1
|
Chen SY, Ho CJ, Lu YT, Lin CH, Lan MY, Tsai MH. The Genetics of Primary Familial Brain Calcification: A Literature Review. Int J Mol Sci 2023; 24:10886. [PMID: 37446066 DOI: 10.3390/ijms241310886] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Primary familial brain calcification (PFBC), also known as Fahr's disease, is a rare inherited disorder characterized by bilateral calcification in the basal ganglia according to neuroimaging. Other brain regions, such as the thalamus, cerebellum, and subcortical white matter, can also be affected. Among the diverse clinical phenotypes, the most common manifestations are movement disorders, cognitive deficits, and psychiatric disturbances. Although patients with PFBC always exhibit brain calcification, nearly one-third of cases remain clinically asymptomatic. Due to advances in the genetics of PFBC, the diagnostic criteria of PFBC may need to be modified. Hitherto, seven genes have been associated with PFBC, including four dominant inherited genes (SLC20A2, PDGFRB, PDGFB, and XPR1) and three recessive inherited genes (MYORG, JAM2, and CMPK2). Nevertheless, around 50% of patients with PFBC do not have pathogenic variants in these genes, and further PFBC-associated genes are waiting to be identified. The function of currently known genes suggests that PFBC could be caused by the dysfunction of the neurovascular unit, the dysregulation of phosphate homeostasis, or mitochondrial dysfunction. An improved understanding of the underlying pathogenic mechanisms for PFBC may facilitate the development of novel therapies.
Collapse
Affiliation(s)
- Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| |
Collapse
|
2
|
Song T, Zhao Y, Wen G, Du J, Xu Q. A novel MYORG mutation causes primary familial brain calcification with migraine: Case report and literature review. Front Neurol 2023; 14:1110227. [PMID: 36816548 PMCID: PMC9932805 DOI: 10.3389/fneur.2023.1110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Primary familial brain calcification (PFBC) is a disorder in which pathologic calcification of the basal ganglia, cerebellum, or other brain regions with bilateral symmetry occurs. Common clinical symptoms include dysarthria, cerebellar symptoms, motor deficits, and cognitive impairment. Genetic factors are an important cause of the disease; however autosomal recessive (AR) inheritance is rare. In 2018, the myogenesis-regulated glycosidase (MYORG) gene was the first to be associated with AR-PFBC. The present case is a 24-year-old woman with AR-PFBC that presented with migraine at the age of 16 years. Symmetrical patchy calcifications were seen in the bilateral cerebellopontine nuclei, thalamus, basal ganglia, and radiocoronal area on computed tomography and magnetic resonance imaging. AR-PFBC with migraine as the main clinical symptom is rare. Whole-exome sequencing revealed a compound heterozygous mutation in the MYORG gene, one of which has not been previously reported. Our case highlights the pathogenic profile of the MYORG gene, and demonstrates the need for exclusion of calcium deposits in the brain for migraine patients with AR inheritance.
Collapse
Affiliation(s)
- Tingwei Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Guo Wen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Juan Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China,*Correspondence: Qian Xu ✉
| |
Collapse
|
3
|
Zeng YH, Lin BW, Su HZ, Guo XX, Li YL, Lai LL, Chen WJ, Zhao M, Yao XP. Mutation Analysis of MYORG in a Chinese Cohort With Primary Familial Brain Calcification. Front Genet 2021; 12:732389. [PMID: 34745211 PMCID: PMC8570371 DOI: 10.3389/fgene.2021.732389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Primary familial brain calcification (PFBC) is a progressive neurological disorder manifesting as bilateral brain calcifications in CT scan with symptoms as parkinsonism, dystonia, ataxia, psychiatric symptoms, etc. Recently, pathogenic variants in MYORG have been linked to autosomal recessive PFBC. This study aims to elucidate the mutational and clinical spectrum of MYORG mutations in a large cohort of Chinese PFBC patients with possible autosomal recessive or absent family history. Mutational analyses of MYORG were performed by Sanger sequencing in a cohort of 245 PFBC patients including 21 subjects from 10 families compatible with a possibly autosomal-recessive trait and 224 apparently sporadic cases. In-depth phenotyping and neuroimaging features were investigated in all patients with novel MYORG variants. Two nonsense variants (c.442C > T, p. Q148*; c.972C > A, p. Y324*) and two missense variants (c.1969G>C, p. G657R; c.2033C > G, p. P678R) of MYORG were identified in four sporadic PFBC patients, respectively. These four novel variants were absent in gnomAD, and their amino acid were highly conserved, suggesting these variants have a pathogenic impact. Patients with MYORG variants tend to display a homogeneous clinical spectrum, showing extensive brain calcification and parkinsonism, dysarthria, ataxia, or vertigo. Our findings supported the pathogenic role of MYORG variants in PFBC and identified two pathogenic variants (c.442C > T, c.972C > A), one likely pathogenic variant (c.2033C > G), and one variant of uncertain significance (c.1969G>C), further expanding the genetic and phenotypic spectrum of PFBC-MYORG.
Collapse
Affiliation(s)
- Yi-Heng Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Bi-Wei Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Hui-Zhen Su
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xin-Xin Guo
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yun-Lu Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Lu-Lu Lai
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Miao Zhao
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiang-Ping Yao
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Tekin Orgun L, Besen Ş, Sangün Ö, Bisgin A, Alkan Ö, Erol İ. First pediatric case with primary familial brain calcification due to a novel variant on the MYORG gene and review of the literature. Brain Dev 2021; 43:789-797. [PMID: 33958240 DOI: 10.1016/j.braindev.2021.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/08/2022]
Abstract
Variants in the myogenesis-regulating glycosidase (MYORG) gene which is known as the first autosomal recessive gene that has been associated with primary familial brain calcification (AR-PFBC). Although adult patients have been reported, no pediatric case has been reported until now. Herein, we review the clinical and radiological features of all AR- PFBC patients with biallelic variants in the MYORG gene who were reported until now, and we report the youngest patient who has a novel homozygous variant. Since the first identification of the MYORG gene in 2018, 74cases of MYORG variants related to AR-PFBC were evaluated. The ages of symptom onset of the patients ranged between 7.5 and 87 years. The most frequent clinical courses were speech impairment, movement disorder and cerebellar signs. All patients showed basal ganglia calcification usually bilaterally with different severities. Conclusion; herein, we reported the first pediatric patient in the literature who had a novel homozygous variant in the MYORG gene with mild clinic findings.
Collapse
Affiliation(s)
- Leman Tekin Orgun
- Baskent University, Faculty of Medicine, Department of Pediatric Neurology, Adana Dr. Noyan Teaching and Medical Research Center, Adana, Turkey.
| | - Şeyda Besen
- Baskent University, Faculty of Medicine, Department of Pediatric Neurology, Adana Dr. Noyan Teaching and Medical Research Center, Adana, Turkey
| | - Özlem Sangün
- Baskent University, Faculty of Medicine, Department of Pediatric Endocrinology, Adana Dr. Noyan Teaching and Medical Research Center, Adana, Turkey
| | - Atıl Bisgin
- Cukurova University AGENTEM (Adana Genetic Disease Diagnosis and Treatment Center) & Medical Genetics Department of Medical Faculty, Adana, Turkey.
| | - Özlem Alkan
- Baskent University, Faculty of Medicine, Department of Radiodiagnosis, Adana Dr. Noyan Teaching and Medical Research Center, Adana, Turkey
| | - İlknur Erol
- Baskent University, Faculty of Medicine, Department of Pediatric Neurology, Adana Dr. Noyan Teaching and Medical Research Center, Adana, Turkey
| |
Collapse
|
5
|
Hou Y, Lin J, Shang H. Brain Calcification in a Young Adult with Abnormal Copper Metabolism. Mov Disord Clin Pract 2021; 8:476-479. [PMID: 33816683 DOI: 10.1002/mdc3.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yanbing Hou
- Department of Neurology Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University Chengdu China
| | - Junyu Lin
- Department of Neurology Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University Chengdu China
| | - Huifang Shang
- Department of Neurology Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University Chengdu China
| |
Collapse
|