1
|
Yu X, Zhou Y, Ma X, Zhang W, Li F, Jiang F, Wang Y, Zhang Q, Liu W. Erlotinib-Gold(I) Complex Induces Leukemia Cell DC Differentiation and Remodels the Immunosuppressive Microenvironment. J Med Chem 2024; 67:21795-21810. [PMID: 39656062 DOI: 10.1021/acs.jmedchem.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Inducing differentiation of leukemia cells into dendritic cells (DC) is pivotal to reshaping the immunosuppressive microenvironment. Here, we report the synthesis of EG2, an erlotinib-gold(I) complex, which directly prompts the differentiation of acute myeloid leukemia (AML) cells into DCs. A patient-derived xenograft (PDX) model underscores the potent anti-AML activity of EG2. Mechanistic studies reveal that EG2 initiates the activation of the PPARγ/RXRα heterodimer by targeting thioredoxin reductase (TrxR) and the epidermal growth factor receptor (EGFR). This activation culminates in the expression of genes associated with the differentiation of the AML cells into DCs as well as pyroptosis, effectively reshaping the immune microenvironment both in vitro and in vivo. Overall, this study marks the first instance of a gold-based small molecule inducing the direct differentiation of tumor cells into immune cells and offers a promising and innovative strategy for the design of AML immunotherapies.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Rd, Nanjing 210023, P. R. China
| | - Yanyu Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wan Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Fuwei Li
- School of Traditional Chinese Medicine, Jiangsu College of Nursing, 9 Keji Rd, Huai'an 223005, P.R. China
| | - Fengyu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yawen Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qin Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Sun B, Zhang J, Wang N, Zhang Z, Wu Y, Xie M, Peng Y, Ye Y, Jiang Z, Wei S. The bioinformatics analysis and experimental validation of the carcinogenic role of EXO1 in lung adenocarcinoma. Front Oncol 2024; 14:1492725. [PMID: 39777332 PMCID: PMC11703735 DOI: 10.3389/fonc.2024.1492725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background Exonuclease 1 (EXO1), a protein involved in mismatch repair and recombination processes, has been identified as a prognostic biomarker in lung adenocarcinoma (LUAD). Nevertheless, its role in LUAD progression remains elusive. This study seeks to elucidate the functional significance of EXO1 in LUAD and evaluate its potential as a therapeutic target. Materials and methods Patient RNA-seq and clinical data were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Subsequently, a protein-protein interaction (PPI) network was constructed using differentially expressed genes (DEGs) to identify pivotal genes. Validation of the expression of signature genes was carried out through quantitative real-time PCR (qRT-PCR). Additionally, the association between EXO1 expression and clinical data was investigated. Immunohistochemistry was utilized to assess EXO1 expression in 93 cases of invasive pulmonary adenocarcinoma. Finally, cellular functional assays were conducted to investigate the impact of EXO1 on LUAD cells. Results Ten key molecules (PBK, ASPM, NCAPG, EXO1, MKI67, RRM2, AURKA, DLGAP5, UBE2C, and CDC6) exhibited significantly elevated expression levels in LUAD tissues. Moreover, elevated levels of EXO1 gene expression correlated strongly with advanced T, N, and M stages and were significantly associated with immune cell infiltration in LUAD. Furthermore, marked increases in EXO1 protein expression were observed in patients diagnosed with invasive pulmonary adenocarcinoma. Notably, patients diagnosed with invasive pulmonary adenocarcinoma who exhibited elevated EXO1 expression levels exhibited increased lymph node metastasis, pleural invasion, poor tumor differentiation, and advanced clinical stage. Additionally, this study employed wound healing assay and CCK-8 cell proliferation assays to investigate the significant role of EXO1 in promoting the growth and migration of lung adenocarcinoma cells. Conclusions This study identified ten hub genes associated with the initiation and progression of LUAD. Additionally, EXO1 may serve as a prognostic marker for LUAD patients, offering new perspectives for clinical treatments.
Collapse
Affiliation(s)
- Bohao Sun
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Zhang
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhirong Zhang
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yichen Wu
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengzhen Xie
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanmei Peng
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Ye
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhaochang Jiang
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shumei Wei
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Zainu A, Dupaigne P, Bouchouika S, Cau J, Clément JAJ, Auffret P, Ropars V, Charbonnier JB, de Massy B, Mercier R, Kumar R, Baudat F. FIGNL1-FIRRM is essential for meiotic recombination and prevents DNA damage-independent RAD51 and DMC1 loading. Nat Commun 2024; 15:7015. [PMID: 39147779 PMCID: PMC11327267 DOI: 10.1038/s41467-024-51458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
During meiosis, nucleoprotein filaments of the strand exchange proteins RAD51 and DMC1 are crucial for repairing SPO11-generated DNA double-strand breaks (DSBs) by homologous recombination (HR). A balanced activity of positive and negative RAD51/DMC1 regulators ensures proper recombination. Fidgetin-like 1 (FIGNL1) was previously shown to negatively regulate RAD51 in human cells. However, FIGNL1's role during meiotic recombination in mammals remains unknown. Here, we decipher the meiotic functions of FIGNL1 and FIGNL1 Interacting Regulator of Recombination and Mitosis (FIRRM) using male germline-specific conditional knock-out (cKO) mouse models. Both FIGNL1 and FIRRM are required for completing meiotic prophase in mouse spermatocytes. Despite efficient recruitment of DMC1 on ssDNA at meiotic DSB hotspots, the formation of late recombination intermediates is defective in Firrm cKO and Fignl1 cKO spermatocytes. Moreover, the FIGNL1-FIRRM complex limits RAD51 and DMC1 accumulation on intact chromatin, independently from the formation of SPO11-catalyzed DSBs. Purified human FIGNL1ΔN alters the RAD51/DMC1 nucleoprotein filament structure and inhibits strand invasion in vitro. Thus, this complex might regulate RAD51 and DMC1 association at sites of meiotic DSBs to promote proficient strand invasion and processing of recombination intermediates.
Collapse
Affiliation(s)
- Akbar Zainu
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Pauline Dupaigne
- Genome Integrity and Cancers UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Soumya Bouchouika
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, Univ Montpellier, Montpellier, France
| | - Julien Cau
- Biocampus Montpellier, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie A J Clément
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Pauline Auffret
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Ifremer, IRSI, Service de Bioinformatique (SeBiMER), Plouzané, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Bernard de Massy
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Frédéric Baudat
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
4
|
Zubair T, Bandyopadhyay D. Small Molecule EGFR Inhibitors as Anti-Cancer Agents: Discovery, Mechanisms of Action, and Opportunities. Int J Mol Sci 2023; 24:ijms24032651. [PMID: 36768973 PMCID: PMC9916655 DOI: 10.3390/ijms24032651] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Epidermal growth factor receptors (EGFRs) are a class of receptor tyrosine kinase that are also called ErbB1 and HER1. EGFR tyrosine kinase activity inhibition is considered a promising therapeutic strategy for the treatment of cancer. Many small-molecule inhibitors of EGFR tyrosine kinase (EGFR-TK), from medicinally privileged molecules to commercial drugs, have been overviewed. Particular attention has been paid to the structure of the molecule and its mechanism of action if reported. Subsequent classification of the molecules under discussion has been carried out. Both natural and synthetic and reversible and irreversible EGFR-tyrosine kinase inhibitors have been discussed. Various types of cancers that are caused by overexpression of the EGFR gene, their possible molecular origins, and their natures have also been counted in this article. Because the EGFR signaling pathway controls the proliferation, growth, survival, and differentiation of cells, and the mutated EGFR gene overproduces EGFR protein, which ultimately causes several types of cancer, proper understanding of the molecular dynamics between the protein structure and its inhibitors will lead to more effective and selective EGFR-TKIs, which in turn will be able to save more lives in the battle against cancer.
Collapse
Affiliation(s)
- Tanzida Zubair
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- Correspondence:
| |
Collapse
|
5
|
Torres-García E, Pinto-Cámara R, Linares A, Martínez D, Abonza V, Brito-Alarcón E, Calcines-Cruz C, Valdés-Galindo G, Torres D, Jabloñski M, Torres-Martínez HH, Martínez JL, Hernández HO, Ocelotl-Oviedo JP, Garcés Y, Barchi M, D’Antuono R, Bošković A, Dubrovsky JG, Darszon A, Buffone MG, Morales RR, Rendon-Mancha JM, Wood CD, Hernández-García A, Krapf D, Crevenna ÁH, Guerrero A. Extending resolution within a single imaging frame. Nat Commun 2022; 13:7452. [PMID: 36460648 PMCID: PMC9718789 DOI: 10.1038/s41467-022-34693-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
The resolution of fluorescence microscopy images is limited by the physical properties of light. In the last decade, numerous super-resolution microscopy (SRM) approaches have been proposed to deal with such hindrance. Here we present Mean-Shift Super Resolution (MSSR), a new SRM algorithm based on the Mean Shift theory, which extends spatial resolution of single fluorescence images beyond the diffraction limit of light. MSSR works on low and high fluorophore densities, is not limited by the architecture of the optical setup and is applicable to single images as well as temporal series. The theoretical limit of spatial resolution, based on optimized real-world imaging conditions and analysis of temporal image stacks, has been measured to be 40 nm. Furthermore, MSSR has denoising capabilities that outperform other SRM approaches. Along with its wide accessibility, MSSR is a powerful, flexible, and generic tool for multidimensional and live cell imaging applications.
Collapse
Affiliation(s)
- Esley Torres-García
- grid.412873.b0000 0004 0484 1712Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Raúl Pinto-Cámara
- grid.412873.b0000 0004 0484 1712Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Alejandro Linares
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico ,grid.144532.5000000012169920XAnalytical and Quantitative Light Microscopy, Marine Biological Laboratory, Woods Hole, MA USA
| | - Damián Martínez
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Víctor Abonza
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Eduardo Brito-Alarcón
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Carlos Calcines-Cruz
- grid.9486.30000 0001 2159 0001Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gustavo Valdés-Galindo
- grid.9486.30000 0001 2159 0001Departamento de Química de Biomacromoléculas, Instituto de Química. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - David Torres
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Martina Jabloñski
- grid.464644.00000 0004 0637 7271Instituto de Biología y Medicina Experimental (IBYME‐CONICET), Buenos Aires, Argentina
| | - Héctor H. Torres-Martínez
- grid.9486.30000 0001 2159 0001Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - José L. Martínez
- grid.9486.30000 0001 2159 0001Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Haydee O. Hernández
- grid.9486.30000 0001 2159 0001Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José P. Ocelotl-Oviedo
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Yasel Garcés
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Marco Barchi
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Ana Bošković
- grid.418924.20000 0004 0627 3632Neurobiology and Epigenetics Unit, European Molecular Biology Laboratory, Monterotondo, Rome Italy
| | - Joseph G. Dubrovsky
- grid.9486.30000 0001 2159 0001Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Alberto Darszon
- grid.9486.30000 0001 2159 0001Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Mariano G. Buffone
- grid.464644.00000 0004 0637 7271Instituto de Biología y Medicina Experimental (IBYME‐CONICET), Buenos Aires, Argentina
| | - Roberto Rodríguez Morales
- grid.472559.80000 0004 0498 8706Instituto de Cibernética, Matemática y Física, Ciudad de la Habana, Cuba
| | - Juan Manuel Rendon-Mancha
- grid.412873.b0000 0004 0484 1712Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico
| | - Christopher D. Wood
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Armando Hernández-García
- grid.9486.30000 0001 2159 0001Departamento de Química de Biomacromoléculas, Instituto de Química. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Diego Krapf
- grid.47894.360000 0004 1936 8083Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
| | - Álvaro H. Crevenna
- grid.418924.20000 0004 0627 3632Neurobiology and Epigenetics Unit, European Molecular Biology Laboratory, Monterotondo, Rome Italy
| | - Adán Guerrero
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| |
Collapse
|
6
|
Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2022; 7:200. [PMID: 35752619 PMCID: PMC9233709 DOI: 10.1038/s41392-022-01055-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetics is closely related to cardiovascular diseases. Genome-wide linkage and association analyses and candidate gene approaches illustrate the multigenic complexity of cardiovascular disease. Several epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding RNA, which are of importance for cardiovascular disease development and regression. Targeting epigenetic key enzymes, especially the DNA methyltransferases, histone methyltransferases, histone acetylases, histone deacetylases and their regulated target genes, could represent an attractive new route for the diagnosis and treatment of cardiovascular diseases. Herein, we summarize the knowledge on epigenetic history and essential regulatory mechanisms in cardiovascular diseases. Furthermore, we discuss the preclinical studies and drugs that are targeted these epigenetic key enzymes for cardiovascular diseases therapy. Finally, we conclude the clinical trials that are going to target some of these processes.
Collapse
|
7
|
Gupta K, Jones JC, Farias VDA, Mackeyev Y, Singh PK, Quiñones-Hinojosa A, Krishnan S. Identification of Synergistic Drug Combinations to Target KRAS-Driven Chemoradioresistant Cancers Utilizing Tumoroid Models of Colorectal Adenocarcinoma and Recurrent Glioblastoma. Front Oncol 2022; 12:840241. [PMID: 35664781 PMCID: PMC9158132 DOI: 10.3389/fonc.2022.840241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Treatment resistance is observed in all advanced cancers. Colorectal cancer (CRC) presenting as colorectal adenocarcinoma (COAD) is the second leading cause of cancer deaths worldwide. Multimodality treatment includes surgery, chemotherapy, and targeted therapies with selective utilization of immunotherapy and radiation therapy. Despite the early success of anti-epidermal growth factor receptor (anti-EGFR) therapy, treatment resistance is common and often driven by mutations in APC, KRAS, RAF, and PI3K/mTOR and positive feedback between activated KRAS and WNT effectors. Challenges in the direct targeting of WNT regulators and KRAS have caused alternative actionable targets to gain recent attention. Utilizing an unbiased drug screen, we identified combinatorial targeting of DDR1/BCR-ABL signaling axis with small-molecule inhibitors of EGFR-ERBB2 to be potentially cytotoxic against multicellular spheroids obtained from WNT-activated and KRAS-mutant COAD lines (HCT116, DLD1, and SW480) independent of their KRAS mutation type. Based on the data-driven approach using available patient datasets (The Cancer Genome Atlas (TCGA)), we constructed transcriptomic correlations between gene DDR1, with an expression of genes for EGFR, ERBB2-4, mitogen-activated protein kinase (MAPK) pathway intermediates, BCR, and ABL and genes for cancer stem cell reactivation, cell polarity, and adhesion; we identified a positive association of DDR1 with EGFR, ERBB2, BRAF, SOX9, and VANGL2 in Pan-Cancer. The evaluation of the pathway network using the STRING database and Pathway Commons database revealed DDR1 protein to relay its signaling via adaptor proteins (SHC1, GRB2, and SOS1) and BCR axis to contribute to the KRAS-PI3K-AKT signaling cascade, which was confirmed by Western blotting. We further confirmed the cytotoxic potential of our lead combination involving EGFR/ERBB2 inhibitor (lapatinib) with DDR1/BCR-ABL inhibitor (nilotinib) in radioresistant spheroids of HCT116 (COAD) and, in an additional devastating primary cancer model, glioblastoma (GBM). GBMs overexpress DDR1 and share some common genomic features with COAD like EGFR amplification and WNT activation. Moreover, genetic alterations in genes like NF1 make GBMs have an intrinsically high KRAS activity. We show the combination of nilotinib plus lapatinib to exhibit more potent cytotoxic efficacy than either of the drugs administered alone in tumoroids of patient-derived recurrent GBMs. Collectively, our findings suggest that combinatorial targeting of DDR1/BCR-ABL with EGFR-ERBB2 signaling may offer a therapeutic strategy against stem-like KRAS-driven chemoradioresistant tumors of COAD and GBM, widening the window for its applications in mainstream cancer therapeutics.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Jeremy C Jones
- Department of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yuri Mackeyev
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Pankaj K Singh
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States.,Department of Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
8
|
Temperature sensitivity of DNA double-strand break repair underpins heat-induced meiotic failure in mouse spermatogenesis. Commun Biol 2022; 5:504. [PMID: 35618762 PMCID: PMC9135715 DOI: 10.1038/s42003-022-03449-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/05/2022] [Indexed: 12/22/2022] Open
Abstract
Mammalian spermatogenesis is a heat-vulnerable process that occurs at low temperatures, and elevated testicular temperatures cause male infertility. However, the current reliance on in vivo assays limits their potential to detail temperature dependence and destructive processes. Using ex vivo cultures of mouse testis explants at different controlled temperatures, we found that spermatogenesis failed at multiple steps, showing sharp temperature dependencies. At 38 °C (body core temperature), meiotic prophase I is damaged, showing increased DNA double-strand breaks (DSBs) and compromised DSB repair. Such damaged spermatocytes cause asynapsis between homologous chromosomes and are eliminated by apoptosis at the meiotic checkpoint. At 37 °C, some spermatocytes survive to the late pachytene stage, retaining high levels of unrepaired DSBs but do not complete meiosis with compromised crossover formation. These findings provide insight into the mechanisms and significance of heat vulnerability in mammalian spermatogenesis.
Collapse
|
9
|
Min JK, Park HS, Lee YB, Kim JG, Kim JI, Park JB. Cross-Talk between Wnt Signaling and Src Tyrosine Kinase. Biomedicines 2022; 10:biomedicines10051112. [PMID: 35625853 PMCID: PMC9138253 DOI: 10.3390/biomedicines10051112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
Src, a non-receptor tyrosine kinase, was first discovered as a prototype oncogene and has been shown to critical for cancer progression for a variety of tissues. Src activity is regulated by a number of post-translational modifications in response to various stimuli. Phosphorylations of Src Tyr419 (human; 416 in chicken) and Src Tyr530 (human; 527 in chicken) have been known to be critical for activation and inactivation of Src, respectively. Wnt signaling regulates a variety of cellular functions including for development and cell proliferation, and has a role in certain diseases such as cancer. Wnt signaling is carried out through two pathways: β-catenin-dependent canonical and β-catenin-independent non-canonical pathways as Wnt ligands bind to their receptors, Frizzled, LRP5/6, and ROR1/2. In addition, many signaling components including Axin, APC, Damm, Dishevelled, JNK kinase and Rho GTPases contribute to these canonical and non-canonical Wnt pathways. However, the communication between Wnt signaling and Src tyrosine kinase has not been well reviewed as Src regulates Wnt signaling through LRP6 tyrosine phosphorylation. GSK-3β phosphorylated by Wnt also regulates Src activity. As Wnt signaling and Src mutually regulate each other, it is noted that aberrant regulation of these components give rise to various diseases including typically cancer, and as such, merit a closer look.
Collapse
Affiliation(s)
- Jung Ki Min
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Hwee-Seon Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-S.P.); (J.-I.K.)
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yoon-Beom Lee
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-S.P.); (J.-I.K.)
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82-33-248-2542; Fax: +82-33-244-8425
| |
Collapse
|
10
|
Choi JK, Kwak IS, Yoon SB, Cho H, Moon BS. A Small Molecule Promoting Neural Differentiation Suppresses Cancer Stem Cells in Colorectal Cancer. Biomedicines 2022; 10:biomedicines10040859. [PMID: 35453609 PMCID: PMC9025482 DOI: 10.3390/biomedicines10040859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer stem cells (CSCs) are a tumor cell subpopulation that drives tumor progression and metastasis, leading to a poor overall survival of patients. In colorectal cancer (CRC), the hyper-activation of Wnt/β-catenin signaling by a mutation of both adenomatous polyposis coli (APC) and K-Ras increases the size of the CSC population. We previously showed that CPD0857 inactivates Wnt/β-catenin signaling by promoting the ubiquitin-dependent proteasomal degradation of β-catenin and Ras proteins, thereby decreasing proliferation and increasing the apoptosis of CRC lines. CPD0857 also decreased the growth and invasiveness of CRC cells harboring mutant K-Ras resistant to EGFR mAb therapy. Here, we show that CPD0857 treatment decreases proliferation and increases the neuronal differentiation of neural progenitor cells (NPCs). CDP0857 effectively reduced the expression of CSC markers and suppressed self-renewal capacity. CPD0857 treatment also inhibited the proliferation and expression of CSC markers in D-K-Ras MT cells carrying K-Ras, APC and PI3K mutations, indicating the inhibition of PI3K/AKT signaling. Moreover, CPD0857-treated xenograft mice showed a regression of tumor growth and decreased numbers of CSCs in tumors. We conclude that CPD0857 could serve as the basis of a drug development strategy targeting CSCs activated through Wnt/β-catenin-Ras MAPK-PI3K/AKT signaling in CRCs.
Collapse
Affiliation(s)
- Jung Kyu Choi
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea;
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea;
| | - Sae-Bom Yoon
- Therapeutics and Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (S.-B.Y.); (H.C.)
| | - Heeyeong Cho
- Therapeutics and Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (S.-B.Y.); (H.C.)
| | - Byoung-San Moon
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea
- Correspondence: ; Tel.: +82-61-659-7307; Fax: +82-61-659-7309
| |
Collapse
|
11
|
Small-Molecule RAS Inhibitors as Anticancer Agents: Discovery, Development, and Mechanistic Studies. Int J Mol Sci 2022; 23:ijms23073706. [PMID: 35409064 PMCID: PMC8999084 DOI: 10.3390/ijms23073706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
Mutations of RAS oncogenes are responsible for about 30% of all human cancer types, including pancreatic, lung, and colorectal cancers. While KRAS1 is a pseudogene, mutation of KRAS2 (commonly known as KRAS oncogene) is directly or indirectly associated with human cancers. Among the RAS family, KRAS is the most abundant oncogene related to uncontrolled cellular proliferation to generate solid tumors in many types of cancer such as pancreatic carcinoma (over 80%), colon carcinoma (40-50%), lung carcinoma (30-50%), and other types of cancer. Once described as 'undruggable', RAS proteins have become 'druggable', at least to a certain extent, due to the continuous efforts made during the past four decades. In this account, we discuss the chemistry and biology (wherever available) of the small-molecule inhibitors (synthetic, semi-synthetic, and natural) of KRAS proteins that were published in the past decades. Commercial drugs, as well as investigational molecules from preliminary stages to clinical trials, are categorized and discussed in this study. In summary, this study presents an in-depth discussion of RAS proteins, classifies the RAS superfamily, and describes the molecular mechanism of small-molecule RAS inhibitors.
Collapse
|
12
|
Guo T, Xing Y, Zhu H, Yang L, Xiao Y, Xu J. Relationship between osteoporosis and benign paroxysmal positional vertigo based on evidence-based medicine and bioinformatics. Arch Osteoporos 2021; 16:173. [PMID: 34779956 DOI: 10.1007/s11657-021-01006-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED It has been reported that osteoporosis is a possible risk factor of benign paroxysmal positional vertigo (BPPV). PURPOSE We analyzed the correlation between osteoporosis and BPPV and the possible mechanism by performing evidence-based medicine meta-analysis and bioinformatics analysis. METHODS Initially, English articles related to osteoporosis and BPPV were obtained through PubMed and EMBASE databases. Stata12.0 software was used for meta-analysis to calculate the odd ratio (OR) and 95% confidence interval (CI) of outcome indicators, and the heterogeneity was evaluated by subgroup analysis, publication bias evaluation, and sensitivity analysis. In addition, microarray datasets related to BPPV and osteoporosis were obtained from gene expression omnibus (GEO) database to screen differentially expressed genes. At last, a mouse model of osteoporosis was established by bilateral oophorectomy for validation. RT-qPCR and Western blot analysis were performed to determine expression of related factors in mouse tissues. RESULTS Osteoporosis was suggested as an important risk factor for BPPV through meta-analysis of these 12 articles. It was found that PPP2CA was upregulated in BPPV and low bone mineral density (BMD) samples. Moreover, PPP2CA induced dephosphorylation of BCL2, which may be involved in BPPV through regulation of BMD. Through this mechanism, silencing of PPP2CA could elevate the incidence of BPPV by promoting bone remodeling and reducing the density of otoconia around the macula. CONCLUSIONS PPP2CA reduces BMD expression by inducing dephosphorylation of BCL2, which may be one of the mechanisms responsible for the onset of BPPV in osteoporosis.
Collapse
Affiliation(s)
- Tuanmao Guo
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Yanli Xing
- Department of Pharmacy, Xianyang Central Hospital, Shanxi Province, No. 78, Renmin East Road, Xianyang, 712000, People's Republic of China.
| | - Haiyun Zhu
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Lan Yang
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Yuan Xiao
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Jiang Xu
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| |
Collapse
|
13
|
Chang J, Xavier HW, Chen D, Liu Y, Li H, Bian Z. Potential Role of Traditional Chinese Medicines by Wnt/β-Catenin Pathway Compared With Targeted Small Molecules in Colorectal Cancer Therapy. Front Pharmacol 2021; 12:690501. [PMID: 34381360 PMCID: PMC8350388 DOI: 10.3389/fphar.2021.690501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) has become a global public health problem because of its high incidence and mortality rate worldwide. The previous clinical treatment for CRC mainly involves conventional surgery, chemotherapy, and radiotherapy. With the development of tumor molecular targeted therapy, small molecule inhibitors present a great advantage in improving the survival of patients with advanced CRC. However, various side effects and drug resistance induced by chemotherapy are still the major obstacles to improve the clinical benefit. Thus, it is crucial to find new and alternative drugs for CRC treatment. Traditional Chinese medicines (TCMs) have been proved to have low toxicity and multi-target characteristics. In the last few decades, an increasing number of studies have demonstrated that TCMs exhibit strong anticancer effects in both experimental and clinical models and may serve as alternative chemotherapy agents for CRC treatment. Notably, Wnt/β-catenin signaling pathway plays a vital role in the initiation and progression of CRC by modulating the stability of β-catenin in the cytoplasm. Targeting Wnt/β-catenin pathway is a novel direction for developing therapies for CRC. In this review, we outlined the anti-tumor effects of small molecular inhibitors on CRC through Wnt/β-catenin pathway. More importantly, we focused on the potential role of TCMs against tumors by targeting Wnt/β-catenin signaling at different stages of CRC, including precancerous lesions, early stage of CRC and advanced CRC. Furthermore, we also discussed perspectives to develop potential new drugs from TCMs via Wnt/β-catenin pathway for the treatment of CRC.
Collapse
Affiliation(s)
- Jinrong Chang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Dongfeng Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yamei Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
14
|
László L, Kurilla A, Takács T, Kudlik G, Koprivanacz K, Buday L, Vas V. Recent Updates on the Significance of KRAS Mutations in Colorectal Cancer Biology. Cells 2021; 10:667. [PMID: 33802849 PMCID: PMC8002639 DOI: 10.3390/cells10030667] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
The most commonly mutated isoform of RAS among all cancer subtypes is KRAS. In this review, we focus on the special role of KRAS mutations in colorectal cancer (CRC), aiming to collect recent data on KRAS-driven enhanced cell signalling, in vitro and in vivo research models, and CRC development-related processes such as metastasis and cancer stem cell formation. We attempt to cover the diverse nature of the effects of KRAS mutations on age-related CRC development. As the incidence of CRC is rising in young adults, we have reviewed the driving forces of ageing-dependent CRC.
Collapse
Affiliation(s)
- Loretta László
- Research Centre for Natural Sciences, Institute of Enzymology, 1051 Budapest, Hungary; (L.L.); (A.K.); (T.T.); (G.K.); (K.K.); (L.B.)
| | - Anita Kurilla
- Research Centre for Natural Sciences, Institute of Enzymology, 1051 Budapest, Hungary; (L.L.); (A.K.); (T.T.); (G.K.); (K.K.); (L.B.)
| | - Tamás Takács
- Research Centre for Natural Sciences, Institute of Enzymology, 1051 Budapest, Hungary; (L.L.); (A.K.); (T.T.); (G.K.); (K.K.); (L.B.)
| | - Gyöngyi Kudlik
- Research Centre for Natural Sciences, Institute of Enzymology, 1051 Budapest, Hungary; (L.L.); (A.K.); (T.T.); (G.K.); (K.K.); (L.B.)
| | - Kitti Koprivanacz
- Research Centre for Natural Sciences, Institute of Enzymology, 1051 Budapest, Hungary; (L.L.); (A.K.); (T.T.); (G.K.); (K.K.); (L.B.)
| | - László Buday
- Research Centre for Natural Sciences, Institute of Enzymology, 1051 Budapest, Hungary; (L.L.); (A.K.); (T.T.); (G.K.); (K.K.); (L.B.)
- Department of Medical Chemistry, Semmelweis University Medical School, 1071 Budapest, Hungary
| | - Virag Vas
- Research Centre for Natural Sciences, Institute of Enzymology, 1051 Budapest, Hungary; (L.L.); (A.K.); (T.T.); (G.K.); (K.K.); (L.B.)
| |
Collapse
|
15
|
Maintenance of genome integrity and active homologous recombination in embryonic stem cells. Exp Mol Med 2020; 52:1220-1229. [PMID: 32770082 PMCID: PMC8080833 DOI: 10.1038/s12276-020-0481-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells (ESCs) possess specific gene expression patterns that confer the ability to proliferate indefinitely and enable pluripotency, which allows ESCs to differentiate into diverse cell types in response to developmental signals. Compared to differentiated cells, ESCs harbor an elevated level of homologous recombination (HR)-related proteins and exhibit exceptional cell cycle control, characterized by a high proliferation rate and a prolonged S phase. HR is involved in several aspects of chromosome maintenance. For instance, HR repairs impaired chromosomes and prevents the collapse of DNA replication forks during cell proliferation. Thus, HR is essential for the maintenance of genomic integrity and prevents cellular dysregulation and lethal events. In addition, abundant HR proteins in the prolonged S phase can efficiently protect ESCs from external damages and protect against genomic instability caused by DNA breaks, facilitating rapid and accurate DNA break repair following chromosome duplication. The maintenance of genome integrity is key to preserving the functions of ESCs and reducing the risks of cancer development, cell cycle arrest, and abnormal replication. Here, we review the fundamental links between the stem cell-specific HR process and DNA damage response as well as the different strategies employed by ESCs to maintain genomic integrity. Embryonic stem cells (ESCs), which give rise to the many specialized cells of the body, have highly effective molecular processes of DNA maintenance and repair which protect their genetic information from damage. Keun Pil Kim and colleagues at Chung-Ang University, Seoul, South Korea, review the strategies found in ESCs to maintain the integrity of their DNA as they develop and multiply. A key feature is the process of homologous recombination (HR) in which one copy of a section of DNA acts as the template allowing a damaged version of the DNA to be repaired. HR also facilitates swapping of sections of DNA when sperm and egg cells form, promoting genetic diversity. HR appears to be especially significant in maintaining ESC DNA as ESCs possess higher levels of key proteins involved in its maintenance and regulation.
Collapse
|
16
|
Cho YH, Ro EJ, Yoon JS, Kwak DK, Cho J, Kang DW, Lee HY, Choi KY. Small molecule-induced simultaneous destabilization of β-catenin and RAS is an effective molecular strategy to suppress stemness of colorectal cancer cells. Cell Commun Signal 2020; 18:38. [PMID: 32143715 PMCID: PMC7060567 DOI: 10.1186/s12964-020-0519-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs), the major driver of tumorigenesis, is a sub-population of tumor cells responsible for poor clinical outcomes. However, molecular mechanism to identify targets for controlling CSCs is poorly understood. METHODS Gene Set Enrichment Analyses (GSEA) of Wnt/β-catenin and RAS signaling pathways in stem-like subtype of colorectal cancer (CRC) patients were performed using two gene expression data set. The therapeutic effects of destabilization of β-catenin and RAS were tested by treatment of small molecule KYA1797K using CRC patient derived cells. RESULTS Treatment with KYA1797K, a small molecule that destabilizes both β-catenin and RAS via Axin binding, effectively suppresses the stemness of CSCs as shown in CRC spheroids and small intestinal tumors of ApcMin/+/K-RasG12DLA2 mice. Moreover, KYA1797K also suppresses the stemness of cells in CRC patient avatar model systems, such as patient-derived tumor organoids (PDTOs) and patient-derived tumor xenograft (PDTX). CONCLUSION Our results suggest that destabilization of both β-catenin and RAS is a potential therapeutic strategy for controlling stemness of CRC cells. Video abstract.
Collapse
Affiliation(s)
- Yong-Hee Cho
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eun Ji Ro
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jeong-Su Yoon
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Dong-Kyu Kwak
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jaebeom Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Dong Woo Kang
- Medpacto Inc., Borim building, 92 myeongdal Ro, Seocho-gu, Seoul, South Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea. .,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea. .,CK Biotechnology Inc, Building 117, 50 Yonsei Ro, Seodaemun-Gu, Seoul, South Korea.
| |
Collapse
|
17
|
Bin Y, Ding Y, Xiao W, Liao A. RASSF1A: A promising target for the diagnosis and treatment of cancer. Clin Chim Acta 2020; 504:98-108. [PMID: 31981586 DOI: 10.1016/j.cca.2020.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The Ras association domain family 1 isoform A (RASSF1A), a tumor suppressor, regulates several tumor-related signaling pathways and interferes with diverse cellular processes. RASSF1A is frequently demonstrated to be inactivated by hypermethylation in numerous types of solid cancers. It is also associated with lymph node metastasis, vascular invasion, and chemo-resistance. Therefore, reactivation of RASSF1A may be a viable strategy to block tumor progress and reverse drug resistance. In this review, we have summarized the clinical value of RASSF1A for screening, staging, and therapeutic management of human malignancies. We also highlighted the potential mechanism of RASSF1A in chemo-resistance, which may help identify novel drugs in the future.
Collapse
Affiliation(s)
- Yuling Bin
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Yong Ding
- Department of Vascular Surgery, Zhongshan Hospital, Institue of Vascular Surgery, Fudan University, Shanghai 200032, China
| | - Weisheng Xiao
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Aijun Liao
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
18
|
Ruan Z, Liang M, Lai M, Shang L, Deng X, Su X. RETRACTED: KYA1797K down-regulates PD-L1 in colon cancer stem cells to block immune evasion by suppressing the β-catenin/STT3 signaling pathway. Int Immunopharmacol 2020; 78:106003. [PMID: 31812723 DOI: 10.1016/j.intimp.2019.106003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Accepted: 10/24/2019] [Indexed: 01/12/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figures 2B,C,D+E and 3A,B,C,F+G, and a suspected image duplication within Figure 1B, as they appeared to feature in previous publications, as detailed here: https://pubpeer.com/publications/DCF33B20702DC3AE0C9D750A90174B; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. The journal requested the corresponding author comment on these concerns and to provide the raw data. The corresponding author, Xinguo Su, stated “…the researchers responsible for technical support and data storage have left due to the impact of the epidemic, and along with much of the data involved in the paper”. The editorial team were not convinced that the raw Western blot data that was shared represented uncropped and unadjusted source data, so its veracity could not be adequately confirmed. The Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Zhiyan Ruan
- School of Pharmacy, Guangdong Food and Drug Vocational College, Guangzhou 510520, PR China
| | - Minhua Liang
- School of Pharmacy, Guangdong Food and Drug Vocational College, Guangzhou 510520, PR China
| | - Manxiang Lai
- School of Pharmacy, Guangdong Food and Drug Vocational College, Guangzhou 510520, PR China
| | - Ling Shang
- School of Pharmacy, Guangdong Food and Drug Vocational College, Guangzhou 510520, PR China
| | - Xiangliang Deng
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Xinguo Su
- School of Pharmacy, Guangdong Food and Drug Vocational College, Guangzhou 510520, PR China.
| |
Collapse
|
19
|
Abstract
Many sensory and chemical signal inputs are transmitted by intracellular GTP-binding (G) proteins. G proteins make up two major subfamilies: "large" G proteins comprising three subunits and "small" G proteins, such as the proto-oncogene product RAS, which contains a single subunit. Members of both subfamilies are regulated by post-translational modifications, including lipidation, proteolysis, and carboxyl methylation. Emerging studies have shown that these proteins are also modified by ubiquitination. Much of our current understanding of this post-translational modification comes from investigations of the large G-protein α subunit from yeast (Gpa1) and the three RAS isotypes in humans, NRAS, KRAS, and HRAS. Gα undergoes both mono- and polyubiquitination, and these modifications have distinct consequences for determining the sites and mechanisms of its degradation. Genetic and biochemical reconstitution studies have revealed the enzymes and binding partners required for addition and removal of ubiquitin, as well as the delivery and destruction of both the mono- and polyubiquitinated forms of the G protein. Complementary studies of RAS have identified multiple ubiquitination sites, each having distinct consequences for binding to regulatory proteins, shuttling to and from the plasma membrane, and degradation. Here, we review what is currently known about these two well-studied examples, Gpa1 and the human RAS proteins, that have revealed additional mechanisms of signal regulation and dysregulation relevant to human physiology. We also compare and contrast the effects of G-protein ubiquitination with other post-translational modifications of these proteins.
Collapse
Affiliation(s)
- Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|