed a real-time quantitative PCR (RT-qPCR) panel that simultaneously detected these pathogenic CNVs. Then, we tested the utility of this screening panel by investigating a sample of 557 patients with schizophrenia. Chromosomal microarray analysis (CMA) was used to confirm positive cases from the screening test. We detected and confirmed thirteen patients who carried CNVs at these hot loci, including two patients at 1q21.1, one patient at 7q11.2, three patients at 15q13.3, two patients at 16p11.2, and five patients at 22q11.2. The detection rate in this sample was 2.3%, and the concordance rate between the RT-qPCR test panel and CMA was 100%. Our results suggest that a two-stage approach is cost-effective and reliable in achieving etiological diagnosis for some patients with schizophrenia and improving the understanding of schizophrenia genetics.
Collapse
Affiliation(s)
- Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 981, Taiwan;
| | - Wei-Hsien Chien
- Department of Occupational Therapy, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Yu-Shu Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan;
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ting-Hsuan Fang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan;
- Department and Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence:
| |
Collapse
|
17
|
Genetics of autosomal mosaic chromosomal alteration (mCA). J Hum Genet 2021; 66:879-885. [PMID: 34321609 DOI: 10.1038/s10038-021-00964-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022]
Abstract
Mosaic chromosomal alterations (mCAs) are frequently observed in cancer cells and are regarded as one of the common features of cancers. Strikingly, accumulating studies demonstrated that mCAs are also prevalent in elderly individuals without cancer, implying mCA could be a feature of aging and not necessarily a cancerous state. However, the genetic basis of mCA has been mostly unknown. Recent studies of autosomal mCA based on biobank-scale datasets, including UK Biobank and Biobank Japan, provided a glimpse into the underlying genetic mechanism. In this concise review, we briefly introduced mCA, its link with cancer and aging, and the emerging genetic mechanisms of this phenomenon. We highlighted the following aspects: (1) the interplay between somatic and inherited germline mutations in generating mosaicism; (2) monogenic and polygenic architectures of mCA; and (3) population-specific profiles of mCA. We provided a future perspective emphasizing the need to understand the connection between mCA and other characteristics of aging, in particular, the epigenetic and immunologic features.
Collapse
|
18
|
Dysregulation of post-transcriptional modification by copy number variable microRNAs in schizophrenia with enhanced glycation stress. Transl Psychiatry 2021; 11:331. [PMID: 34050135 PMCID: PMC8163801 DOI: 10.1038/s41398-021-01460-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Previously, we identified a subpopulation of schizophrenia (SCZ) showing increased levels of plasma pentosidine, a marker of glycation and oxidative stress. However, its causative genetic factors remain largely unknown. Recently, it has been suggested that dysregulated posttranslational modification by copy number variable microRNAs (CNV-miRNAs) may contribute to the etiology of SCZ. Here, an integrative genome-wide CNV-miRNA analysis was performed to investigate the etiology of SCZ with accumulated plasma pentosidine (PEN-SCZ). The number of CNV-miRNAs and the gene ontology (GO) in the context of miRNAs within CNVs were compared between PEN-SCZ and non-PEN-SCZ groups. Gene set enrichment analysis of miRNA target genes was further performed to evaluate the pathways affected in PEN-SCZ. We show that miRNAs were significantly enriched within CNVs in the PEN-SCZ versus non-PEN-SCZ groups (p = 0.032). Of note, as per GO analysis, the dysregulated neurodevelopmental events in the two groups may have different origins. Additionally, gene set enrichment analysis of miRNA target genes revealed that miRNAs involved in glycation/oxidative stress and synaptic neurotransmission, especially glutamate/GABA receptor signaling, were possibly affected in PEN-SCZ. To the best of our knowledge, this is the first genome-wide CNV-miRNA study suggesting the role of CNV-miRNAs in the etiology of PEN-SCZ, through effects on genes related to glycation/oxidative stress and synaptic function. Our findings provide supportive evidence that glycation/oxidative stress possibly caused by genetic defects related to the posttranscriptional modification may lead to synaptic dysfunction. Therefore, targeting miRNAs may be one of the promising approaches for the treatment of PEN-SCZ.
Collapse
|
19
|
Pang H, Xia Y, Luo S, Huang G, Li X, Xie Z, Zhou Z. Emerging roles of rare and low-frequency genetic variants in type 1 diabetes mellitus. J Med Genet 2021; 58:289-296. [PMID: 33753534 PMCID: PMC8086251 DOI: 10.1136/jmedgenet-2020-107350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is defined as an autoimmune disorder and has enormous complexity and heterogeneity. Although its precise pathogenic mechanisms are obscure, this disease is widely acknowledged to be precipitated by environmental factors in individuals with genetic susceptibility. To date, the known susceptibility loci, which have mostly been identified by genome-wide association studies, can explain 80%–85% of the heritability of T1DM. Researchers believe that at least a part of its missing genetic component is caused by undetected rare and low-frequency variants. Most common variants have only small to modest effect sizes, which increases the difficulty of dissecting their functions and restricts their potential clinical application. Intriguingly, many studies have indicated that rare and low-frequency variants have larger effect sizes and play more significant roles in susceptibility to common diseases, including T1DM, than common variants do. Therefore, better recognition of rare and low-frequency variants is beneficial for revealing the genetic architecture of T1DM and for providing new and potent therapeutic targets for this disease. Here, we will discuss existing challenges as well as the great significance of this field and review current knowledge of the contributions of rare and low-frequency variants to T1DM.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Briuglia S, Calabrò M, Capra AP, La Rosa MA, Crisafulli C. CNVs inform the biological network of Autism spectrum disorder. Psychiatry Res 2021; 297:113729. [PMID: 33524775 DOI: 10.1016/j.psychres.2021.113729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/13/2021] [Indexed: 11/26/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous condition linked to an anomalous neurodevelopment. Although the underlying causes of ASD are not well described, literature data strongly suggests a genetic component, with a complex inheritance pattern. It has recently been observed that CNVs (copy number variation) may play an important role in ASD manifestation and partially explain the complex heritability of this tract. Another factor That adds another level of complexity to ASD is its potential genetic heterogeneity. In this paper, we hypothesize that the different patterns of alteration within individuals with ASD may converge towards the same function. We genotyped a sample of 107 individuals through aCGH analysis for CNVs that were related (by localization) to approximately 1400 genes. The genes were tested for functional interactions and clustered in functional groups. We highlighted a functional genetic cluster of 256 genes potentially related to ASD. These altered genes may contribute to the same function, alterations of which increase the risk of ASD. After testing our functional cluster for biological functions, processes related to oxidative stress, immune system and energy metabolism are the pathways potentially involved with the biological alterations underlying ASD.
Collapse
Affiliation(s)
- Silvana Briuglia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Anna Paola Capra
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Maria Angela La Rosa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
21
|
Vorstman J, Scherer SW. What a finding of gene copy number variation can add to the diagnosis of developmental neuropsychiatric disorders. Curr Opin Genet Dev 2021; 68:18-25. [PMID: 33454514 DOI: 10.1016/j.gde.2020.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
Among medical disciplines, diagnosis in psychiatry depends highly upon descriptive signs and symptoms, rather than biomarkers. Clear descriptions of specific genetic etiologies have been lacking; genomic technologies, however, are rapidly changing that landscape. Notably, chromosomal microarrays-which detect gene copy number variants (CNVs)-are a recommended standard of care for neurodevelopmental disorders. As a result, an increasing number of patients now receive a clinical diagnosis based on the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) and an identified genetic etiological variant. However, psychiatric and genetic diagnoses are frequently communicated and managed as two disconnected diagnostic parameters. Here, we advocate for a transition model, allowing the integration of genetic etiological information-starting with diagnostically proven CNVs-within the DSM-5 classification framework.
Collapse
Affiliation(s)
- Jacob Vorstman
- Department of Psychiatry, Hospital for Sick Children University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, Hospital for Sick Children, Canada; The Centre for Applied Genomics, Hospital for Sick Children, Canada
| | - Stephen W Scherer
- Program in Genetics and Genome Biology, Hospital for Sick Children, Canada; The Centre for Applied Genomics, Hospital for Sick Children, Canada; McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Canada.
| |
Collapse
|
22
|
Kimura H, Mori D, Aleksic B, Ozaki N. Elucidation of molecular pathogenesis and drug development for psychiatric disorders from rare disease-susceptibility variants. Neurosci Res 2020; 170:24-31. [PMID: 33316300 DOI: 10.1016/j.neures.2020.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Recent rapid progress in genome analysis and large-scale consortia has made it possible to discover variants with a variety of allele frequencies and effect sizes associated with psychiatric disorders. Among psychiatric disorder-susceptibility variants, rare variants with large effect sizes detected by sequencing analysis or array comparative genomic hybridization would be particularly useful for elucidating pathophysiology by developing disease models, such as genome-edited mouse or induced pluripotent stem cells. In the last decade, investigations of rare variants with large effect size have revealed an important role of neurodevelopment in the pathogenesis of psychiatric disorders. In future research, integration of recent evidence concerning the contribution of the immune system or gut microbiota will enhance our understanding of psychiatric disorders and facilitate novel drug development.
Collapse
Affiliation(s)
- Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain & Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain & Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
23
|
Kato H, Kushima I, Mori D, Yoshimi A, Aleksic B, Nawa Y, Toyama M, Furuta S, Yu Y, Ishizuka K, Kimura H, Arioka Y, Tsujimura K, Morikawa M, Okada T, Inada T, Nakatochi M, Shinjo K, Kondo Y, Kaibuchi K, Funabiki Y, Kimura R, Suzuki T, Yamakawa K, Ikeda M, Iwata N, Takahashi T, Suzuki M, Okahisa Y, Takaki M, Egawa J, Someya T, Ozaki N. Rare genetic variants in the gene encoding histone lysine demethylase 4C (KDM4C) and their contributions to susceptibility to schizophrenia and autism spectrum disorder. Transl Psychiatry 2020; 10:421. [PMID: 33279929 PMCID: PMC7719193 DOI: 10.1038/s41398-020-01107-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Dysregulation of epigenetic processes involving histone methylation induces neurodevelopmental impairments and has been implicated in schizophrenia (SCZ) and autism spectrum disorder (ASD). Variants in the gene encoding lysine demethylase 4C (KDM4C) have been suggested to confer a risk for such disorders. However, rare genetic variants in KDM4C have not been fully evaluated, and the functional impact of the variants has not been studied using patient-derived cells. In this study, we conducted copy number variant (CNV) analysis in a Japanese sample set (2605 SCZ and 1141 ASD cases, and 2310 controls). We found evidence for significant associations between CNVs in KDM4C and SCZ (p = 0.003) and ASD (p = 0.04). We also observed a significant association between deletions in KDM4C and SCZ (corrected p = 0.04). Next, to explore the contribution of single nucleotide variants in KDM4C, we sequenced the coding exons in a second sample set (370 SCZ and 192 ASD cases) and detected 18 rare missense variants, including p.D160N within the JmjC domain of KDM4C. We, then, performed association analysis for p.D160N in a third sample set (1751 SCZ and 377 ASD cases, and 2276 controls), but did not find a statistical association with these disorders. Immunoblotting analysis using lymphoblastoid cell lines from a case with KDM4C deletion revealed reduced KDM4C protein expression and altered histone methylation patterns. In conclusion, this study strengthens the evidence for associations between KDM4C CNVs and these two disorders and for their potential functional effect on histone methylation patterns.
Collapse
Affiliation(s)
- Hidekazu Kato
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.
| | - Daisuke Mori
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan ,grid.27476.300000 0001 0943 978XBrain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Akira Yoshimi
- grid.259879.80000 0000 9075 4535Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Branko Aleksic
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miho Toyama
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sho Furuta
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yanjie Yu
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Ishizuka
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan ,grid.437848.40000 0004 0569 8970Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Keita Tsujimura
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan ,grid.27476.300000 0001 0943 978XInnovative Research Unit for Developmental Disorders, Institute of Advanced Research, Nagoya University, Nagoya, Japan
| | - Mako Morikawa
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Okada
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiya Inada
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Nakatochi
- grid.27476.300000 0001 0943 978XPublic Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Shinjo
- grid.27476.300000 0001 0943 978XDivision of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Kondo
- grid.27476.300000 0001 0943 978XDivision of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- grid.27476.300000 0001 0943 978XDepartment of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuko Funabiki
- grid.258799.80000 0004 0372 2033Department of Cognitive and Behavioral Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Ryo Kimura
- grid.258799.80000 0004 0372 2033Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshimitsu Suzuki
- grid.260433.00000 0001 0728 1069Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan ,grid.474690.8Laboratory for Neurogenetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Kazuhiro Yamakawa
- grid.260433.00000 0001 0728 1069Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan ,grid.474690.8Laboratory for Neurogenetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Masashi Ikeda
- grid.256115.40000 0004 1761 798XDepartment of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nakao Iwata
- grid.256115.40000 0004 1761 798XDepartment of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tsutomu Takahashi
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Michio Suzuki
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Okahisa
- grid.261356.50000 0001 1302 4472Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Manabu Takaki
- grid.261356.50000 0001 1302 4472Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jun Egawa
- grid.260975.f0000 0001 0671 5144Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiyuki Someya
- grid.260975.f0000 0001 0671 5144Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Norio Ozaki
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|