1
|
Park HB, An EK, Kim SJ, Ryu D, Zhang W, Pack CG, Kim H, Kwak M, Im W, Ryu JH, Lee PCW, Jin JO. Anti-PD-L1 Antibody Fragment Linked to Tumor-Targeting Lipid Nanoparticle Can Eliminate Cancer and Its Metastasis via Photoimmunotherapy. ACS NANO 2024; 18:33366-33380. [PMID: 39603816 DOI: 10.1021/acsnano.4c08448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Effective cancer therapy aims to treat primary tumors and metastatic and recurrent cancer. Immune checkpoint blockade-mediated immunotherapy has shown promising effects against tumors; however, its efficacy in metastatic or recurrent cancer is limited. Here, based on the advantages of nanomedicine, lipid nanoparticles (LNPs) that can target tumors are synthesized for photothermal therapy (PTT) and immunotherapy to treat primary and metastatic recurrent cancer. These LNPs, termed piLNPs, are encapsulated with indocyanine green and incorporated with the antigen (Ag)-binding fragment of the anti-PD-L1 antibody for targeting tumors and immunotherapy. Intravenously injected piLNPs in 4T1 breast tumor-bearing BALB/c mice effectively target the 4T1 tumor and are suitable for performing PTT using a near-infrared laser. Moreover, lung metastatic 4T1 tumor growth is completely prevented in mice previously cured of the 4T1 breast tumor by piLNP treatment and rechallenged with lung 4T1 metastatic cancer. Blockage of the second challenged metastatic 4T1 breast cancer by piLNP is due to the activation of Ag-specific T cells. Cytotoxic T lymphocytes from piLNP-cured mice selectively attack 4T1 breast cancer cells. Therefore, piLNP can be used as a multifunctional breast cancer treatment composition that can target tumors, treat primary tumors, and prevent metastasis and recurrence.
Collapse
Affiliation(s)
- Hae-Bin Park
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - So-Jung Kim
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Dayoung Ryu
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chan-Gi Pack
- Department of Biomedical Engineering, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, South Korea
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| |
Collapse
|
2
|
Um‐e‐Kalsoom, Wang S, Qu J, Liu L. Innovative optical imaging strategies for monitoring immunotherapy in the tumor microenvironments. Cancer Med 2024; 13:e70155. [PMID: 39387259 PMCID: PMC11465031 DOI: 10.1002/cam4.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a critical role in cancer progression and response to immunotherapy. Immunotherapy targeting the immune system has emerged as a promising treatment modality, but challenges in understanding the TME limit its efficacy. Optical imaging strategies offer noninvasive, real-time insights into the interactions between immune cells and the TME. OBJECTIVE This review assesses the progress of optical imaging technologies in monitoring immunotherapy within the TME and explores their potential applications in clinical trials and personalized cancer treatment. METHODS This is a comprehensive literature review based on the advances in optical imaging modalities including fluorescence imaging (FLI), bioluminescence imaging (BLI), and photoacoustic imaging (PAI). These modalities were analyzed for their capacity to provide high-resolution, real-time imaging of immune cell dynamics, tumor vasculature, and other critical components of the TME. RESULTS Optical imaging techniques have shown significant potential in tracking immune cell infiltration, assessing immune checkpoint inhibitors, and visualizing drug delivery within the TME. Technologies like FLI and BLI are pivotal in tracking immune responses in preclinical models, while PAI provides functional imaging with deeper tissue penetration. The integration of these modalities with immunotherapy holds promise for improving treatment monitoring and outcomes. CONCLUSION Optical imaging is a powerful tool for understanding the complexities of the TME and optimizing immunotherapy. Further advancements in imaging technologies, combined with nanomaterial-based approaches, could pave the way for enhanced diagnostic accuracy and therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Um‐e‐Kalsoom
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Shiqi Wang
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| |
Collapse
|
3
|
Hashemi M, Mohandesi Khosroshahi E, Tanha M, Khoushab S, Bizhanpour A, Azizi F, Mohammadzadeh M, Matinahmadi A, Khazaei Koohpar Z, Asadi S, Taheri H, Khorrami R, Ramezani Farani M, Rashidi M, Rezaei M, Fattah E, Taheriazam A, Entezari M. Targeting autophagy can synergize the efficacy of immune checkpoint inhibitors against therapeutic resistance: New promising strategy to reinvigorate cancer therapy. Heliyon 2024; 10:e37376. [PMID: 39309904 PMCID: PMC11415696 DOI: 10.1016/j.heliyon.2024.e37376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Immune checkpoints are a set of inhibitory and stimulatory molecules/mechanisms that affect the activity of immune cells to maintain the existing balance between pro- and anti-inflammatory signaling pathways and avoid the progression of autoimmune disorders. Tumor cells can employ these checkpoints to evade immune system. The discovery and development of immune checkpoint inhibitors (ICIs) was thereby a milestone in the area of immuno-oncology. ICIs stimulate anti-tumor immune responses primarily by disrupting co-inhibitory signaling mechanisms and accelerate immune-mediated killing of tumor cells. Despite the beneficial effects of ICIs, they sometimes encounter some degrees of therapeutic resistance, and thereby do not effectively act against tumors. Among multiple combination therapies have been introduced to date, targeting autophagy, as a cellular degradative process to remove expired organelles and subcellular constituents, has represented with potential capacities to overcome ICI-related therapy resistance. It has experimentally been illuminated that autophagy induction blocks the immune checkpoint molecules when administered in conjugation with ICIs, suggesting that autophagy activation may restrict therapeutic challenges that ICIs have encountered with. However, the autophagy flux can also provoke the immune escape of tumors, which must be considered. Since the conventional FDA-approved ICIs have designed and developed to target programmed cell death receptor/ligand 1 (PD-1/PD-L1) as well as cytotoxic T lymphocyte-associated molecule 4 (CTLA-4) immune checkpoint molecules, we aim to review the effects of autophagy targeting in combination with anti-PD-1/PD-L1- and anti-CTLA-4-based ICIs on cancer therapeutic resistance and tumor immune evasion.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnaz Azizi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Mohammadzadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hengameh Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Lasheen NN, Allam S, Elgarawany A, Aswa DW, Mansour R, Farouk Z. Limitations and potential strategies of immune checkpoint blockade in age-related neurodegenerative disorders. J Physiol Sci 2024; 74:46. [PMID: 39313800 PMCID: PMC11421184 DOI: 10.1186/s12576-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Neurological disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD) have no disease-modifying treatments, resulting in a global dementia crisis that affects more than 50 million people. Amyloid-beta (Aβ), tau, and alpha-synuclein (α-Syn) are three crucial proteins that are involved in the pathogenesis of these age-related neurodegenerative diseases. Only a few approved AD medications have been used in the clinic up to this point, and their results are only partial symptomatic alleviation for AD patients and cannot stop the progression of AD. Immunotherapies have attracted considerable interest as they target certain protein strains and conformations as well as promote clearance. Immunotherapies also have the potential to be neuroprotective: as they limit synaptic damage and spread of neuroinflammation by neutralizing extracellular protein aggregates. Lately, disease-modifying therapies (DMTs) that can alter the pathophysiology that underlies AD with anti-Aβ monoclonal antibodies (MAbs) (e.g., aducanumab, lecanemab, gantenerumab, donanemab, solanezumab, crenezumab, tilavonemab). Similarly, in Parkinson's disease (PD), DMTs utilizing anti-αSyn (MAbs) (e.g., prasinezumab, cinpanemab,) are progressively being developed and evaluated in clinical trials. These therapies are based on the hypothesis that both AD and PD may involve systemic impairments in cell-dependent clearance mechanisms of amyloid-beta (Aβ) and alpha-synuclein (αSyn), respectively, meaning the body's overall inability to effectively remove Aβ and αSyn due to malfunctioning cellular mechanisms. In this review we will provide possible evidence behind the use of immunotherapy with MAbs in AD and PD and highlight the recent clinical development landscape of anti-Aβ (MAbs) and anti-αSyn (MAbs) from these clinical trials in order to better investigate the therapeutic possibilities and adverse effects of these anti-Aβ and anti-αSyn MAbs on AD and PD.
Collapse
Affiliation(s)
- Noha N Lasheen
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt.
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Salma Allam
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | | | - Darin W Aswa
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Rana Mansour
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Ziad Farouk
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| |
Collapse
|
5
|
Zhou L, Velegraki M, Wang Y, Mandula JK, Chang Y, Liu W, Song NJ, Kwon H, Xiao T, Bolyard C, Hong F, Xin G, Ma Q, Rubinstein MP, Wen H, Li Z. Spatial and functional targeting of intratumoral Tregs reverses CD8+ T cell exhaustion and promotes cancer immunotherapy. J Clin Invest 2024; 134:e180080. [PMID: 38787791 PMCID: PMC11245154 DOI: 10.1172/jci180080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Intratumoral Tregs are key mediators of cancer immunotherapy resistance, including anti-programmed cell death (ligand) 1 [anti-PD-(L)1] immune checkpoint blockade (ICB). The mechanisms driving Treg infiltration into the tumor microenvironment (TME) and the consequence on CD8+ T cell exhaustion remain elusive. Here, we report that heat shock protein gp96 (also known as GRP94) was indispensable for Treg tumor infiltration, primarily through the roles of gp96 in chaperoning integrins. Among various gp96-dependent integrins, we found that only LFA-1 (αL integrin), and not αV, CD103 (αE), or β7 integrin, was required for Treg tumor homing. Loss of Treg infiltration into the TME by genetic deletion of gp96/LFA-1 potently induced rejection of tumors in multiple ICB-resistant murine cancer models in a CD8+ T cell-dependent manner, without loss of self-tolerance. Moreover, gp96 deletion impeded Treg activation primarily by suppressing IL-2/STAT5 signaling, which also contributed to tumor regression. By competing for intratumoral IL-2, Tregs prevented the activation of CD8+ tumor-infiltrating lymphocytes, drove thymocyte selection-associated high mobility group box protein (TOX) induction, and induced bona fide CD8+ T cell exhaustion. By contrast, Treg ablation led to striking CD8+ T cell activation without TOX induction, demonstrating clear uncoupling of the 2 processes. Our study reveals that the gp96/LFA-1 axis plays a fundamental role in Treg biology and suggests that Treg-specific gp96/LFA-1 targeting represents a valuable strategy for cancer immunotherapy without inflicting autoinflammatory conditions.
Collapse
Affiliation(s)
- Lei Zhou
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
| | - Yi Wang
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Molecular, Cellular and Developmental Biology Graduate Program, Ohio State University, Columbus, Ohio, USA
| | - J K Mandula
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
| | - Yuzhou Chang
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Department of Biomedical Informatics
| | - Weiwei Liu
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Molecular, Cellular and Developmental Biology Graduate Program, Ohio State University, Columbus, Ohio, USA
| | - No-Joon Song
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
| | - Hyunwoo Kwon
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, USA
| | - Tong Xiao
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Molecular, Cellular and Developmental Biology Graduate Program, Ohio State University, Columbus, Ohio, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
| | - Feng Hong
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - Gang Xin
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, USA
| | - Qin Ma
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Department of Biomedical Informatics
| | - Mark P. Rubinstein
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - Haitao Wen
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University Comprehensive Cancer Center, Columbus, USA
| |
Collapse
|
6
|
Deng D, Wang M, Su Y, Fang H, Chen Y, Su Z. Iridium(III)-Based PD-L1 Agonist Regulates p62 and ATF3 for Enhanced Cancer Immunotherapy. J Med Chem 2024; 67:6810-6821. [PMID: 38613772 DOI: 10.1021/acs.jmedchem.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Anti-PD-L1 immunotherapy, a new lung cancer treatment, is limited to a few patients due to low PD-L1 expression and tumor immunosuppression. To address these challenges, the upregulation of PD-L1 has the potential to elevate the response rate and efficiency of anti-PD-L1 and alleviate the immunosuppression of the tumor microenvironment. Herein, we developed a novel usnic acid-derived Iridium(III) complex, Ir-UA, that boosts PD-L1 expression and converts "cold tumors" to "hot". Subsequently, we administered Ir-UA combined with anti-PD-L1 in mice, which effectively inhibited tumor growth and promoted CD4+ and CD8+ T cell infiltration. To our knowledge, Ir-UA is the first iridium-based complex to stimulate the expression of PD-L1 by explicitly regulating its transcription factors, which not only provides a promising platform for immune checkpoint blockade but, more importantly, provides an effective treatment strategy for patients with low PD-L1 expression.
Collapse
Affiliation(s)
- Dongping Deng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mengmeng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Hongbao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
7
|
Wang L, Chu X, Yu X, Su C. Identification of nomogram associated with durable clinical benefit gene for advanced non-small cell lung cancer with sensitivity to responsive to immunotherapy. Heliyon 2024; 10:e27801. [PMID: 38560208 PMCID: PMC10981036 DOI: 10.1016/j.heliyon.2024.e27801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background Immunotherapy has become the standard treatment for advanced non-small cell lung cancer (NSCLC). However, a subset of the most advanced NSCLC patients fails to respond adequately to Immune checkpoint inhibitors (ICIs). Developing new nomograms and integrating prognostic factors are crucial for improving the clinical predictability of NSCLC patients undergoing ICIs. Methods Clinical information and genomic data of NSCLC patients undergoing ICIs were retrieved from cBioPortal. Gene alterations associated with durable clinical benefit (DCB) were compared to those linked to no durable benefit (NDB). The Kaplan-Meier plot method was employed for survival analysis, and a novel nomogram was formulated by selecting pertinent clinical variables. Results For the NSCLC patients receiving immunotherapy, three subgroups were identified based on the treatment regimen, including anti-PD-1 monotherapy, anti-PD-1 combination with anti-CTLA-4, and first-line treatment. The mutation status of TP53, PGR, PTPRT, RELN, MUC19, LRP1B, and FAT3 was found to be associated with progression-free survival (PFS). Using the clinicopathological parameters and genomic data of the patients, we developed three novel nomograms to predict the prognosis of ICI treatment in different subgroups. Conclusion Our study revealed that PGR, PTPRD, RELN, MUC19, LRP1B, and FAT3 mutation could serve as predictive biomarkers. Our systematic nomograms demonstrate significant potential in predicting the prognosis for NSCLC patients with sensitivity to different ICI treatment strategies.
Collapse
Affiliation(s)
- Li Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Xiangling Chu
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Xin Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, PR China
| |
Collapse
|
8
|
Wang L, Han C, Cai C, Wu J, Chen J, Su C. Identification of immune-related gene signature for non-small cell lung cancer patients with immune checkpoint inhibitors. Heliyon 2024; 10:e26974. [PMID: 38463866 PMCID: PMC10923664 DOI: 10.1016/j.heliyon.2024.e26974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Background The utilization of immune checkpoint inhibitors (ICIs) has become the established protocol for treating advanced non-small cell lung cancer (NSCLC). This work aimed to identify the immune-related gene signature that can predict the prognosis of NSCLC patients receiving ICI treatment. Methods The ImmPort database was queried to obtain a list of immune-related genes (IRGs). Differentially expressed IRGs in NSCLC patients were identified using the TCGA database. RNA-seq data and clinical information from NSCLC patients receiving immunotherapy were obtained from the GEO database (GSE93157 and ////). A gene signature was generated through multivariate Cox and LASSO regression analyses. The prognostic value and function of this gene signature were thoroughly investigated using comprehensive bioinformatics analyses. Results A total of 6 prognostic-related genes were identified from 617 differentially expressed genes, and two prognostic-related differentially expressed genes (CAMP and IL17A) were determined to construct gene signature. Our gene signature demonstrated superior performance compared to other clinicopathological parameters in predicting the prognosis of NSCLC patients receiving immunotherapy, with an area under the ROC curve (AUC) of 0.812. Furthermore, immune infiltration analysis indicated that the high-risk group was enriched with resting CD4 T cell memory, while the low-risk group showed a "hot" tumor microenvironment that promotes anti-tumor immunity in NSCLC patients. Conclusion Gene signatures based on immune-related genes exhibited excellent indicator performance of prognosis and immune infiltration, which has the potential to be an effective biomarker for NSCLC with ICI treatment.
Collapse
Affiliation(s)
- Li Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Chaonan Han
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Chenlei Cai
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Jing Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Jianing Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, PR China
- Department of Clinical Research Center, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, PR China
| |
Collapse
|
9
|
Kong Y, Wang X, Qie R. Immunotherapy-associated cardiovascular toxicities: insights from preclinical and clinical studies. Front Oncol 2024; 14:1347140. [PMID: 38482205 PMCID: PMC10932998 DOI: 10.3389/fonc.2024.1347140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 11/02/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have become a widely accepted and effective treatment for various types of solid tumors. Recent studies suggest that cardiovascular immune-related adverse events (irAEs) specifically have an incidence rate ranging from 1.14% to more than 5%. Myocarditis is the most common observed cardiovascular irAE. Others include arrhythmias, pericardial diseases, vasculitis, and a condition resembling takotsubo cardiomyopathy. Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway, cytotoxic T-lymphocyte antigen-4 (CTLA-4) pathway, and the recently discovered lymphocyte-activation gene 3 (LAG-3) pathway, play a critical role in boosting the body's natural immune response against cancer cells. While ICIs offer significant benefits in terms of augmenting immune function, they can also give rise to unwanted inflammatory side effects known as irAEs. The occurrence of irAEs can vary in severity, ranging from mild to severe, and can impact the overall clinical efficacy of these agents. This review aims to summarize the underlying mechanisms of cardiovascular irAE from both preclinical and clinical studies for a better understanding of cardiovascular irAE in clinical application.
Collapse
Affiliation(s)
- Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui Qie
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Zarezadeh Mehrabadi A, Tat M, Ghorbani Alvanegh A, Roozbahani F, Esmaeili Gouvarchin Ghaleh H. Revolutionizing cancer treatment: the power of bi- and tri-specific T-cell engagers in oncolytic virotherapy. Front Immunol 2024; 15:1343378. [PMID: 38464532 PMCID: PMC10921556 DOI: 10.3389/fimmu.2024.1343378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Bi- or tri-specific T cell engagers (BiTE or TriTE) are recombinant bispecific proteins designed to stimulate T-cell immunity directly, bypassing antigen presentation by antigen-presenting cells (APCs). However, these molecules suffer from limitations such as short biological half-life and poor residence time in the tumor microenvironment (TME). Fortunately, these challenges can be overcome when combined with OVs. Various strategies have been developed, such as encoding secretory BiTEs within OV vectors, resulting in improved targeting and activation of T cells, secretion of key cytokines, and bystander killing of tumor cells. Additionally, oncolytic viruses armed with BiTEs have shown promising outcomes in enhancing major histocompatibility complex I antigen (MHC-I) presentation, T-cell proliferation, activation, and cytotoxicity against tumor cells. These combined approaches address tumor heterogeneity, drug delivery, and T-cell infiltration, offering a comprehensive and effective solution. This review article aims to provide a comprehensive overview of Bi- or TriTEs and OVs as promising therapeutic approaches in the field of cancer treatment. We summarize the cutting-edge advancements in oncolytic virotherapy immune-related genetic engineering, focusing on the innovative combination of BiTE or TriTE with OVs.
Collapse
Affiliation(s)
| | - Mahdi Tat
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
11
|
陈 守, 张 舒, 樊 伟, 孙 巍, 刘 贝, 刘 建, 郭 园. [Efficacy of combined treatment with pirfenidone and PD-L1 inhibitor in mice bearing ectopic bladder cancer xenograft]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:210-216. [PMID: 38501405 PMCID: PMC10954534 DOI: 10.12122/j.issn.1673-4254.2024.02.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To assess the efficacy of pirfenidone combined with PD-L1 inhibitor for treatment of bladder cancer in a mouse model and its effect on tumor immune microenvironment modulation. METHODS Forty C57BL/6 mouse models bearing ectopic human bladder cancer xenografts were randomized into control group, PD-L1 inhibitor group, pirfenidone group and combined treatment group (n=10). After successful modeling, PD-L1 inhibitor treatment was administered via intraperitoneal injection at 12.5 mg/kg every 3 days, and oral pirfenidone (500 mg/kg) was given on a daily basis. The survival rate of the mice and tumor growth rate were compared among the 4 groups. The expressions of CD3, CD8, CD45, E-cadherin and N-cadherin in the tumor tissues were detected with immunohistochemistry after the 21-day treatment, and bone marrow-derived suppressor cells (MDSCs) were observed with immunofluorescence staining; serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea nitrogen (BUN), creatinine (CRE) and lactate dehydrogenase (LDH-L) were analyzed using an automated biochemical analyzer. RESULTS Treatment with PD-L1 inhibitor and pirfenidone alone both significantly decreased tumor growth rate and tumor volume at 21 days (P < 0.05), but the combined treatment produced an obviously stronger inhibitory effect (P < 0.05). PD-L1 inhibitor and pirfenidone alone significantly increased E- cadherin expression and decreased N-cadherin expression in the tumor tissue (P < 0.05). The two treatments both significantly increased the percentage of CD3+, CD8 and CD45+ T cells and decreased the percentage of Ly-6G+CD11b+MDSCs in the tumor tissue, and these changes were more obvious in the combined treatment group (P < 0.05). No significant differences were found in serum ALT, AST, BUN, CRE or LDH-L levels among the 4 groups (P>0.05). CONCLUSION Combined treatment with pirfenidone and PD-L1 inhibitor significantly inhibits the progression of bladder cancer in mice possibly by regulating tumor immune microenvironment and inhibiting epithelial-mesenchymal transition of the tumor cells.
Collapse
Affiliation(s)
- 守峰 陈
- />蚌埠医学院第一附属医院泌尿外科,安徽 蚌埠 233040Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233040, China
| | - 舒超 张
- />蚌埠医学院第一附属医院泌尿外科,安徽 蚌埠 233040Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233040, China
| | - 伟林 樊
- />蚌埠医学院第一附属医院泌尿外科,安徽 蚌埠 233040Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233040, China
| | - 巍 孙
- />蚌埠医学院第一附属医院泌尿外科,安徽 蚌埠 233040Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233040, China
| | - 贝贝 刘
- />蚌埠医学院第一附属医院泌尿外科,安徽 蚌埠 233040Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233040, China
| | - 建民 刘
- />蚌埠医学院第一附属医院泌尿外科,安徽 蚌埠 233040Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233040, China
| | - 园园 郭
- />蚌埠医学院第一附属医院泌尿外科,安徽 蚌埠 233040Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233040, China
| |
Collapse
|
12
|
Shahjahan, Dey JK, Dey SK. Translational bioinformatics approach to combat cardiovascular disease and cancers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:221-261. [PMID: 38448136 DOI: 10.1016/bs.apcsb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bioinformatics is an interconnected subject of science dealing with diverse fields including biology, chemistry, physics, statistics, mathematics, and computer science as the key fields to answer complicated physiological problems. Key intention of bioinformatics is to store, analyze, organize, and retrieve essential information about genome, proteome, transcriptome, metabolome, as well as organisms to investigate the biological system along with its dynamics, if any. The outcome of bioinformatics depends on the type, quantity, and quality of the raw data provided and the algorithm employed to analyze the same. Despite several approved medicines available, cardiovascular disorders (CVDs) and cancers comprises of the two leading causes of human deaths. Understanding the unknown facts of both these non-communicable disorders is inevitable to discover new pathways, find new drug targets, and eventually newer drugs to combat them successfully. Since, all these goals involve complex investigation and handling of various types of macro- and small- molecules of the human body, bioinformatics plays a key role in such processes. Results from such investigation has direct human application and thus we call this filed as translational bioinformatics. Current book chapter thus deals with diverse scope and applications of this translational bioinformatics to find cure, diagnosis, and understanding the mechanisms of CVDs and cancers. Developing complex yet small or long algorithms to address such problems is very common in translational bioinformatics. Structure-based drug discovery or AI-guided invention of novel antibodies that too with super-high accuracy, speed, and involvement of considerably low amount of investment are some of the astonishing features of the translational bioinformatics and its applications in the fields of CVDs and cancers.
Collapse
Affiliation(s)
- Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Joy Kumar Dey
- Central Council for Research in Homoeopathy, Ministry of Ayush, Govt. of India, New Delhi, Delhi, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| |
Collapse
|
13
|
Liu Q, Zhang C, Chen X, Han Z. Modern cancer therapy: cryoablation meets immune checkpoint blockade. Front Oncol 2024; 14:1323070. [PMID: 38384806 PMCID: PMC10881233 DOI: 10.3389/fonc.2024.1323070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Cryoablation, as a minimally invasive technology for the treatment of tumors, destroys target tumors with lethal low temperatures. It simultaneously releases a large number of tumor-specific antigens, pro-inflammatory cytokines, and nucleoproteins, known as "danger signals", activating the body's innate and adaptive immune responses. However, tumor cells can promote the inactivation of immune effector cells by reprogramming immune checkpoints, leading to the insufficiency of these antigens to induce an immune response capable of eradicating the tumor. Immune checkpoint blockers rejuvenate exhausted T cells by blocking immune checkpoints that induce programmed death of T cells, and are therefore considered a promising therapeutic strategy to enhance the immune effects of cryoablation. In this review, we provide a detailed explanation of the immunological mechanisms of cryoablation and articulate the theoretical basis and research progress of the treatment of cancer with cryoablation combined with immune checkpoint blockers. Preliminary data indicates that this combined treatment strategy exhibits good synergy and has been proven to be safe and effective.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Chunyang Zhang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Xuxin Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
14
|
Pandey P, Khan F. Gut microbiome in cancer immunotherapy: Current trends, translational challenges and future possibilities. Biochim Biophys Acta Gen Subj 2023; 1867:130401. [PMID: 37307905 DOI: 10.1016/j.bbagen.2023.130401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Gut microbiota is regarded as a crucial regulator of the immune system. Healthy gut microbiota plays a specialized role in host xenobiotics, nutrition, drug metabolism, regulation of the structural integrity of the gut mucosal barrier, defense against infections, and immunomodulation. It is now understood that any imbalance in gut microbiota composition from that present in a healthy state is linked to genetic susceptibility to a number of metabolic disorders, including diabetes, autoimmunity, and cancer. Recent research has suggested that immunotherapy can treat many different cancer types with fewer side effects and better ability to eradicate tumors than conventional chemotherapy or radiotherapy. However, a significant number of patients eventually develop immunotherapy resistance. A strong correlation was observed between the composition of the gut microbiome and the effectiveness of treatment by examining the variations between populations that responded to immunotherapy and those that did not. Therefore, we suggest that modulating the microbiome could be a potential adjuvant therapy for cancer immunotherapy and that the architecture of the gut microbiota may be helpful in explaining the variation in treatment response. Herein, we focus on recent research on the interactions among the gut microbiome, host immunity, and cancer immunotherapy. In addition, we highlighted the clinical manifestations, future opportunities, and limitations of microbiome manipulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India.
| |
Collapse
|
15
|
Fang T, Cao X, Shen B, Chen Z, Chen G. Injectable cold atmospheric plasma-activated immunotherapeutic hydrogel for enhanced cancer treatment. Biomaterials 2023; 300:122189. [PMID: 37307777 DOI: 10.1016/j.biomaterials.2023.122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Despite the promise of immune checkpoint blockade (ICB) for cancer treatment, challenges associated with this therapy still exist, including low response rates and severe side effects in patients. Here, we report a hydrogel-mediated combination therapy for enhanced ICB therapy. Specifically, cold atmospheric plasma (CAP), an ionized gas consisting of therapeutically effective reactive oxygen species (ROS) and reactive nitrogen species (RNS), can effectively induce cancer immunogenic cell death, releasing tumor-associated antigens in situ and initiating anti-tumor immune responses, which, therefore, can synergistically augment the efficacy of immune checkpoint inhibitors. To minimize the systemic toxicity of immune checkpoint inhibitors and improve the tissue penetration of CAP, an injectable Pluronic hydrogel was employed as a delivery method. Our results show that major long-lived ROS and RNS in CAP can be effectively persevered in Pluronic hydrogel and remain efficacious in inducing cancer immunogenic cell death after intratumoral injection. Our findings suggest that local hydrogel-mediated combination of CAP and ICB treatment can evoke both strong innate and adaptive, local and systemic anti-tumor immune responses, thereby inhibiting both tumor growth and potential metastatic spread.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada; School of Nursing, Tianjin Medical University, Tianjin, China
| | - Bingzheng Shen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Zhitong Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Advanced Therapy, National Innovation Center for Advanced Medical Devices, Shenzhen, China.
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
16
|
Ren Z, Wang L, Leng C. PTPRD mutation is a prognostic biomarker for sensitivity to ICIs treatment in advanced non-small cell lung cancer. Aging (Albany NY) 2023; 15:8204-8219. [PMID: 37602864 PMCID: PMC10497019 DOI: 10.18632/aging.204964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have become the standard treatment for advanced non-small cell lung cancer (NSCLC). ICIs can provide durable responses and prolong survival for some patients. With the increasing routine of next-generation sequencing (NGS) in clinical practice, it is essential to integrate prognostic factors to establish novel nomograms to improve clinical prediction ability in NSCLC with ICIs treatment. METHODS Clinical information, response data, and genome data of advanced NSCLC treated ICIs were obtained from cBioPortal. The top 20 gene alterations in durable clinical benefit (DCB) were compared with those genes in no durable benefit (NDB). Survival analyses were performed using the Kaplan-Meier plot method and selected clinical variables to develop a novel nomogram. RESULTS The mutation of PTPRD was significantly related to progression free survival (PFS) and overall survival (OS) in advanced NSCLC with ICIs treatment (PFS: p = 0.0441, OS: p = 0.0086). The PTPRD mutation was closely related to tumor mutational burden (TMB) and tumor-infiltrating immune cells (TIICs). Two novel nomograms were built to predict the PFS and OS of advanced NSCLC patients with ICIs treatment. CONCLUSIONS Our study suggested that PTPRD mutations could serve as a predictive biomarker for the sensitivity to ICIs treatment and PFS and OS in advanced NSCLC with ICIs. Our systematic nomograms showed great potential value in clinical application to predict the PFS and OS for advanced NSCLC patients with ICIs.
Collapse
Affiliation(s)
- Zhixuan Ren
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai 200433, P.R. China
| | - Li Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Chaohui Leng
- Department of Oncology, Jiujiang University Affilliated Hospital, Jiujiang 332000, P.R. China
| |
Collapse
|
17
|
Wei W, Zhou Y, Zuo H, Li M, Pan Z, Liu B, Wang L, Tan Y, Yang R, Shang W, Bi Y, Wang W. Characterization of the follicular fluid microbiota based on culturomics and sequencing analysis. J Med Microbiol 2023; 72. [PMID: 37578331 DOI: 10.1099/jmm.0.001741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Introduction. The human oocyte microenvironment is follicular fluid, which is important for follicle growth, ovulation and maturation of the oocyte. The micro-organisms present in follicular fluid could be a predictor of in vitro fertilization outcomes.Hypothesis/Gap Statement. Women with follicular fluid colonized with micro-organisms can be asymptomatic, but the presence of some genera in the follicular fluid correlates with in vitro fertilization.Aim. To confirm the existence of micro-organisms in follicular fluid, and to profile the micro-organisms present in follicular fluid sampled from women undergoing in vitro fertilization with different outcomes.Methodology. Women undergoing in vitro fertilization (n=163) were divided into different subgroups according to their in vitro fertilization outcomes. Their follicular fluid samples were collected, and among them, 157 samples were analysed by 16S rDNA sequencing, and 19 samples were analysed using culturomics.Results. The culturomics results suggested that the 19 follicular fluid samples were not sterile. The isolation rates for Streptococcus, Finegoldia and Peptoniphilus were >50 % in the 19 samples. Linear discriminant analysis effect size analysis showed differential bacteria abundance according to the pregnancy rate, the rate of normal fertilization, the rate of high-quality embryos and the rate of available oocytes. The sequencing results showed that micro-organisms could be detected in all 157 samples. Pseudomonas, Lactobacillus, Comamonas, Streptococcus and Acinetobacter were detected in all of the samples, but with a wide range of relative abundance. Pseudomonas, Lactobacillus, Ralstonia and Vibrio constituted a notable fraction of the microbiota.Conclusions. Follicular fluid is not sterile. Micro-organisms in follicular fluid could be a predictor of in vitro fertilization outcomes.
Collapse
Affiliation(s)
- Wenting Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
- Department of Clinical Laboratory, Air Force Medical Center, Beijing, PR China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Haiyang Zuo
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Min Li
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, PR China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Bin Liu
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Lu Wang
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Wei Shang
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, PR China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Weizhou Wang
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, PR China
| |
Collapse
|
18
|
Asseri AH, Bakhsh T, Abuzahrah SS, Ali S, Rather IA. The gut dysbiosis-cancer axis: illuminating novel insights and implications for clinical practice. Front Pharmacol 2023; 14:1208044. [PMID: 37361202 PMCID: PMC10288883 DOI: 10.3389/fphar.2023.1208044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The human intestinal microbiota, also known as the gut microbiota, comprises more than 100 trillion organisms, mainly bacteria. This number exceeds the host body cells by a factor of ten. The gastrointestinal tract, which houses 60%-80% of the host's immune cells, is one of the largest immune organs. It maintains systemic immune homeostasis in the face of constant bacterial challenges. The gut microbiota has evolved with the host, and its symbiotic state with the host's gut epithelium is a testament to this co-evolution. However, certain microbial subpopulations may expand during pathological interventions, disrupting the delicate species-level microbial equilibrium and triggering inflammation and tumorigenesis. This review highlights the impact of gut microbiota dysbiosis on the development and progression of certain types of cancers and discusses the potential for developing new therapeutic strategies against cancer by manipulating the gut microbiota. By interacting with the host microbiota, we may be able to enhance the effectiveness of anticancer therapies and open new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Amer H. Asseri
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tahani Bakhsh
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Okobi TJ, Uhomoibhi TO, Akahara DE, Odoma VA, Sanusi IA, Okobi OE, Umana I, Okobi E, Okonkwo CC, Harry NM. Immune Checkpoint Inhibitors as a Treatment Option for Bladder Cancer: Current Evidence. Cureus 2023; 15:e40031. [PMID: 37425564 PMCID: PMC10323982 DOI: 10.7759/cureus.40031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Bladder cancer is a prevalent disease, and treatment options for advanced bladder cancer remain limited. However, immune checkpoint inhibitors (ICIs) targeting cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death-1 (PD-1) have shown promise in treating bladder cancer. These drugs work by blocking receptors and ligands, disrupting signaling, and allowing T cells to recognize and attack cancer cells. ICIs have been found to be effective in treating bladder cancer, especially in cases of metastatic urothelial carcinoma (UC) that have progressed after chemotherapy. Furthermore, combination therapy with ICIs and chemotherapy or radiation therapy has shown promise in treating bladder cancer. While there are challenges associated with ICIs, including adverse effects, immune-related adverse events, and lack of efficacy in some patients, they remain a promising option for bladder cancer treatment, especially in cases where other treatment options have failed. This review paper focuses on the current role, challenges, and future trends of immunotherapy in the management of bladder cancer.
Collapse
Affiliation(s)
| | - Trinitas Oserefuamen Uhomoibhi
- Internal Medicine, Georgetown University, Washington, D.C., USA
- Internal Medicine, University of the District of Columbia, Washington, D.C., USA
| | | | | | | | - Okelue E Okobi
- Family Medicine, Medficient Health Systems, Laurel, USA
- Family Medicine, Lakeside Medical Center, Belle Glade, USA
| | - Ifiok Umana
- Urology, Jos University Teaching Hospital, Jos, NGA
| | - Emeka Okobi
- Dentistry, Ahmadu Bello University Teaching Hospital Zaria, Abuja, NGA
| | - Chinwe C Okonkwo
- Family Medicine, Caribbean Medical University School of Medicine, Willemstad, CUW
| | | |
Collapse
|
20
|
Zhang Y, Cheng S, Zou H, Han Z, Xie T, Zhang B, Dai D, Yin X, Liang Y, Kou Y, Tan Y, Shen L, Peng Z. Correlation of the gut microbiome and immune-related adverse events in gastrointestinal cancer patients treated with immune checkpoint inhibitors. Front Cell Infect Microbiol 2023; 13:1099063. [PMID: 37051296 PMCID: PMC10084768 DOI: 10.3389/fcimb.2023.1099063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
IntroductionThe wide application of immune checkpoint inhibitors has significantly improved the survival expectation of cancer patients. While immunotherapy brings benefits to patients, it also results in a series of immune-related adverse events (irAEs). Increasing evidence suggests that the gut microbiome is critical for immunotherapy response and the development of irAEs.MethodsIn this prospective study, we recruited 95 patients with advanced/unresectable gastrointestinal cancers treated with immunotherapy and report a comprehensive analysis of the association of the gut microbiome with irAEs. Metagenome sequencing was used to analyze the differences in bacterial composition and metabolic pathways of baseline fecal samples.ResultsIn summary, we identified bacterial species and metabolic pathways that might be associated with the occurrence of irAEs in gastric, esophageal, and colon cancers. Ruminococcus callidus and Bacteroides xylanisolvens were enriched in patients without severe irAEs. Several microbial metabolic pathways involved in the urea cycle, including citrulline and arginine biosynthesis, were associated with irAEs. We also found that irAEs in different cancer types and toxicity in specific organs and the endocrine system were associated with different gut microbiota profiles. These findings provide the basis for future mechanistic exploration.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Siyuan Cheng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | | | - Zihan Han
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- Department of Colorectal Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Tong Xie
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Bohan Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | | | | | | | | | | | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- *Correspondence: Lin Shen, ; Zhi Peng,
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- *Correspondence: Lin Shen, ; Zhi Peng,
| |
Collapse
|
21
|
Zwergel C, Fioravanti R, Mai A. PD-L1 small-molecule modulators: A new hope in epigenetic-based multidrug cancer therapy? Drug Discov Today 2023; 28:103435. [PMID: 36370994 DOI: 10.1016/j.drudis.2022.103435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Programmed death-ligand 1 (PD-L1) is an immune checkpoint protein the overexpression of which results in an inhibitory signal that induces T cell exhaustion responsible for immune escape in tumors. Immunotherapy strategies targeting the PD-L1 pathway have achieved remarkable success in treating various types of cancer. More recently, numerous advances in understanding the complex PD-L1 biology have been made, and the first small-molecule inhibitors have been described in the literature. In this review, we highlight the most promising recent advances in understanding the complex regulation mechanisms focusing on small-molecule modulators, which could be used in rational therapy combinations with other epigenetic chemotherapeutic agents.
Collapse
Affiliation(s)
- Clemens Zwergel
- Department of Drug Chemistry and Technologies, Department of Excellence 2018-2022, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Department of Excellence 2018-2022, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Department of Excellence 2018-2022, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
22
|
Dristant U, Mukherjee K, Saha S, Maity D. An Overview of Polymeric Nanoparticles-Based Drug Delivery System in Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231152083. [PMID: 36718541 PMCID: PMC9893377 DOI: 10.1177/15330338231152083] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Cancer is recognized as one of the world's deadliest diseases, with more than 10 million new cases each year. Over the past 2 decades, several studies have been performed on cancer to pursue solutions for effective treatment. One of the vital benefits of utilizing nanoparticles (NPs) in cancer treatment is their high adaptability for modification and amalgamation of different physicochemical properties to boost their anti-cancer activity. Various nanomaterials have been designed as nanocarriers attributing nontoxic and biocompatible drug delivery systems with improved bioactivity. The present review article briefly explained various types of nanocarriers, such as organic-inorganic-hybrid NPs, and their targeting mechanisms. Here a special focus is given to the synthesis, benefits, and applications of polymeric NPs (PNPs) involved in various anti-cancer therapeutics. It has also been discussed about the drug delivery approach by the functionalized/encapsulated PNPs (without/with targeting ability) that are being applied in the therapy and diagnostic (theranostics). Overall, this review can give a glimpse into every aspect of PNPs, from their synthesis to drug delivery application for cancer cells.
Collapse
Affiliation(s)
- Utkarsh Dristant
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
23
|
Jiang M, Qin B, Li X, Liu Y, Guan G, You J. New advances in pharmaceutical strategies for sensitizing anti-PD-1 immunotherapy and clinical research. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1837. [PMID: 35929522 DOI: 10.1002/wnan.1837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 01/31/2023]
Abstract
Attempts have been made continuously to use nano-drug delivery system (NDDS) to improve the effect of antitumor therapy. In recent years, especially in the application of immunotherapy represented by antiprogrammed death receptor 1 (anti-PD-1), it has been vigorously developed. Nanodelivery systems are significantly superior in a number of aspects including increasing the solubility of insoluble drugs, enhancing their targeting ability, prolonging their half-life, and reducing side effects. It can not only directly improve the efficacy of anti-PD-1 immunotherapy, but also indirectly enhance the antineoplastic efficacy of immunotherapy by boosting the effectiveness of therapeutic modalities such as chemotherapy, radiotherapy, photothermal, and photodynamic therapy (PTT/PDT). Here, we summarize the studies published in recent years on the use of nanotechnology in pharmaceutics to improve the efficacy of anti-PD-1 antibodies, analyze their characteristics and shortcomings, and combine with the current clinical research on anti-PD-1 antibodies to provide a reference for the design of future nanocarriers, so as to further expand the clinical application prospects of NDDSs. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guannan Guan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Mougel A, Méjean F, Tran T, Adimi Y, Galy-Fauroux I, Kaboré C, Mercier E, Urquia P, Terme M, Tartour E, Tanchot C. Synergistic effect of combining sunitinib with a peptide-based vaccine in cancer treatment after microenvironment remodeling. Oncoimmunology 2022; 11:2110218. [PMID: 35968405 PMCID: PMC9367646 DOI: 10.1080/2162402x.2022.2110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although it has proven difficult to demonstrate the clinical efficacy of therapeutic vaccination as a monotherapy in advanced cancers, its combination with an immunomodulatory treatment to reduce intra-tumor immunosuppression and improve vaccine efficacy is a very promising strategy. In this context, we are studying the combination of a vaccine composed of peptides of the tumor antigen survivin (SVX vaccine) with the anti-angiogenic agent sunitinib in a colorectal carcinoma model. To this end, we have been focusing on administration scheduling and have highlighted a therapeutic synergy between SVX vaccine and sunitinib when the vaccine was administered at the end of anti-angiogenic treatment. In this setting, a prolonged control of tumor growth associated with an important percentage of complete tumor regression was observed. Studying the remodeling induced by each therapy on the immunological and angiogenic tumor microenvironment over time we observed, during sunitinib treatment, a transient increase in polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and a decrease in NK cells in the tumor microenvironment. In contrast, after sunitinib treatment was stopped, a decrease in PMN-MDSC populations has been observed in the tumor, associated with an increase in NK cells, pericyte coverage of tumor vessels and CD8+ T cell population and functionality. In conclusion, sunitinib treatment results in the promotion of an immune-favorable tumor microenvironment that can guide the optimal sequence of vaccine and anti-angiogenic combination to reinforce their synergy.
Collapse
Affiliation(s)
- Alice Mougel
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Fanny Méjean
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Thi Tran
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Yasmine Adimi
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | | | | | - Erwan Mercier
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Pauline Urquia
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Magali Terme
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Eric Tartour
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
- Department of Immunology, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | | |
Collapse
|
25
|
Jung D, Shin S, Kang S, Jung I, Ryu S, Noh S, Choi S, Jeong J, Lee BY, Kim K, Kim CS, Yoon JH, Lee C, Bucher F, Kim Y, Im S, Song B, Yea K, Baek M. Reprogramming of T cell-derived small extracellular vesicles using IL2 surface engineering induces potent anti-cancer effects through miRNA delivery. J Extracell Vesicles 2022; 11:e12287. [PMID: 36447429 PMCID: PMC9709340 DOI: 10.1002/jev2.12287] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
T cell-derived small extracellular vesicles (sEVs) exhibit anti-cancer effects. However, their anti-cancer potential should be reinforced to enhance clinical applicability. Herein, we generated interleukin-2-tethered sEVs (IL2-sEVs) from engineered Jurkat T cells expressing IL2 at the plasma membrane via a flexible linker to induce an autocrine effect. IL2-sEVs increased the anti-cancer ability of CD8+ T cells without affecting regulatory T (Treg ) cells and down-regulated cellular and exosomal PD-L1 expression in melanoma cells, causing their increased sensitivity to CD8+ T cell-mediated cytotoxicity. Its effect on CD8+ T and melanoma cells was mediated by several IL2-sEV-resident microRNAs (miRNAs), whose expressions were upregulated by the autocrine effects of IL2. Among the miRNAs, miR-181a-3p and miR-223-3p notably reduced the PD-L1 protein levels in melanoma cells. Interestingly, miR-181a-3p increased the activity of CD8+ T cells while suppressing Treg cell activity. IL2-sEVs inhibited tumour progression in melanoma-bearing immunocompetent mice, but not in immunodeficient mice. The combination of IL2-sEVs and existing anti-cancer drugs significantly improved anti-cancer efficacy by decreasing PD-L1 expression in vivo. Thus, IL2-sEVs are potential cancer immunotherapeutic agents that regulate both immune and cancer cells by reprogramming miRNA levels.
Collapse
Affiliation(s)
- Dokyung Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Sanghee Shin
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Sung‐Min Kang
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Inseong Jung
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Suyeon Ryu
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Soojeong Noh
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Sung‐Jin Choi
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Jongwon Jeong
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Beom Yong Lee
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Kwang‐Soo Kim
- Department of New BiologyDGISTDaeguRepublic of Korea
| | | | - Jong Hyuk Yoon
- Department of Neural Development and DiseaseKorea Brain Research InstituteDaeguRepublic of Korea
| | - Chan‐Hyeong Lee
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Yong‐Nyun Kim
- Division of Translational ScienceNational Cancer Center 323Ilsan‐ro, Ilsandong‐guGoyang‐siGyeonggi‐doRepublic of Korea
| | - Sin‐Hyeog Im
- Department of Life SciencesPohang University of Science and Technology (POSTECH)Gyeongsangbuk‐doRepublic of Korea
- Institute of Convergence ScienceYonsei UniversitySeoulRepublic of Korea
- ImmunoBiomePohangRepublic of Korea
| | - Byoung‐Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and BiophysicsNational Institute on Alcohol Abuse and Alcoholism (NIAAA)BethesdaMarylandUSA
| | - Kyungmoo Yea
- Department of New BiologyDGISTDaeguRepublic of Korea
- New Biology Research CenterDGISTDaeguRepublic of Korea
| | - Moon‐Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
26
|
Han X, Ye J, Huang R, Li Y, Liu J, Meng T, Song D. Pan-cancer analysis reveals interleukin-17 family members as biomarkers in the prediction for immune checkpoint inhibitor curative effect. Front Immunol 2022; 13:900273. [PMID: 36159856 PMCID: PMC9493092 DOI: 10.3389/fimmu.2022.900273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background The interleukin-17 (IL-17) family contains six homologous genes, IL-17A to IL-17F. Growing evidence indicates that dysregulated IL-17 family members act as major pathogenic factors in the early and late stages of cancer development and progression. However, the prevalence and predictive value of IL-17 for immune checkpoint inhibitor (ICI) therapeutic effectiveness in multiple tumor types remain largely unknown, and the associations between its expression levels and immunotherapy-associated signatures also need to be explored. Methods The pan-cancer dataset in The Cancer Genome Atlas (TCGA) was downloaded from UCSC Xena (http://xena.ucsc.edu/). The immunotherapeutic cohorts included IMvigor210, which were obtained from the Gene Expression Omnibus database and included in a previously published study. Other datasets, namely, the GEO dataset and PRECOG, GEO, and METABRIC databases, were also included. In 33 TCGA tumor types, a pan-cancer analysis was carried out including their expression map, clinical risk assessment, and immune subtype analysis, along with their association with the stemness indices, tumor microenvironment (TME) in pan-cancer, immune infiltration analysis, ICI-related immune indicators, and drug sensitivity. RT-PCR was also carried out to verify the gene expression levels among MCF-10A and MCF-7 cell lines. Results The expression of the IL-17 family is different between tumor and normal tissue in most cancers, and consistency has been observed between gene activity and gene expression. RT-PCR results show that the expression differences in the IL-17 family of human cell (MCF-10A and MCF-7) are consistent with the bioinformatics differential expression analysis. Moreover, the expression of the IL-17 family can be a sign of patients’ survival prognosis in some tumors and varies in different immune subtypes. Moreover, the expression of the IL-17 family presents a robust correlation with immune cell infiltration, ICI-related immune indicators, and drug sensitivity. High expression of the IL-17 family is significantly related to immune-relevant pathways, and the low expression of IL-17B means a better immunotherapeutic response in BLCA. Conclusion Collectively, IL-17 family members may act as biomarkers in predicting the prognosis of the tumor and the therapeutic effects of ICIs, which provides new guidance for cancer treatment.
Collapse
Affiliation(s)
- Xiaying Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianxin Ye
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yongai Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianpeng Liu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Dianwen Song, ; Tong Meng, ; Jianpeng Liu,
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Dianwen Song, ; Tong Meng, ; Jianpeng Liu,
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Dianwen Song, ; Tong Meng, ; Jianpeng Liu,
| |
Collapse
|
27
|
Chun J, Park SM, Yi JM, Ha IJ, Kang HN, Jeong MK. Bojungikki-Tang Improves Response to PD-L1 Immunotherapy by Regulating the Tumor Microenvironment in MC38 Tumor-Bearing Mice. Front Pharmacol 2022; 13:901563. [PMID: 35873573 PMCID: PMC9300825 DOI: 10.3389/fphar.2022.901563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint blockage targeting PD-L1 has led to breakthroughs in cancer treatment. Although anti-PD-L1-based immunotherapy has been approved as standard therapy in various cancer types, its therapeutic efficacy in most colorectal cancers (CRC) is still limited due to the low response to immunotherapy. Therefore, combining treatment with herbal medicines could be an alternative approach for treating CRC to overcome this limitation. Bojungikki-Tang (BJIKT), a herbal formula used in traditional Chinese medicine, clinically improves the quality of life for cancer patients and has been associated with antitumor and immune-modulating activities. However, the regulatory effect of BJIKT on the immune response in the tumor microenvironment remains largely uninvestigated. In this study, we verified the inhibitory effect of BJIKT on tumor growth and investigated the regulatory effect of combination therapy with BJIKT and anti-PD-L1 on antitumor immune responses in an MC38 CRC-bearing C57BL/6 mouse model. Immune profiling analysis by flow cytometry was used to characterize the exact cell types contributing to anticancer activities. Combination treatment with BJIKT and anti-PD-L1 therapy significantly suppressed tumor growth in MC38-bearing mice and increased the proportion of cytotoxic T lymphocytes and natural killer cells in tumor tissues. Furthermore, BJIKT suppressed the population of myeloid-derived suppressor cells, suggesting that this combination treatment effectively regulates the immunological function of T-cells by improving the tumor microenvironment. The herbal formula BJIKT can be a novel therapeutic option for improving anti-PD-L1-based immunotherapy in patients with CRC.
Collapse
Affiliation(s)
- Jaemoo Chun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sang-Min Park
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Jin-Mu Yi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul, South Korea
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Mi-Kyung Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| |
Collapse
|
28
|
Yoneyama T, Kim MS, Piatkov K, Wang H, Zhu AZX. Leveraging a physiologically-based quantitative translational modeling platform for designing B cell maturation antigen-targeting bispecific T cell engagers for treatment of multiple myeloma. PLoS Comput Biol 2022; 18:e1009715. [PMID: 35839267 PMCID: PMC9328551 DOI: 10.1371/journal.pcbi.1009715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/27/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
Bispecific T cell engagers (TCEs) are an emerging anti-cancer modality that redirects cytotoxic T cells to tumor cells expressing tumor-associated antigens (TAAs), thereby forming immune synapses to exert anti-tumor effects. Designing pharmacokinetically acceptable TCEs and optimizing their size presents a considerable protein engineering challenge, particularly given the complexity of intercellular bridging between T cells and tumor cells. Therefore, a physiologically-relevant and clinically-verified computational modeling framework is of crucial importance to understand the protein engineering trade-offs. In this study, we developed a quantitative, physiologically-based computational framework to predict immune synapse formation for a variety of molecular formats of TCEs in tumor tissues. Our model incorporates a molecular size-dependent biodistribution using the two-pore theory, extravasation of T cells and hematologic cancer cells, mechanistic bispecific intercellular binding of TCEs, and competitive inhibitory interactions by shed targets. The biodistribution of TCEs was verified by positron emission tomography imaging of [89Zr]AMG211 (a carcinoembryonic antigen-targeting TCE) in patients. Parameter sensitivity analyses indicated that immune synapse formation was highly sensitive to TAA expression, degree of target shedding, and binding selectivity to tumor cell surface TAAs over shed targets. Notably, the model suggested a “sweet spot” for TCEs’ CD3 binding affinity, which balanced the trapping of TCEs in T-cell-rich organs. The final model simulations indicated that the number of immune synapses is similar (~55/tumor cell) between two distinct clinical stage B cell maturation antigen (BCMA)-targeting TCEs, PF-06863135 in an IgG format and AMG420 in a BiTE format, at their respective efficacious doses in multiple myeloma patients. This result demonstrates the applicability of the developed computational modeling framework to molecular design optimization and clinical benchmarking for TCEs, thus suggesting that this framework can be applied to other targets to provide a quantitative means to facilitate model-informed best-in-class TCE discovery and development.
Collapse
Affiliation(s)
- Tomoki Yoneyama
- Quantitative Solutions, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Mi-Sook Kim
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Konstantin Piatkov
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Haiqing Wang
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Andy Z. X. Zhu
- Quantitative Solutions, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| |
Collapse
|
29
|
Cui G. Towards a precision immune checkpoint blockade immunotherapy in patients with colorectal cancer: Strategies and perspectives. Biomed Pharmacother 2022; 149:112923. [DOI: 10.1016/j.biopha.2022.112923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022] Open
|
30
|
Doshi AS, Cantin S, Prickett LB, Mele DA, Amiji M. Systemic nano-delivery of low-dose STING agonist targeted to CD103+ dendritic cells for cancer immunotherapy. J Control Release 2022; 345:721-733. [PMID: 35378213 DOI: 10.1016/j.jconrel.2022.03.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Current methods of STING activation based on intra-tumoral injections of cyclic dinucleotides (CDNs) are not suitable for addressing tumor heterogeneity or for inaccessible, metastatic and abscopal tumors. In this study, we developed systemically administered CD103+ dendritic cell (DCs) targeted liposomal formulations and evaluated the anti-tumor efficacy with low dose. Liposomal CDN formulations were prepared using Clec9a targeting peptide and evaluated therapeutic efficacy in vitro and in vivo in subcutaneous MC38 and B16F10 tumor models. Targeted delivery of CDNs is expected to enhance anti-tumor immune response as well as reduce off-target toxicities. With intravenous 0.1 mg/kg systemic CDN dose of the targeted liposomal formulation, our results showed robust immune response with significant antitumor efficacy both as a monotherapy and in combination with anti-PD-L1 antibody. These results show that a CD103+ DC targeted CDN formulation can lead to potent immune stimulation upon systemic administration even in relatively "cold" tumors such as B16F10.
Collapse
Affiliation(s)
- Aatman S Doshi
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451, United States of America; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America
| | - Susan Cantin
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451, United States of America
| | - Laura B Prickett
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451, United States of America
| | - Deanna A Mele
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451, United States of America
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America; Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America.
| |
Collapse
|
31
|
Dyck L, Prendeville H, Raverdeau M, Wilk MM, Loftus RM, Douglas A, McCormack J, Moran B, Wilkinson M, Mills EL, Doughty M, Fabre A, Heneghan H, LeRoux C, Hogan A, Chouchani ET, O’Shea D, Brennan D, Lynch L. Suppressive effects of the obese tumor microenvironment on CD8 T cell infiltration and effector function. J Exp Med 2022; 219:e20210042. [PMID: 35103755 PMCID: PMC8932531 DOI: 10.1084/jem.20210042] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 10/06/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022] Open
Abstract
Obesity is one of the leading preventable causes of cancer; however, little is known about the effects of obesity on anti-tumor immunity. Here, we investigated the effects of obesity on CD8 T cells in mouse models and patients with endometrial cancer. Our findings revealed that CD8 T cell infiltration is suppressed in obesity, which was associated with a decrease in chemokine production. Tumor-resident CD8 T cells were also functionally suppressed in obese mice, which was associated with a suppression of amino acid metabolism. Similarly, we found that a high BMI negatively correlated with CD8 infiltration in human endometrial cancer and that weight loss was associated with a complete pathological response in six of nine patients. Moreover, immunotherapy using anti-PD-1 led to tumor rejection in lean and obese mice and partially restored CD8 metabolism and anti-tumor immunity. These findings highlight the suppressive effects of obesity on CD8 T cell anti-tumor immunity, which can partially be reversed by weight loss and/or immunotherapy.
Collapse
Affiliation(s)
- Lydia Dyck
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Hannah Prendeville
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Mathilde Raverdeau
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Mieszko M. Wilk
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Roisin M. Loftus
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Aaron Douglas
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Janet McCormack
- Research Pathology Core Facility, Conway Institute, University College Dublin, Dublin, Ireland
| | - Bruce Moran
- Department of Pathology, St. Vincent’s University Hospital, Dublin, Ireland
| | - Michael Wilkinson
- University College Dublin Gynaecological Oncology Group, University College Dublin School of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Evanna L. Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Michael Doughty
- Department of Cellular Pathology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Aurelie Fabre
- Department of Pathology, St. Vincent’s University Hospital, Dublin, Ireland
| | - Helen Heneghan
- School of Medicine, St. Vincent's University Hospital and University College Dublin, Dublin, Ireland
| | - Carel LeRoux
- School of Medicine, St. Vincent's University Hospital and University College Dublin, Dublin, Ireland
| | - Andrew Hogan
- Human Health Institute, Department of Biology, Maynooth University, Maynooth, Ireland
- National Children’s Research Centre, Dublin, Ireland
| | - Edward T. Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Donal O’Shea
- School of Medicine, St. Vincent's University Hospital and University College Dublin, Dublin, Ireland
| | - Donal Brennan
- University College Dublin Gynaecological Oncology Group, University College Dublin School of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
32
|
Liu Y, Geng Y, Yue B, Lo PC, Huang J, Jin H. Injectable Hydrogel as a Unique Platform for Antitumor Therapy Targeting Immunosuppressive Tumor Microenvironment. Front Immunol 2022; 12:832942. [PMID: 35111169 PMCID: PMC8801935 DOI: 10.3389/fimmu.2021.832942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy can boost the immune response of patients to eliminate tumor cells and suppress tumor metastasis and recurrence. However, immunotherapy resistance and the occurrence of severe immune-related adverse effects are clinical challenges that remain to be addressed. The tumor microenvironment plays a crucial role in the therapeutic efficacy of cancer immunotherapy. Injectable hydrogels have emerged as powerful drug delivery platforms offering good biocompatibility and biodegradability, minimal invasion, convenient synthesis, versatility, high drug-loading capacity, controlled drug release, and low toxicity. In this review, we summarize the application of injectable hydrogels as a unique platform for targeting the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Yushuai Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Geng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Beilei Yue
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
33
|
Mørk SK, Kadivar M, Bol KF, Draghi A, Westergaard MCW, Skadborg SK, Overgaard N, Sørensen AB, Rasmussen IS, Andreasen LV, Yde CW, Trolle T, Garde C, Friis-Nielsen J, Nørgaard N, Christensen D, Kringelum JV, Donia M, Hadrup SR, Svane IM. Personalized therapy with peptide-based neoantigen vaccine (EVX-01) including a novel adjuvant, CAF®09b, in patients with metastatic melanoma. Oncoimmunology 2022; 11:2023255. [PMID: 35036074 PMCID: PMC8757480 DOI: 10.1080/2162402x.2021.2023255] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The majority of neoantigens arise from unique mutations that are not shared between individual patients, making neoantigen-directed immunotherapy a fully personalized treatment approach. Novel technical advances in next-generation sequencing of tumor samples and artificial intelligence (AI) allow fast and systematic prediction of tumor neoantigens. This study investigates feasibility, safety, immunity, and anti-tumor potential of the personalized peptide-based neoantigen vaccine, EVX-01, including the novel CD8+ T-cell inducing adjuvant, CAF®09b, in patients with metastatic melanoma (NTC03715985). The AI platform PIONEERTM was used for identification of tumor-derived neoantigens to be included in a peptide-based personalized therapeutic cancer vaccine. EVX-01 immunotherapy consisted of 6 administrations with 5–10 PIONEERTM-predicted neoantigens as synthetic peptides combined with the novel liposome-based Cationic Adjuvant Formulation 09b (CAF®09b) to strengthen T-cell responses. EVX-01 was combined with immune checkpoint inhibitors to augment the activity of EVX-01-induced immune responses. The primary endpoint was safety, exploratory endpoints included feasibility, immunologic and objective responses. This interim analysis reports the results from the first dose-level cohort of five patients. We documented a short vaccine manufacturing time of 48–55 days which enabled the initiation of EVX-01 treatment within 60 days from baseline biopsy. No severe adverse events were observed. EVX-01 elicited long-lasting EVX-01-specific T-cell responses in all patients. Competitive manufacturing time was demonstrated. EVX-01 was shown to be safe and able to elicit immune responses targeting tumor neoantigens with encouraging early indications of a clinical and meaningful antitumor efficacy, warranting further study.
Collapse
Affiliation(s)
- Sofie Kirial Mørk
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mohammad Kadivar
- Department of Health Technology, Technical University of Denmark- DTU, HEALTH TECH, Lyngby, Denmark
| | - Kalijn Fredrike Bol
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Arianna Draghi
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Nana Overgaard
- Department of Health Technology, Technical University of Denmark- DTU, HEALTH TECH, Lyngby, Denmark
| | | | | | | | | | | | | | | | - Nis Nørgaard
- Department of Urology, Copenhagen University Hospital, Herlev, Denmark
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark- DTU, HEALTH TECH, Lyngby, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
34
|
Božić Nedeljković B, Ćilerdžić J, Zmijanjac D, Marković M, Džopalić T, Vasilijić S, Stajić M, Vučević D. Immunomodulatory effects of extract of Lingzhi or Reishi medicinal Mushroom Ganoderma lucidum (Agaricomycetes) basidiocarps cultivated on alternative substrate. Int J Med Mushrooms 2022; 24:45-59. [DOI: 10.1615/intjmedmushrooms.2022044452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Crosstalk between non-coding RNAs expression profile, drug resistance and immune response in breast cancer. Pharmacol Res 2021; 176:106041. [PMID: 34952200 DOI: 10.1016/j.phrs.2021.106041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Drug resistance is one of the most critical challenges facing researchers in treating breast cancer. Despite numerous treatments for breast cancer, including conventional chemical drugs, monoclonal antibodies, and immunotherapeutic drugs known as immune checkpoint inhibitors (ICI), many patients resist various approaches. In recent years, the relationship between gene expression profiles and drug resistance phenotypes has attracted much attention. Non-coding RNAs (ncRNAs) are regulatory molecules that have been shown to regulate gene expression and cell transcriptome. Two categories, microRNAs and long non-coding RNAs have been more considered and studied among these ncRNAs. Studying the role of different ncRNAs in chemical drug resistance and ICI resistance together can be beneficial in selecting more effective treatments for breast cancer. Changing the expression and action mechanism of these regulatory molecules on drug resistance phenotypes is the main topic of this review article.
Collapse
|
36
|
Enhanced Bellmunt Risk Score for Survival Prediction in Urothelial Carcinoma Treated With Immunotherapy. Clin Genitourin Cancer 2021; 20:132-138. [PMID: 34953754 DOI: 10.1016/j.clgc.2021.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The discrimination performance of Bellmunt risk score for immune checkpoint inhibitor (ICI) therapy is largely unknown. This study aimed to validate and enhance discrimination of the Bellmunt score in patients with urothelial carcinoma treated with ICIs. PATIENTS AND METHODS Cox proportional hazard analysis were used to validate overall survival (OS) discrimination performance of the Bellmunt score in patients with urothelial carcinoma treated with atezolizumab in IMvigor210. The c-statistic (c) was used to evaluate the ability of C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), lactate dehydrogenase (LDH), PD-L1 gene expression level on immune cells (PD-L1 ICs), albumin, time from prior chemotherapy, and tumor site count to enhance the Bellmunt score. External validation of an enhanced Bellmunt score utilized the independent atezolizumab arm of IMvigor211. RESULTS In IMvigor210, Bellmunt score displayed moderate OS discrimination (c = 0.66). Addition of CRP (one point for CRP>30 mg/L) to the Bellmunt score resulted in greatest improvement in performance (c = 0.70), followed by NLR (c = 0.69). On external validation, CRP-Bellmunt score had superior performance (OS c = 0.67, PFS c = 0.60) than original Bellmunt score (OS c = 0.64, PFS c = 0.59) with 30% of patients reclassified into a higher risk group. Patients with CRP-Bellmunt score of 0, 1, 2, or 3-plus had 1-year OS probabilities of 63%, 44%, 21%, and 15%, respectively. CONCLUSION CRP inclusion within the Bellmunt score enhanced the ability to discriminate high risk patients misclassified using the original model. We propose that the CRP-Bellmunt score may enable improved patient stratification in ICI clinical trials and provide more accurate prognostic information for patients with urothelial carcinoma initiating ICIs.
Collapse
|
37
|
Wang M, Zhen H, Jiang X, Lu Y, Wei Y, Jin J, Li Q. Clinical observation of the efficacy of PD-1/PD-L1 inhibitors in the treatment of patients with advanced solid tumors. Immun Inflamm Dis 2021; 9:1584-1595. [PMID: 34407323 PMCID: PMC8589346 DOI: 10.1002/iid3.511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Programmed death 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors are proved to be promising and are applied for the treatment of a variety of solid tumors. This retrospective study evaluated the efficacy of PD-1/PD-L1 inhibitors in patients with advanced solid tumors and explore the effect of clinical characteristics on it. MATERIALS AND METHODS From October 2017 to April 2020, a total of 90 patients from Capital Medical University Affiliated Beijing Friendship Hospital were enrolled. RESULTS At a median follow-up of 10.55 months, objective response was observed in 23 patients and the objective response rate was 25.6%. The median progression-free survival (PFS) was 5.5 months (95% confidence interval [CI], 3.69-7.37). The 6m-PFS was 45.8% and 12m-PFS was 25.1%. The median overall survival (OS) was 16.9 months (95% CI, not reached [NR]-NR). The 12m-OS was 58.1% and 18m-OS was 48.1%. CONCLUSION The efficacy of PD-1/PD-L1 inhibitors in the treatment of advanced solid tumors was comparable to previous studies. ECOG performance status, smoking status, liver metastasis, neutrophil-to-lymphocyte ratio were independently correlated with PFS while liver metastasis and lactate dehydrogenase level were independently correlated with OS.
Collapse
Affiliation(s)
- Miao Wang
- Department of Oncology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Hongchao Zhen
- Department of Oncology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Xiaoyue Jiang
- Department of Oncology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yuting Lu
- Department of Oncology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yuhan Wei
- Department of Oncology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jiangtao Jin
- Department of Intervention TherapyZezhou People's HospitalJinchengChina
| | - Qin Li
- Department of Oncology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
38
|
Xie H, Appelt JW, Jenkins RW. Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology. Cancers (Basel) 2021; 13:cancers13236052. [PMID: 34885161 PMCID: PMC8656483 DOI: 10.3390/cancers13236052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The clinical success of cancer immunotherapy targeting immune checkpoints (e.g., PD-1, CTLA-4) has ushered in a new era of cancer therapeutics aimed at promoting antitumor immunity in hopes of offering durable clinical responses for patients with advanced, metastatic cancer. This success has also reinvigorated interest in developing tumor model systems that recapitulate key features of antitumor immune responses to complement existing in vivo tumor models. Patient-derived tumor models have emerged in recent years to facilitate study of tumor–immune dynamics. Microfluidic technology has enabled development of microphysiologic systems (MPSs) for the evaluation of the tumor microenvironment, which have shown early promise in studying tumor–immune dynamics. Further development of microfluidic-based “tumor-on-a-chip” MPSs to study tumor–immune interactions may overcome several key challenges currently facing tumor immunology. Abstract Recent advances in cancer immunotherapy have led a paradigm shift in the treatment of multiple malignancies with renewed focus on the host immune system and tumor–immune dynamics. However, intrinsic and acquired resistance to immunotherapy limits patient benefits and wider application. Investigations into the mechanisms of response and resistance to immunotherapy have demonstrated key tumor-intrinsic and tumor-extrinsic factors. Studying complex interactions with multiple cell types is necessary to understand the mechanisms of response and resistance to cancer therapies. The lack of model systems that faithfully recapitulate key features of the tumor microenvironment (TME) remains a challenge for cancer researchers. Here, we review recent advances in TME models focusing on the use of microfluidic technology to study and model the TME, including the application of microfluidic technologies to study tumor–immune dynamics and response to cancer therapeutics. We also discuss the limitations of current systems and suggest future directions to utilize this technology to its highest potential.
Collapse
Affiliation(s)
- Hongyan Xie
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Jackson W. Appelt
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: ; Tel.: +617-726-9372; Fax: +844-542-5959
| |
Collapse
|
39
|
Seegobin K, Majeed U, Wiest N, Manochakian R, Lou Y, Zhao Y. Immunotherapy in Non-Small Cell Lung Cancer With Actionable Mutations Other Than EGFR. Front Oncol 2021; 11:750657. [PMID: 34926258 PMCID: PMC8671626 DOI: 10.3389/fonc.2021.750657] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
While first line targeted therapies are the current standard of care treatment for non-small cell lung cancer (NSCLC) with actionable mutations, the cancer cells inevitably acquire resistance to these agents over time. Immune check-point inhibitors (ICIs) have improved the outcomes of metastatic NSCLC, however, its efficacy in those with targetable drivers is largely unknown. In this manuscript, we reviewed the published data on ICI therapies in NSCLC with ALK, ROS1, BRAF, c-MET, RET, NTRK, KRAS, and HER2 (ERBB2) alterations. We found that the objective response rates (ORRs) associated with ICI treatments in lung cancers harboring the BRAF (0-54%), c-MET (12-49%), and KRAS (18.7-66.7%) alterations were comparable to non-mutant NSCLC, whereas the ORRs in RET fusion NSCLC (less than10% in all studies but one) and ALK fusion NSCLC (0%) were relatively low. The ORRs reported in small numbers of patients and studies of ROS1 fusion, NTRK fusion, and HER 2 mutant NSCLC were 0-17%, 50% and 7-23%, respectively, making the efficacy of ICIs in these groups of patients less clear. In most studies, no significant correlation between treatment outcome and PD-L1 expression or tumor mutation burden (TMB) was identified, and how to select patients with NSCLC harboring actionable mutations who will likely benefit from ICI treatment remains unknown.
Collapse
Affiliation(s)
- Karan Seegobin
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Umair Majeed
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Nathaniel Wiest
- Department of Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Rami Manochakian
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Yujie Zhao
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
40
|
Wang W, Gu X, Wang L, Pu X, Feng H, Xu C, Lou G, Shao L, Xu Y, Wang Q, Wang S, Gao W, Zhang Y, Song Z. The prognostic impact of mild and severe immune-related adverse events in non-small cell lung cancer treated with immune checkpoint inhibitors: a multicenter retrospective study. Cancer Immunol Immunother 2021; 71:1693-1703. [PMID: 34817639 DOI: 10.1007/s00262-021-03115-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022]
Abstract
Patients treated with immune checkpoint inhibitors (ICIs) often experience unique immune-related adverse events (irAEs), and the previous studies demonstrated an association between irAEs and better outcomes in patients with ICI treatment for advanced non-small cell lung cancer (NSCLC). However, the correlation between the occurrence of mild and severe irAEs and prognosis remains unclear. Additionally, little is known regarding the association between the timing of mild and severe irAEs and clinical outcomes. We retrospectively conducted a multicenter study of advanced NSCLC patients treated with ICI monotherapy. Of the 222 patients, 79 patients (35.6%) experienced at least one irAE, and most were of grade 1 or 2 (mild) (26.6%). The most common irAEs were pneumonitis (n = 21, 9.5%) and skin-related adverse reactions (n = 19, 8.6%). The median progression-free survival of all patients treated with ICIs was 3.2 months. Patients experiencing irAEs had a better prognosis than those without such events (6.5 vs. 2.6 months, p = 0.004), and mild irAEs were associated with the best prognosis. The difference in overall survival between mild and severe irAEs was significant (34.3 vs. 17.3 months, p = 0.021). We further analyzed differences between patients with irAEs occurring at 3 or 6 weeks, and found that the earlier the occurrence of mild irAEs, the better the prognosis; however, the opposite was true for severe irAEs. In summary, patients with early occurring mild irAEs showed better clinical outcomes, whereas those with early severe irAEs tended to show poorer clinical outcomes.
Collapse
Affiliation(s)
- Wenxian Wang
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No.1 Banshan East Street, Gongshu District, Hangzhou, Zhejiang, 310022, People's Republic of China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou Zhejiang, 310022, China
| | - Xiaodong Gu
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No.1 Banshan East Street, Gongshu District, Hangzhou, Zhejiang, 310022, People's Republic of China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou Zhejiang, 310022, China
| | - Liping Wang
- Department of Oncology, Baotou Cancer Hospital, Baotou, 014000, Inner Mongolia, China
| | - Xingxiang Pu
- Department of Medical Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha Hunan, 410013, China
| | - Huijing Feng
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan Shanxi, 030032, China
| | - Chunwei Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Guangyuan Lou
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No.1 Banshan East Street, Gongshu District, Hangzhou, Zhejiang, 310022, People's Republic of China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou Zhejiang, 310022, China
| | - Lan Shao
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No.1 Banshan East Street, Gongshu District, Hangzhou, Zhejiang, 310022, People's Republic of China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou Zhejiang, 310022, China
| | - Yibing Xu
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No.1 Banshan East Street, Gongshu District, Hangzhou, Zhejiang, 310022, People's Republic of China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou Zhejiang, 310022, China
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Siyuan Wang
- ShenZhen University Health Science Center & Department of Oncology, The Third Affiliated Hospital of ShenZhen University ShenZhen, GuangDong, 518001, China
| | - Wenbin Gao
- Department of Oncology, The Third Affiliated Hospital of ShenZhen University, ShenZhen, 518001, GuangDong, China
| | - Yiping Zhang
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No.1 Banshan East Street, Gongshu District, Hangzhou, Zhejiang, 310022, People's Republic of China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou Zhejiang, 310022, China
| | - Zhengbo Song
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No.1 Banshan East Street, Gongshu District, Hangzhou, Zhejiang, 310022, People's Republic of China. .,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou Zhejiang, 310022, China.
| |
Collapse
|
41
|
Sato Y, Fu Y, Liu H, Lee MY, Shaw MH. Tumor-immune profiling of CT-26 and Colon 26 syngeneic mouse models reveals mechanism of anti-PD-1 response. BMC Cancer 2021; 21:1222. [PMID: 34774008 PMCID: PMC8590766 DOI: 10.1186/s12885-021-08974-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) therapies have changed the paradigm of cancer therapies. However, anti-tumor response of the ICB is insufficient for many patients and limited to specific tumor types. Despite many preclinical and clinical studies to understand the mechanism of anti-tumor efficacy of ICB, the mechanism is not completely understood. Harnessing preclinical tumor models is one way to understand the mechanism of treatment response. METHODS In order to delineate the mechanisms of anti-tumor activity of ICB in preclinical syngeneic tumor models, we selected two syngeneic murine colorectal cancer models based on in vivo screening for sensitivity with anti-PD-1 therapy. We performed tumor-immune profiling of the two models to identify the potential mechanism for anti-PD-1 response. RESULTS We performed in vivo screening for anti-PD-1 therapy across 23 syngeneic tumor models and found that CT-26 and Colon 26, which are murine colorectal carcinoma derived from BALB/c mice, showed different sensitivity to anti-PD-1. CT-26 tumor mice were more sensitive to the anti-PD-1 antibody than Colon 26, while both models show similarly sensitivity to anti-CTLA4 antibody. Immune-profiling showed that CT-26 tumor tissue was infiltrated with more immune cells than Colon 26. Genomic/transcriptomic analyses highlighted thatWnt pathway was one of the potential differences between CT-26 and Colon 26, showing Wnt activity was higher in Colon 26 than CT-26. . CONCLUSIONS CT-26 and Colon 26 syngeneic tumor models showed different sensitivity to anti-PD-1 therapy, although both tumor cells are murine colorectal carcinoma cell lines from BALB/c strain. By characterizing the mouse cells lines and tumor-immune context in the tumor tissues with comprehensive analysis approaches, we found that CT-26 showed "hot tumor" profile with more infiltrated immune cells than Colon 26. Further pathway analyses enable us to propose a hypothesis that Wnt pathway could be one of the major factors to differentiate CT-26 from Colon 26 model and link to anti-PD-1 response. Our approach to focus on preclinical tumor models with similar genetic background but different sensitivity to anti-PD-1 therapy would contribute to illustrating the potential mechanism of anti-PD-1 response and to generating a novel concept to synergize current anti-PD-1 therapies for cancer patients.
Collapse
Affiliation(s)
- Yosuke Sato
- Immuno-oncology Drug Discovery Unit, Millennium Pharmaceuticals, Inc. a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne St, Cambridge, MA, 02139, USA.
| | - Yu Fu
- Immuno-oncology Drug Discovery Unit, Millennium Pharmaceuticals, Inc. a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne St, Cambridge, MA, 02139, USA.,Guardant Health, 720 3rd Ave Suite 2100, Seattle, WA, 98104, USA
| | - Hong Liu
- Immuno-oncology Drug Discovery Unit, Millennium Pharmaceuticals, Inc. a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne St, Cambridge, MA, 02139, USA.,Checkmate Pharmaceuticals, 245 Main St, Cambridge, MA, 02142, USA
| | - Min Young Lee
- Immuno-oncology Drug Discovery Unit, Millennium Pharmaceuticals, Inc. a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne St, Cambridge, MA, 02139, USA
| | - Michael H Shaw
- Immuno-oncology Drug Discovery Unit, Millennium Pharmaceuticals, Inc. a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne St, Cambridge, MA, 02139, USA
| |
Collapse
|
42
|
Butner JD, Martin GV, Wang Z, Corradetti B, Ferrari M, Esnaola N, Chung C, Hong DS, Welsh JW, Hasegawa N, Mittendorf EA, Curley SA, Chen SH, Pan PY, Libutti SK, Ganesan S, Sidman RL, Pasqualini R, Arap W, Koay EJ, Cristini V. Early prediction of clinical response to checkpoint inhibitor therapy in human solid tumors through mathematical modeling. eLife 2021; 10:70130. [PMID: 34749885 PMCID: PMC8629426 DOI: 10.7554/elife.70130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Checkpoint inhibitor therapy of cancer has led to markedly improved survival of a subset of patients in multiple solid malignant tumor types, yet the factors driving these clinical responses or lack thereof are not known. We have developed a mechanistic mathematical model for better understanding these factors and their relations in order to predict treatment outcome and optimize personal treatment strategies. Methods: Here, we present a translational mathematical model dependent on three key parameters for describing efficacy of checkpoint inhibitors in human cancer: tumor growth rate (α), tumor-immune infiltration (Λ), and immunotherapy-mediated amplification of anti-tumor response (µ). The model was calibrated by fitting it to a compiled clinical tumor response dataset (n = 189 patients) obtained from published anti-PD-1 and anti-PD-L1 clinical trials, and then validated on an additional validation cohort (n = 64 patients) obtained from our in-house clinical trials. Results: The derived parameters Λ and µ were both significantly different between responding versus nonresponding patients. Of note, our model appropriately classified response in 81.4% of patients by using only tumor volume measurements and within 2 months of treatment initiation in a retrospective analysis. The model reliably predicted clinical response to the PD-1/PD-L1 class of checkpoint inhibitors across multiple solid malignant tumor types. Comparison of model parameters to immunohistochemical measurement of PD-L1 and CD8+ T cells confirmed robust relationships between model parameters and their underlying biology. Conclusions: These results have demonstrated reliable methods to inform model parameters directly from biopsy samples, which are conveniently obtainable as early as the start of treatment. Together, these suggest that the model parameters may serve as early and robust biomarkers of the efficacy of checkpoint inhibitor therapy on an individualized per-patient basis. Funding: We gratefully acknowledge support from the Andrew Sabin Family Fellowship, Center for Radiation Oncology Research, Sheikh Ahmed Center for Pancreatic Cancer Research, GE Healthcare, Philips Healthcare, and institutional funds from the University of Texas M.D. Anderson Cancer Center. We have also received Cancer Center Support Grants from the National Cancer Institute (P30CA016672 to the University of Texas M.D. Anderson Cancer Center and P30CA072720 the Rutgers Cancer Institute of New Jersey). This research has also been supported in part by grants from the National Science Foundation Grant DMS-1930583 (ZW, VC), the National Institutes of Health (NIH) 1R01CA253865 (ZW, VC), 1U01CA196403 (ZW, VC), 1U01CA213759 (ZW, VC), 1R01CA226537 (ZW, RP, WA, VC), 1R01CA222007 (ZW, VC), U54CA210181 (ZW, VC), and the University of Texas System STARS Award (VC). BC acknowledges support through the SER Cymru II Programme, funded by the European Commission through the Horizon 2020 Marie Skłodowska-Curie Actions (MSCA) COFUND scheme and the Welsh European Funding Office (WEFO) under the European Regional Development Fund (ERDF). EK has also received support from the Project Purple, NIH (U54CA210181, U01CA200468, and U01CA196403), and the Pancreatic Cancer Action Network (16-65-SING). MF was supported through NIH/NCI center grant U54CA210181, R01CA222959, DoD Breast Cancer Research Breakthrough Level IV Award W81XWH-17-1-0389, and the Ernest Cockrell Jr. Presidential Distinguished Chair at Houston Methodist Research Institute. RP and WA received serial research awards from AngelWorks, the Gillson-Longenbaugh Foundation, and the Marcus Foundation. This work was also supported in part by grants from the National Cancer Institute to SHC (R01CA109322, R01CA127483, R01CA208703, and U54CA210181 CITO pilot grant) and to PYP (R01CA140243, R01CA188610, and U54CA210181 CITO pilot grant). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Joseph D Butner
- The Houston Methodist Research Institute, Houston, United States
| | - Geoffrey V Martin
- The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Zhihui Wang
- The Houston Methodist Research Institute, Houston, United States
| | - Bruna Corradetti
- The Houston Methodist Research Institute, Houston, United States
| | - Mauro Ferrari
- The Houston Methodist Research Institute, Houston, United States
| | - Nestor Esnaola
- The Houston Methodist Research Institute, Houston, United States
| | - Caroline Chung
- The University of Texas MD Anderson Cancer Center, Houston, United States
| | - David S Hong
- The University of Texas MD Anderson Cancer Center, Houston, United States
| | - James W Welsh
- The Houston Methodist Research Institute, Houston, United States
| | - Naomi Hasegawa
- University of Texas Health Science Center, Houston, United States
| | | | | | - Shu-Hsia Chen
- The Houston Methodist Research Institute, Houston, United States
| | - Ping-Ying Pan
- The Houston Methodist Research Institute, Houston, United States
| | | | | | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Boston, United States
| | | | - Wadih Arap
- Hematology and Oncology, Rutgers Cancer Institute of New Jersey, Newark, United States
| | - Eugene J Koay
- University of Texas MD Anderson Cancer Center, Houston, United States
| | | |
Collapse
|
43
|
Prognostic Value of Interleukin-32 Expression and Its Correlation with the Infiltration of Natural Killer Cells in Cutaneous Melanoma. J Clin Med 2021; 10:jcm10204691. [PMID: 34682815 PMCID: PMC8538574 DOI: 10.3390/jcm10204691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin-32 (IL-32) is well known as a proinflammatory cytokine that is expressed in various immune cells and cancers. However, the clinical relevance of IL-32 expression in cutaneous melanoma has not been comprehensively studied. Here, we identified the prognostic value of IL32 expression using various systematic multiomic analyses. The IL32 expressions were significantly higher in cutaneous melanoma than in normal tissue, and Kaplan-Meier survival analysis showed a correlation between IL32 expression and good prognosis in cutaneous melanoma patients. In addition, we analyzed the correlation between IL32 expression and the infiltration of natural killer (NK) cells to identify a relevant mechanism between IL32 expression and prognosis in cutaneous melanoma (p = 0.00031). In the relationship between IL32 expression and the infiltration of NK cells, a negative correlation was found in resting NK cells (rho = -0.38, p = 3.95 × 10-17) whereas a strong positive correlation was observed only in active NK cells (rho = 0.374, p = 1.23 × 10-16). Moreover, IL32 expression was markedly positively correlated with the cytolytic molecules, such as granzyme and perforin. These data suggest that IL32 expression may increase patient survival through the infiltration and activation of NK cells, representative anticancer effector cells, in cutaneous melanoma. Collectively, this study provides the prognostic value of IL32 expression and its potential role as an effective predictive biomarker for NK cell infiltration in cutaneous melanoma.
Collapse
|
44
|
Hu X, Xu H, Xue Q, Wen R, Jiao W, Tian K. The role of ERBB4 mutations in the prognosis of advanced non-small cell lung cancer treated with immune checkpoint inhibitors. Mol Med 2021; 27:126. [PMID: 34620079 PMCID: PMC8496027 DOI: 10.1186/s10020-021-00387-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have witnessed the achievements of convincing clinical benefits that feature the significantly prolonged overall survival (OS) of patients suffering from advanced non-small cell lung cancer (NSCLC), according to reports recently. Sensitivity to immunotherapy is related to several biomarkers, such as PD-L1 expression, TMB level, MSI-H and MMR. However, a further investigation into the novel biomarkers of the prognosis on ICIs treatment is required. In addition, there is an urgent demand for the establishment of a systematic hazard model to assess the efficacy of ICIs therapy for advanced NSCLC patients. METHODS In this study, the gene mutation and clinical data of NSCLC patients was obtained from the TCGA database, followed by the analysis of the detailed clinical information and mutational data relating to two advanced NSCLC cohorts receiving the ICIs treatment from the cBioPortal of Cancer Genomics. The Kaplan-Meier plot method was used to perform survival analyses, while selected variables were adopted to develop a systematic nomogram. The prognostic significance of ERBB4 in pan-cancer was analyzed by another cohort from the cBioPortal of Cancer Genomics. RESULTS The mutation frequencies of TP53 and ERBB4 were 54% and 8% in NSCLC, respectively. The mutual exclusive analysis in cBioPortal has indicated that ERBB4 does show co-occurencing mutations with TP53. Patients with ERBB4 mutations were confirmed to have better prognosis for ICIs treatment, compared to those seeing ERBB4 wild type (PFS: exact p = 0.017; OS: exact p < 0.01) and only TP53 mutations (OS: p = 0.021). The mutation status of ERBB4 and TP53 was tightly linked to DCB of ICIs treatment, PD-L1 expression, TMB value, and TIICs. Finally, a novel nomogram was built to evaluate the efficacy of ICIs therapy. CONCLUSION ERBB4 mutations could serve as a predictive biomarker for the prognosis of ICIs treatment. The systematic nomogram was proven to have the great potential for evaluating the efficacy of ICIs therapy for advanced NSCLC patients.
Collapse
Affiliation(s)
- Xilin Hu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Hanlin Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Qianwen Xue
- Qingdao Maternal & Child Health and Family Planning Service Center, Qingdao, 266000, Shandong, China
| | - Ruran Wen
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Kaihua Tian
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
45
|
Gavali S, Liu J, Li X, Paolino M. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Int J Mol Sci 2021; 22:10800. [PMID: 34639141 PMCID: PMC8509743 DOI: 10.3390/ijms221910800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of T-cell-based immunotherapy has remarkably transformed cancer patient treatment. Despite their success, the currently approved immunotherapeutic protocols still encounter limitations, cause toxicity, and give disparate patient outcomes. Thus, a deeper understanding of the molecular mechanisms of T-cell activation and inhibition is much needed to rationally expand targets and possibilities to improve immunotherapies. Protein ubiquitination downstream of immune signaling pathways is essential to fine-tune virtually all immune responses, in particular, the positive and negative regulation of T-cell activation. Numerous studies have demonstrated that deregulation of ubiquitin-dependent pathways can significantly alter T-cell activation and enhance antitumor responses. Consequently, researchers in academia and industry are actively developing technologies to selectively exploit ubiquitin-related enzymes for cancer therapeutics. In this review, we discuss the molecular and functional roles of ubiquitination in key T-cell activation and checkpoint inhibitory pathways to highlight the vast possibilities that targeting ubiquitination offers for advancing T-cell-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Magdalena Paolino
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, 17176 Solna, Sweden; (S.G.); (J.L.); (X.L.)
| |
Collapse
|
46
|
Tang H, Li H, Sun Z. Targeting myeloid-derived suppressor cells for cancer therapy. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0806. [PMID: 34403220 PMCID: PMC8610166 DOI: 10.20892/j.issn.2095-3941.2020.0806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/30/2021] [Indexed: 11/15/2022] Open
Abstract
The emergence and clinical application of immunotherapy is considered a promising breakthrough in cancer treatment. According to the literature, immune checkpoint blockade (ICB) has achieved positive clinical responses in different cancer types, although its clinical efficacy remains limited in some patients. The main obstacle to inducing effective antitumor immune responses with ICB is the development of an immunosuppressive tumor microenvironment. Myeloid-derived suppressor cells (MDSCs), as major immune cells that mediate tumor immunosuppression, are intimately involved in regulating the resistance of cancer patients to ICB therapy and to clinical cancer staging and prognosis. Therefore, a combined treatment strategy using MDSC inhibitors and ICB has been proposed and continually improved. This article discusses the immunosuppressive mechanism, clinical significance, and visualization methods of MDSCs. More importantly, it describes current research progress on compounds targeting MDSCs to enhance the antitumor efficacy of ICB.
Collapse
Affiliation(s)
- Hongchao Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhijun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
47
|
Mehta S, Kulkarni S, Nikam AN, Padya BS, Pandey A, Mutalik S. Liposomes as Versatile Platform for Cancer Theranostics: Therapy, Bio-imaging, and Toxicological Aspects. Curr Pharm Des 2021; 27:1977-1991. [PMID: 33719968 DOI: 10.2174/1381612827666210311142100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/08/2021] [Indexed: 11/22/2022]
Abstract
Liposomes are nano-sized formulations having the benefits of site-specificity, biocompatibility, and biodegradability, which make them useful for the therapy and diagnosis of major diseases like cancer. In this review, various synthetic strategies of liposomes and their biomedical application in special concern to cancer are discussed. In context to the biomedical application, this article gives a detailed insight into subcellular targeted therapy and several therapeutic modifications like immunotherapy, receptor-based therapy, phototherapy, and combination therapy. The review also describes the liposome-based imaging platforms and the toxicity associated with liposomes. Owing to a significant amount of benefits of this carrier system, several products have been approved to be launched in the market and several others have already been marketed for clinical use.
Collapse
Affiliation(s)
- Swapnil Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajinkya N Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Bharat S Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
48
|
Teijeira Crespo A, Burnell S, Capitani L, Bayliss R, Moses E, Mason GH, Davies JA, Godkin AJ, Gallimore AM, Parker AL. Pouring petrol on the flames: Using oncolytic virotherapies to enhance tumour immunogenicity. Immunology 2021; 163:389-398. [PMID: 33638871 PMCID: PMC8274202 DOI: 10.1111/imm.13323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses possess the ability to infect, replicate and lyse malignantly transformed tumour cells. This oncolytic activity amplifies the therapeutic advantage and induces a form of immunogenic cell death, characterized by increased CD8 + T-cell infiltration into the tumour microenvironment. This important feature of oncolytic viruses can result in the warming up of immunologically 'cold' tumour types, presenting the enticing possibility that oncolytic virus treatment combined with immunotherapies may enhance efficacy. In this review, we assess some of the most promising candidates that might be used for oncolytic virotherapy: immunotherapy combinations. We assess their potential as separate agents or as agents combined into a single therapy, where the immunotherapy is encoded within the genome of the oncolytic virus. The development of such advanced agents will require increasingly sophisticated model systems for their preclinical assessment and evaluation. In vivo rodent model systems are fraught with limitations in this regard. Oncolytic viruses replicate selectively within human cells and therefore require human xenografts in immune-deficient mice for their evaluation. However, the use of immune-deficient rodent models hinders the ability to study immune responses against any immunomodulatory transgenes engineered within the viral genome and expressed within the tumour microenvironment. There has therefore been a shift towards the use of more sophisticated ex vivo patient-derived model systems based on organoids and explant co-cultures with immune cells, which may be more predictive of efficacy than contrived and artificial animal models. We review the best of those model systems here.
Collapse
Affiliation(s)
- Alicia Teijeira Crespo
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Stephanie Burnell
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Lorenzo Capitani
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Rebecca Bayliss
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Elise Moses
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Georgina H. Mason
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - James A. Davies
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Andrew J. Godkin
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Awen M. Gallimore
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Alan L. Parker
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| |
Collapse
|
49
|
Hossain SM, Lynch-Sutherland CF, Chatterjee A, Macaulay EC, Eccles MR. Can Immune Suppression and Epigenome Regulation in Placenta Offer Novel Insights into Cancer Immune Evasion and Immunotherapy Resistance? EPIGENOMES 2021; 5:16. [PMID: 34968365 PMCID: PMC8594685 DOI: 10.3390/epigenomes5030016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of mortality and morbidity in the developed world. Cancer progression involves genetic and epigenetic alterations, accompanied by aggressive changes, such as increased immune evasion, onset of metastasis, and drug resistance. Similar to cancer, DNA hypomethylation, immune suppression, and invasive cell behaviours are also observed in the human placenta. Mechanisms that lead to the acquisition of invasive behaviour, immune evasion, and drug and immunotherapy resistance are presently under intense investigations to improve patient outcomes. Here, we review current knowledge regarding the similarities between immune suppression and epigenome regulation, including the expression of repetitive elements (REs), endogenous retroviruses (ERVs) and transposable elements (TEs) in cells of the placenta and in cancer, which are associated with changes in immune regulation and invasiveness. We explore whether immune suppression and epigenome regulation in placenta offers novel insights into immunotherapy resistance in cancer, and we also discuss the implications and the knowledge gaps relevant to these findings, which are rapidly being accrued in these quite disparate research fields. Finally, we discuss potential linkages between TE, ERV and RE activation and expression, regarding mechanisms of immune regulation in placenta and cancer. A greater understanding of the role of immune suppression and associated epigenome regulation in placenta could help to elucidate some comparable mechanisms operating in cancer, and identify potential new therapeutic targets for treating cancer.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Chiemi F. Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Erin C. Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
50
|
Haber L, Olson K, Kelly MP, Crawford A, DiLillo DJ, Tavaré R, Ullman E, Mao S, Canova L, Sineshchekova O, Finney J, Pawashe A, Patel S, McKay R, Rizvi S, Damko E, Chiu D, Vazzana K, Ram P, Mohrs K, D'Orvilliers A, Xiao J, Makonnen S, Hickey C, Arnold C, Giurleo J, Chen YP, Thwaites C, Dudgeon D, Bray K, Rafique A, Huang T, Delfino F, Hermann A, Kirshner JR, Retter MW, Babb R, MacDonald D, Chen G, Olson WC, Thurston G, Davis S, Lin JC, Smith E. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci Rep 2021; 11:14397. [PMID: 34257348 PMCID: PMC8277787 DOI: 10.1038/s41598-021-93842-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
T-cell-redirecting bispecific antibodies have emerged as a new class of therapeutic agents designed to simultaneously bind to T cells via CD3 and to tumor cells via tumor-cell-specific antigens (TSA), inducing T-cell-mediated killing of tumor cells. The promising preclinical and clinical efficacy of TSAxCD3 antibodies is often accompanied by toxicities such as cytokine release syndrome due to T-cell activation. How the efficacy and toxicity profile of the TSAxCD3 bispecific antibodies depends on the binding affinity to CD3 remains unclear. Here, we evaluate bispecific antibodies that were engineered to have a range of CD3 affinities, while retaining the same binding affinity for the selected tumor antigen. These agents were tested for their ability to kill tumor cells in vitro, and their biodistribution, serum half-life, and anti-tumor activity in vivo. Remarkably, by altering the binding affinity for CD3 alone, we can generate bispecific antibodies that maintain potent killing of TSA + tumor cells but display differential patterns of cytokine release, pharmacokinetics, and biodistribution. Therefore, tuning CD3 affinity is a promising method to improve the therapeutic index of T-cell-engaging bispecific antibodies.
Collapse
Affiliation(s)
- Lauric Haber
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA.
| | - Kara Olson
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Marcus P Kelly
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | | | - Richard Tavaré
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Erica Ullman
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Shu Mao
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Lauren Canova
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | | | - Arpita Pawashe
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Supriya Patel
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Ryan McKay
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Sahar Rizvi
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | | | | | - Priyanka Ram
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Katja Mohrs
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Jenny Xiao
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Carlos Hickey
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Cody Arnold
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Jason Giurleo
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Ya Ping Chen
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Kevin Bray
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Tammy Huang
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Frank Delfino
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Aynur Hermann
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Marc W Retter
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Robert Babb
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Gang Chen
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Gavin Thurston
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Samuel Davis
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - John C Lin
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Eric Smith
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| |
Collapse
|