1
|
Wu CY, Zhou Y, Yin X, Peng R, Xie HN. Prenatal ultrasound findings and clinical outcomes of uniparental disomy: a retrospective study. BMC Pregnancy Childbirth 2024; 24:288. [PMID: 38637738 PMCID: PMC11027273 DOI: 10.1186/s12884-024-06493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Uniparental disomy is the inheritance of a homologous chromosome pair or part of homologous chromosomes from only one parent. However, the clinical significance of uniparental disomy and the difference among the prognosis of involvement of different chromosomes remain unclear. OBJECTIVE To assess the associated prenatal ultrasound presentations and clinical outcomes of uniparental disomy on different chromosomes and to analyze the relationship between prenatal ultrasound markers and clinical outcomes. STUDY DESIGN We retrospectively analyzed data from fetuses with uniparental disomy diagnosed using chromosome microarray analysis with the Affymetrix CytoScan HD array at our institution between January 2013 and September 2022. The relationship between prenatal ultrasound findings, the involved chromosome(s), and clinical outcomes was evaluated. RESULTS During the study period, 36 fetuses with uniparental disomy were diagnosed, and two cases were excluded for non-available postnatal data. Finally, 34 fetuses were included in our study, of which 30 (88.2%) had uniparental disomy occurring on a single chromosome, while four (11.8%) were identified with uniparental disomy on different chromosomes. The most frequently involved chromosomes were chromosomes 16, X and 2, which presented in 8 (23.5%), 5 (14.7%) and 4 (11.8%), respectively. Prenatal ultrasound abnormalities were detected in 21 fetuses, with the most common category being multiple abnormalities (12 (57.1%)). Fetal growth restriction was identified in 14 (41.2%) fetuses, all of which coexisted with other abnormal findings. The rate of adverse perinatal outcomes in patients with uniparental disomy and fetal abnormalities was significantly higher than those without abnormalities (76.2% versus 15.4%, P = 0.002). The incidence of fetal or neonatal death was significantly higher in fetuses with fetal growth restriction than those without (85.7% versus 30.0%, P = 0.004). CONCLUSIONS The prognosis of fetuses with uniparental disomy combined with fetal abnormalities, especially fetal growth restriction, was much poorer than those without.
Collapse
Affiliation(s)
- Cui-Yi Wu
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zhou
- Department of Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xia Yin
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruan Peng
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hong-Ning Xie
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Xue H, Yu A, Zhang L, Chen L, Guo Q, Lin M, Lin N, Chen X, Xu L, Huang H. Genetic testing for fetal loss of heterozygosity using single nucleotide polymorphism array and whole-exome sequencing. Sci Rep 2024; 14:2190. [PMID: 38273042 PMCID: PMC10810965 DOI: 10.1038/s41598-024-52812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024] Open
Abstract
The study explored the clinical significance of fetal loss of heterozygosity (LOH) identified by single-nucleotide polymorphism array (SNP array). We retrospectively reviewed data from pregnant women who underwent invasive diagnostic procedures at prenatal diagnosis centers in southeastern China from December 2016 to December 2021. SNP array was performed by the Affymetrix CytoScan 750 K array platform. Fetuses with LOH were further identified by parental verification, MS-MLPA, and/or trio whole-exome sequencing (trio-WES). The genetic results, fetal clinical manifestations, and perinatal outcome were analyzed. Of 11,062 fetuses, 106 (0.96%) had LOH exhibiting a neutral copy number, 88 (83.0%) had LOH in a single chromosome, whereas 18 (17.0%) had multiple LOHs on different chromosomes. Sixty-six fetuses had ultrasound anomalies (UAs), most frequently fetal growth restriction (18/66 (27.3%)). Parental SNP array verification was performed in 21 cases and trio-WES in 21 cases. Twelve cases had clinically relevant uniparental disomy, five had pathogenic variants, four had likely pathogenic variants, six had variants of unknown significance, and eight had identity by descent. The rate of adverse pregnancy outcomes in fetuses with LOH and UAs (24/66 (36.4%)) was higher than in those without UAs (6/40 (15.0%)) (p < 0.05). LOH is not uncommon. Molecular genetic testing techniques, including parental SNP array verification, trio-WES, methylation-specific multiplex ligation-dependent probe amplification, regular and systematic ultrasonic monitoring, and placental study, can accurately assess the prognosis and guide the management of the affected pregnancy.
Collapse
Affiliation(s)
- Huili Xue
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Aili Yu
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Lin Zhang
- Fujian Medical University, No. 88 Jiaotong Road, Cangshan District, Fuzhou City, 350001, Fujian Province, China
| | - Lingji Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Qun Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Min Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Xuemei Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| |
Collapse
|
3
|
Chen Q, Chen Y, Shi L, Tao Y, Li X, Zhu X, Yang Y, Xu W. Uniparental disomy: expanding the clinical and molecular phenotypes of whole chromosomes. Front Genet 2023; 14:1232059. [PMID: 37860673 PMCID: PMC10582337 DOI: 10.3389/fgene.2023.1232059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Uniparental disomy (UPD) refers to as both homologous chromosomes inherited from only one parent without identical copies from the other parent. Studies on clinical phenotypes in UPDs are usually focused on the documented UPD 6, 7, 11, 14, 15, and 20, which directly lead to imprinting disorders. This study describes clinical phenotypes and genetic findings of three patients with UPD 2, 9, and 14, respectively. Chromosomal microarray (CMA), UPDtool, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and whole-exome sequencing (WES) analysis were performed to characterize the genetic etiology. The CMA revealed a homozygous region involving the whole chromosome 2 and 9, a partial region of homozygosity in chromosome 14. UPD-tool revealed a paternal origin of the UPD2. MS-MLPA showed hypomethylation of imprinting gene MEG3 from maternal origin in the UPD14 case. In addition, UPD14 case displayed complex symptoms including growth failure, hypotonia and acute respiratory distress syndrome (ARDS), accompanied by several gene mutations with heterozygous genotype by WES analysis. Furthermore, we reviewed the documented UPDs and summarized the clinical characteristics and prognosis. This study highlighted the importance to confirm the diagnosis and origin of UPD using genetic testing. Therefore, it is suggested that expanding of the detailed phenotypes and genotypes provide effective guidance for molecule testing and genetic counseling, and promote further biological investigation to the underlying mechanisms of imprinted disorders and accompanied copy number variations.
Collapse
Affiliation(s)
- Qi Chen
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yunpeng Chen
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lin Shi
- Department of Ultrasound, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ying Tao
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoguang Li
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Yang
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | | |
Collapse
|