1
|
Darwish AM, Almehiza AA, Khattab AEN, Sharaf HA, Naglah AM, Bhat MA, Zen AA, Kalmouch A. Using Selenium-enriched Mutated Probiotics as Enhancer for Fertility Parameters in Mice. Biol Trace Elem Res 2024; 202:5118-5125. [PMID: 38321304 DOI: 10.1007/s12011-024-04067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Increasing fertility rates have become one of the factors that concern all people in the world. Therefore, the study aims to use two mutated strains of probiotics enriched with selenium (PSe40/60/1 and BSe50/20/1) to improve fertility. Thirty Swiss albino male mice were divided into three groups; control, LP + S was given Lactobacillus plantarum PSe40/60/1 plus selenium, and BL + S was given Bifidobacterium longum BSe50/20/1 plus selenium. Free testosterone, LH, and FSH were measured in serum by biochemical analysis. Testicular tissues were examined by histopathological analysis. The count and motility of sperm, and sperm abnormalities were determined by microscopic examination. The method of qRT-PCR was used to detect gene expression of Tspyl1, Hsd3b6, and Star genes. The biochemical results showed that serum content of free testosterone (FT) hormone had significantly increase in the BL + S and LP + S groups compared with control. Levels of LH and FSH hormones were the highest in the BL + S group. The treated groups showed all developmental stages of spermatogenesis, including spermatogenesis, spermatocytes, and seminiferous tubule spermatids, as well as intact Sertoli cells and Leydig cells without changes. When compared to the control group, sperm count and motility increased in the BL + S group, while sperm abnormalities decreased. The expression of Tspyl1 gene in testicular tissues decreased in the LP + S and BL + S groups, while the expression of Star and Hsd3b6 genes was higher in the BL + S group and lower in the LP + S group compared with the control group. Therefore, Bifidobacterium longum BSe50/20/1 enriched with selenium could be useful in enhancing male fertility.
Collapse
Affiliation(s)
- Ahmed Mohamed Darwish
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Abdulrahman A Almehiza
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Abd El-Nasser Khattab
- Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Hafiza A Sharaf
- Pathology Department, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed M Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Mashooq A Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Amer Alhaj Zen
- Chemistry & Forensics Department, Clifton Camus, Nottingham Trent University, Nottingham, Ng118NS, UK
| | - Atef Kalmouch
- Peptide Chemistry Department, Chemical Industries Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
2
|
PRAMEY: A Bovid-Specific Y-Chromosome Multicopy Gene Is Highly Related to Postnatal Testicular Growth in Hu Sheep. Animals (Basel) 2022; 12:ani12182380. [PMID: 36139240 PMCID: PMC9495132 DOI: 10.3390/ani12182380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
PRAMEY (preferentially expressed antigen in melanoma, Y-linked) belongs to the cancer-testis antigens (CTAs) gene family and is predominantly expressed in testis, playing important roles in spermatogenesis and testicular development. This study cloned the full-length cDNA sequence of ovine PRAMEY using the rapid amplification of cDNA ends (RACE) method and analyzed the expression profile and copy number variation (CNV) of PRAMEY using quantitative real-time PCR (qPCR). The results revealed that the PRAMEY cDNA was 2099 bp in length with an open reading frame (ORF) of 1536 bp encoding 511 amino acids. PRAMEY was predominantly expressed in the testis and significantly upregulated during postnatal testicular development. The median copy number (MCN) of PRAMEY was 4, varying from 2 to 25 in 710 rams across eight sheep breeds. There was no significant correlation between the CNV of PRAMEY and testicular size, while a significant positive correlation was observed between the mRNA expression and testicular size in Hu sheep. The current study suggests that the expression levels of PRAMEY were closely associated with testicular size, indicating that PRAMEY may play an important role in testicular growth.
Collapse
|
3
|
Heydari R, Jangravi Z, Maleknia S, Seresht-Ahmadi M, Bahari Z, Salekdeh GH, Meyfour A. Y chromosome is moving out of sex determination shadow. Cell Biosci 2022; 12:4. [PMID: 34983649 PMCID: PMC8724748 DOI: 10.1186/s13578-021-00741-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
Although sex hormones play a key role in sex differences in susceptibility, severity, outcomes, and response to therapy of different diseases, sex chromosomes are also increasingly recognized as an important factor. Studies demonstrated that the Y chromosome is not a 'genetic wasteland' and can be a useful genetic marker for interpreting various male-specific physiological and pathophysiological characteristics. Y chromosome harbors male‑specific genes, which either solely or in cooperation with their X-counterpart, and independent or in conjunction with sex hormones have a considerable impact on basic physiology and disease mechanisms in most or all tissues development. Furthermore, loss of Y chromosome and/or aberrant expression of Y chromosome genes cause sex differences in disease mechanisms. With the launch of the human proteome project (HPP), the association of Y chromosome proteins with pathological conditions has been increasingly explored. In this review, the involvement of Y chromosome genes in male-specific diseases such as prostate cancer and the cases that are more prevalent in men, such as cardiovascular disease, neurological disease, and cancers, has been highlighted. Understanding the molecular mechanisms underlying Y chromosome-related diseases can have a significant impact on the prevention, diagnosis, and treatment of diseases.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrshad Seresht-Ahmadi
- Department of Basic Science and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|