1
|
Shen SR, Huang ZQ, Yang YD, Han JB, Fang ZM, Guan Y, Xu JC, Min JL, Wang Y, Wu GJ, Xiao ZX, Luo W, Huang ZQ, Liang G. JOSD2 inhibits angiotensin II-induced vascular remodeling by deubiquitinating and stabilizing SMAD7. Acta Pharmacol Sin 2025:10.1038/s41401-024-01437-y. [PMID: 39833306 DOI: 10.1038/s41401-024-01437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/17/2024] [Indexed: 01/22/2025]
Abstract
Increased level of angiotensin II (Ang II) plays a central role in the development of hypertensive vascular remodeling. In this study, we identified the deubiquitinating enzyme Josephin domain-containing protein 2 (JOSD2) as a protective factor and investigated its molecular mechanism in Ang II-induced vascular remodeling. First, we found that JOSD2 was upregulated in aortic smooth muscle cells, but not in endothelial cells of Ang II-challenged mouse vascular tissues. Whole-body knockout of JOSD2 significantly deteriorated Ang II-induced vascular remodeling in mice. Conversely, Ang II-induced vascular remodeling was reversed by vascular smooth muscle cell (VSMC)-specific JOSD2 overexpression. In vitro, JOSD2 deficiency aggravated Ang II-induced fibrosis, proliferation, and migration VSMCs, while these changes were reversed by JOSD2 overexpression. RNA-seq analysis showed that the protective effects of JOSD2 in VSMCs were related to the TGFβ-SMAD pathway. Furthermore, the LC-MS/MS analysis identified SMAD7, a negative regulator in the TGFβ-SMAD pathway, as the substrate of JOSD2. JOSD2 specifically bound to the MH1 domain of SMAD7 to remove the K48-linked ubiquitin chains from SMAD7 at lysine 220 to sustain SMAD7 stability. Taken together, our finding reveals that the JOSD2-SMAD7 axis is critical for relieving Ang II-induced vascular remodeling and JOSD2 may be a novel and potential therapeutic target for hypertensive vascular remodeling.
Collapse
Affiliation(s)
- Si-Rui Shen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhu-Qi Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yu-Die Yang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ji-Bo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Zi-Min Fang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yue Guan
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jia-Chen Xu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ju-Lian Min
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Gao-Jun Wu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhong-Xiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, 325600, China
| | - Wu Luo
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Zhou-Qing Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Guang Liang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
2
|
Wu S, Guo W, Chen L, Lin X, Tang M, Lin C, Guo H, Zhang T, Gao Y. Downregulation of Gadd45β alleviates osteoarthritis by repressing lipopolysaccharide-induced fibroblast-like synoviocyte inflammation, proliferation and migration. Int Immunopharmacol 2024; 126:111202. [PMID: 37988908 DOI: 10.1016/j.intimp.2023.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE Gadd45β have a regulatory role in cellular inflammation, proliferation and migration. However, the role of Gadd45β in synovial inflammation in osteoarthritis (OA) remains to be explored. This study aimed to ascertain whether Gadd45β is involved in OA synovial inflammation. METHODS The rat model was induced by sodium iodoacetate and the cellular model was constructed with lipopolysaccharide (LPS)-induced fibroblast-like synoviocytes (FLSs). siRNA was applied to interfere with the expression of intracellular Gadd45β. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to detect the expression of Gadd45β mRNA and protein. The inflammation, proliferation, and migration of OA-FLSs were detected by enzyme-linked immunosorbent assay, cell scratch assay, 5-ethynyl-2'-deoxyuridine assay, etc. The effect of downregulation of Gadd45β on the nuclear factor-κB (NF-κB) pathway was investigated. RESULTS Expression of Gadd45β in OA rat synovial tissues and OA-FLSs was increased, and LPS treatment promoted cell proliferation and enhanced cell migration. Gadd45β interference inhibited the inflammation, proliferation and migration of cells induced by LPS. LPS promoted P65 expression in the nucleus and activated the NF-κB signaling pathway, whereas si-Gadd45β reversed this situation. CONCLUSIONS si-Gadd45β inhibited the inflammatory response, proliferation and migration of FLSs, and activation of the NF-κB signaling pathway, which could delay the progression of OA. Hence, it may become a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Suyu Wu
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Wenwen Guo
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Ling Chen
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Xinxin Lin
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, Fujian, China; Department of Pathology, Fuzhou Second Hospital, Fuzhou 350007, Fujian, China
| | - Minjie Tang
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Cheng Lin
- The School of Health, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Hanzhi Guo
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Tianwen Zhang
- Fujian Fishery Resources Monitoring Center, Fuzhou 350003, Fujian, China
| | - Yao Gao
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, Fujian, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou 350004, Fujian, China.
| |
Collapse
|
3
|
Chathuranga WAG, Nikapitiya C, Kim JH, Chathuranga K, Weerawardhana A, Dodantenna N, Kim DJ, Poo H, Jung JU, Lee CH, Lee JS. Gadd45β is critical for regulation of type I interferon signaling by facilitating G3BP-mediated stress granule formation. Cell Rep 2023; 42:113358. [PMID: 37917584 DOI: 10.1016/j.celrep.2023.113358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Stress granules (SGs) constitute a signaling hub that plays a critical role in type I interferon responses. Here, we report that growth arrest and DNA damage-inducible beta (Gadd45β) act as a positive regulator of SG-mediated interferon signaling by targeting G3BP upon RNA virus infection. Gadd45β deficiency markedly impairs SG formation and SG-mediated activation of interferon signaling in vitro. Gadd45β knockout mice are highly susceptible to RNA virus infection, and their ability to produce interferon and cytokines is severely impaired. Specifically, Gadd45β interacts with the RNA-binding domain of G3BP, leading to conformational expansion of G3BP1 via dissolution of its autoinhibitory electrostatic intramolecular interaction. The acidic loop 1- and RNA-binding properties of Gadd45β markedly increase the conformational expansion and RNA-binding affinity of the G3BP1-Gadd45β complex, thereby promoting assembly of SGs. These findings suggest a role for Gadd45β as a component and critical regulator of G3BP1-mediated SG formation, which facilitates RLR-mediated interferon signaling.
Collapse
Affiliation(s)
- W A Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Jae-Hoon Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea; Livestock Products Analysis Division, Division of Animal Health, Daejeon Metropolitan City Institute of Health and Environment, Daejeon 34146, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Haryoung Poo
- Department of Biomedical Science and Engineering, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae U Jung
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRRIB), Daejeon 34141, Republic of Korea.
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea.
| |
Collapse
|
4
|
Teramoto H, Hirashima N, Tanaka M. Calcineurin B1 Deficiency Reduces Proliferation, Increases Apoptosis, and Alters Secretion in Enteric Glial Cells of Mouse Small Intestine in Culture. Cells 2023; 12:1867. [PMID: 37508531 PMCID: PMC10378349 DOI: 10.3390/cells12141867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
To investigate the roles of calcineurin (CN) in glial cells, we previously generated conditional knockout (CKO) mice lacking CNB1 in glial cells. Because these CKO mice showed dysfunction and inflammation of the small intestine in addition to growth impairment and postweaning death, we have focused on enteric glial cells (EGCs) in the small intestine. In this study, we examined the effects of CNB1 deficiency on the proliferation and survival of EGCs and the expression and secretion of EGC-derived substances in culture to reveal the mechanisms of how CNB1 deficiency leads to dysfunction and inflammation of the small intestine. In primary myenteric cultures of the small intestine, EGCs from the CKO mice showed reduced proliferation and increased apoptosis compared with EGCs from control mice. In purified EGC cultures from the CKO mice, Western blot analysis showed increased expression of S100B, iNOS, GFAP, and GDNF, and increased phosphorylation of NF-κB p65. In the supernatants of purified EGC cultures from the CKO mice, ELISA showed reduced secretion of TGF-β1. In contrast, GDNF secretion was not altered in purified EGC cultures from the CKO mice. Furthermore, treatment with an S100B inhibitor partially rescued the CKO mice from growth impairment and postweaning death in vivo. In conclusion, CNB1 deficiency leads to reduced proliferation and increased apoptosis of EGCs and abnormal expression and secretion of EGC-derived substances, which may contribute to dysfunction and inflammation of the small intestine.
Collapse
Affiliation(s)
- Hikaru Teramoto
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Naohide Hirashima
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Masahiko Tanaka
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
5
|
Lee SH, Moon SJ, Woo SH, Ahn G, Kim WK, Lee CH, Hwang JH. CrebH protects against liver injury associated with colonic inflammation via modulation of exosomal miRNA. Cell Biosci 2023; 13:116. [PMID: 37370191 DOI: 10.1186/s13578-023-01065-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Hepatic liver disease, including primary sclerosing cholangitis (PSC), is a serious extraintestinal manifestations of colonic inflammation. Cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CrebH) is a transcription factor expressed mostly in the liver and small intestine. However, CrebH's roles in the gut-liver axis remain unknown. METHODS Inflammatory bowel disease (IBD) and PSC disease models were established in wild-type and CrebH-/- mice treated with dextran sulfate sodium, dinitrobenzene sulfonic acid, and diethoxycarbonyl dihydrocollidine diet, respectively. RNA sequencing were conducted to investigate differential gene expression. Exosomes were isolated from plasma and culture media. miRNA expression profiling was performed using the NanoString nCounter Mouse miRNA Panel. Effects of miR-29a-3p on adhesion molecule expression were investigated in bEnd.3 brain endothelial cells. RESULTS CrebH-/- mice exhibited accelerated liver injury without substantial differences in the gut after administration of dextran sulfate sodium (DSS), and had similar features to PSC, including enlarged bile ducts, enhanced inflammation, and aberrant MAdCAM-1 expression. Furthermore, RNA-sequencing analysis showed that differentially expressed genes in the liver of CrebH-/- mice after DSS overlapped significantly with genes changed in PSC-liver. Analysis of plasma exosome miRNA isolated from WT and CrebH-/- mice indicates that CrebH can contribute to the exosomal miRNA profile. We also identified miR-29a-3p as an effective mediator for MAdCAM-1 expression. Administration of plasma exosome from CrebH-/- mice led to prominent inflammatory signals in the liver of WT mice with inflammatory bowel disease (IBD). CONCLUSIONS CrebH deficiency led to increased susceptibility to IBD-induced liver diseases via enhanced expression of adhesion molecules and concomitant infiltration of T lymphocytes. Exosomes can contribute to the progression of IBD-induced liver injury in CrebH-/- mice. These study provide novel insights into the role of CrebH in IBD-induced liver injury.
Collapse
Affiliation(s)
- Sang-Hee Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseoung-gu, Daejeon, 34141, Korea
- Department of Biology, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon, 34520, Korea
| | - Sung-Je Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseoung-gu, Daejeon, 34141, Korea
- KRIBB School of Bioscience, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Seung Hee Woo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseoung-gu, Daejeon, 34141, Korea
- Department of Biology and Microbiology, Changwon National University, 20 Chanwondaehak-ro, Uichan-gu, Chanwon-si, Gyeonsangnam-do, 51140, Korea
| | - Gwangsook Ahn
- Department of Biology, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon, 34520, Korea
| | - Won Kon Kim
- KRIBB School of Bioscience, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Metabolic Regulation Research Center, KRIBB, 125 Gwahak-ro, Yuseoung-gu, Daejeon, 34141, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseoung-gu, Daejeon, 34141, Korea.
- KRIBB School of Bioscience, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseoung-gu, Daejeon, 34141, Korea.
- KRIBB School of Bioscience, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| |
Collapse
|
6
|
Pharmacology Mechanism of Polygonum Bistorta in Treating Ulcerative Colitis Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022. [DOI: 10.1155/2022/6461560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aim. Ulcerative colitis (UC) is a refractory gastrointestinal disease. The study aimed to expound the mechanism of Polygonum bistorta (PB) in treating UC by network pharmacology, molecular docking, and experiment verification. Methods. The compositions and targets of PB and UC-associated targets were obtained by searching the websites and the literature. The potential mechanism of PB in the treatment of UC was predicted by protein-protein interaction network construction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecule docking was performed by AutoDock. In vitro experiments explored the mechanism of quercetin (Que), the main active composition of PB, in treating UC. Results. Six compositions, 139 PB targets, and 934 UC-associated targets were obtained. 93 overlapping targets between PB and UC were identified, and 18 of them were the core targets. 467 biological processes, 10 cell components, and 30 molecular functions were obtained by GO analysis. 102 pathways were enriched through KEGG analysis. Among them, the IL-17 signaling pathway had high importance. The core targets FOS, JUN, IL-1β, CCL2, CXCL8, and MMP9 could dock with Que successfully. Act1, TRAF6, FOS, and JUN were identified by KEGG as the key proteins of the IL-17 signaling pathway. The expressions of the abovementioned proteins were increased in Caco-2 cells stimulated by Dextran sulfate sodium and decreased after being treated by Que. Conclusion. PB might treat UC by downregulating the IL-17 signaling pathway. It is worth doing further research on PB treating UC in vivo.
Collapse
|
7
|
Yan X, Si H, Zhu Y, Li S, Han Y, Liu H, Du R, Pope PB, Qiu Q, Li Z. Integrated multi-omics of the gastrointestinal microbiome and ruminant host reveals metabolic adaptation underlying early life development. MICROBIOME 2022; 10:222. [PMID: 36503572 PMCID: PMC9743514 DOI: 10.1186/s40168-022-01396-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/15/2022] [Indexed: 06/07/2023]
Abstract
BACKGROUND The gastrointestinal tract (GIT) microbiome of ruminants and its metabolic repercussions vastly influence host metabolism and growth. However, a complete understanding of the bidirectional interactions that occur across the host-microbiome axis remains elusive, particularly during the critical development stages at early life. Here, we present an integrative multi-omics approach that simultaneously resolved the taxonomic and functional attributes of microbiota from five GIT regions as well as the metabolic features of the liver, muscle, urine, and serum in sika deer (Cervus nippon) across three key early life stages. RESULTS Within the host, analysis of metabolites over time in serum, urine, and muscle (longissimus lumborum) showed that changes in the fatty acid profile were concurrent with gains in body weight. Additional host transcriptomic and metabolomic analysis revealed that fatty acid β-oxidation and metabolism of tryptophan and branched chain amino acids play important roles in regulating hepatic metabolism. Across the varying regions of the GIT, we demonstrated that a complex and variable community of bacteria, viruses, and archaea colonized the GIT soon after birth, whereas microbial succession was driven by the cooperative networks of hub populations. Furthermore, GIT volatile fatty acid concentrations were marked by increased microbial metabolic pathway abundances linked to mannose (rumen) and amino acids (colon) metabolism. Significant functional shifts were also revealed across varying GIT tissues, which were dominated by host fatty acid metabolism associated with reactive oxygen species in the rumen epithelium, and the intensive immune response in both small and large intestine. Finally, we reveal a possible contributing role of necroptosis and apoptosis in enhancing ileum and colon epithelium development, respectively. CONCLUSIONS Our findings provide a comprehensive view for the involved mechanisms in the context of GIT microbiome and ruminant metabolic growth at early life. Video Abstract.
Collapse
Affiliation(s)
- Xiaoting Yan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710100, China
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yuhang Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Songze Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu Han
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hanlu Liu
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, 1433, Ås, Norway.
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433, Ås, Norway.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710100, China.
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China.
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
8
|
Zhang Y, Si X, Yang L, Wang H, Sun Y, Liu N. Association between intestinal microbiota and inflammatory bowel disease. Animal Model Exp Med 2022; 5:311-322. [PMID: 35808814 PMCID: PMC9434590 DOI: 10.1002/ame2.12255] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), has emerged as a global disease with high incidence, long duration, devastating clinical symptoms, and low curability (relapsing immune response and barrier function defects). Mounting studies have been performed to investigate its pathogenesis to provide an ever‐expanding arsenal of therapeutic options, while the precise etiology of IBD is not completely understood yet. Recent advances in high‐throughput sequencing methods and animal models have provided new insights into the association between intestinal microbiota and IBD. In general, dysbiosis characterized by an imbalanced microbiota has been widely recognized as a pathology of IBD. However, intestinal microbiota alterations represent the cause or result of IBD process remains unclear. Therefore, more evidences are needed to identify the precise role of intestinal microbiota in the pathogenesis of IBD. Herein, this review aims to outline the current knowledge of commonly used, chemically induced, and infectious mouse models, gut microbiota alteration and how it contributes to IBD, and dysregulated metabolite production links to IBD pathogenesis.
Collapse
Affiliation(s)
- Yunchang Zhang
- Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Hui Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Ye Sun
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Liu CY, Cham CM, Chang EB. Epithelial wound healing in inflammatory bowel diseases: the next therapeutic frontier. Transl Res 2021; 236:35-51. [PMID: 34126257 PMCID: PMC8380699 DOI: 10.1016/j.trsl.2021.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Patients with one of the many chronic inflammatory disorders broadly classified as inflammatory bowel disease (IBD) now have a diverse set of immunomodulatory therapies at their disposal. Despite these recent medical advances, complete sustained remission of disease remains elusive for most patients. The full healing of the damaged intestinal mucosa is the primary goal of all therapies. Achieving this requires not just a reduction of the aberrant immunological response, but also wound healing of the epithelium. No currently approved therapy directly targets the epithelium. Epithelial repair is compromised in IBD and normally facilitates re-establishment of the homeostatic barrier between the host and the microbiome. In this review, we summarize the evidence that epithelial wound healing represents an important yet underdeveloped therapeutic modality for IBD. We highlight 3 general approaches that are promising for developing a new class of epithelium-targeted therapies: epithelial stem cells, cytokines, and microbiome engineering. We also provide a frank discussion of some of the challenges that must be overcome for epithelial repair to be therapeutically leveraged. A concerted approach by the field to develop new therapies targeting epithelial wound healing will offer patients a game-changing, complementary class of medications and could dramatically improve outcomes.
Collapse
Affiliation(s)
- Cambrian Y Liu
- Department of Medicine, The University of Chicago, Chicago, Illinois.
| | - Candace M Cham
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Eugene B Chang
- Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
10
|
Rana MN, Lu J, Xue E, Ruan J, Liu Y, Zhang L, Dhar R, Li Y, Hu Z, Zhou J, Ma W, Tang H. PDE9 Inhibitor PF-04447943 Attenuates DSS-Induced Colitis by Suppressing Oxidative Stress, Inflammation, and Regulating T-Cell Polarization. Front Pharmacol 2021; 12:643215. [PMID: 33967779 PMCID: PMC8098793 DOI: 10.3389/fphar.2021.643215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis (UC) is a form of inflammatory bowel disease, which manifests as irritation or swelling and sores in the large intestine in a relapsing and remitting manner. In a dextran sulfate sodium sulfate (DSS)-induced UC model in female mice, we found that the levels of cyclic guanosine monophosphate (cGMP) are reduced, while the expression of phosphodiesterase 9A (PDE9A) is highest among all phosphodiesterase (PDEs). Since PDE9 has the highest affinity toward cGMP, we evaluated the selective PDE9 inhibitor PF-04447943 (PF) as a potential candidate for UC treatment. PF has been extensively studies in cognitive function and in sickle cell disease, but not in models for inflammatory bowel disease (IBD). Therefore, we used female C57BL/6 mice treated with 3% DSS alone or co-treated with PF or sulfasalazine (SASP) to study the body weight, colon length, histopathology, and measure superoxide dismutase (SOD), malondialdehyde (MDA), and cGMP level, as well as cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-17 (IL-17), interleukin-12/23 (IL-12/23), interleukin-10 (IL-10), and pathways including nuclear factor kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), and inflammasome activation. In addition, the number of dendritic cells (DC) and regulatory T cells (Treg cell) was assessed in the spleen, lymph node, and colon using flow cytometry. DSS reduced the number of goblet cells, decreased colon lengths and body weights, all of them were attenuated by PF treatment. It also suppressed the elevated level of inflammatory cytokines and increased level the anti-inflammatory cytokine, IL-10. PF treatment also reduced the DSS-induced inflammation by suppressing oxidative stress, NF-κB, STAT3, and inflammasome activation, by upregulating nuclear factor erythroid 2-related factor 2 (Nrf-2) and its downstream proteins via extracellular signal-regulated kinase (ERK) phosphorylation. Importantly, PF reversed imbalance in Treg/T helper 17 cells (Th17) cells ratio, possibly by regulating dendritic cells and Treg developmental process. In summary, this study shows the protective effect of a PDE9A inhibitor in ulcerative colitis by suppressing oxidative stress and inflammation as well as reversing the Treg/Th17 cells imbalance.
Collapse
Affiliation(s)
- Mohammad Nasiruddin Rana
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jie Lu
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Enfu Xue
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jingjing Ruan
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Yuting Liu
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Lejun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Rana Dhar
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Yajun Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Zhengqiang Hu
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jie Zhou
- Department of Anesthesiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wangqian Ma
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Huifang Tang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
The potential roles of NAD(P)H:quinone oxidoreductase 1 in the development of diabetic nephropathy and actin polymerization. Sci Rep 2020; 10:17735. [PMID: 33082368 PMCID: PMC7576596 DOI: 10.1038/s41598-020-74493-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/30/2020] [Indexed: 11/08/2022] Open
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes mellitus. NAD(P)H:quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme that has been involved in the progression of several kidney injuries. However, the roles of NQO1 in DN are still unclear. We investigated the effects of NQO1 deficiency in streptozotocin (STZ)-induced DN mice. NQO1 was upregulated in the glomerulus and podocytes under hyperglycemic conditions. NQO1 knockout (NKO) mice showed more severe changes in blood glucose and body weight than WT mice after STZ treatment. Furthermore, STZ-mediated pathological parameters including glomerular injury, blood urea nitrogen levels, and foot process width were more severe in NKO mice than WT mice. Importantly, urine albumin-to-creatinine ratio (ACR) was higher in healthy, non-treated NKO mice than WT mice. ACR response to STZ or LPS was dramatically increased in the urine of NKO mice compared to vehicle controls, while it maintained a normal range following treatment of WT mice. More importantly, we found that NQO1 can stimulate actin polymerization in an in vitro biochemical assay without directly the accumulation on F-actin. In summary, NQO1 has an important role against the development of DN pathogenesis and is a novel contributor in actin reorganization via stimulating actin polymerization.
Collapse
|
12
|
Wang Y, Ding Y, Deng Y, Zheng Y, Wang S. Role of myeloid-derived suppressor cells in the promotion and immunotherapy of colitis-associated cancer. J Immunother Cancer 2020; 8:jitc-2020-000609. [PMID: 33051339 PMCID: PMC7555106 DOI: 10.1136/jitc-2020-000609] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Colitis-associated cancer (CAC) is a specific type of colorectal cancer that develops from inflammatory bowel disease (IBD). Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are essential for the pathological processes of inflammation and cancer. Accumulating evidence indicates that MDSCs play different but vital roles during IBD and CAC development and impede CAC immunotherapy. New insights into the regulatory network of MDSCs in the CAC pathogenesis are opening new avenues for developing strategies to enhance the effectiveness of CAC treatment. In this review, we explore the role of MDSCs in chronic inflammation, dysplasia and CAC and summarize the potential CAC therapeutic strategies based on MDSC blockade.
Collapse
Affiliation(s)
- Yungang Wang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yanxia Ding
- Department of Dermatology, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yijun Deng
- Department of Critical Care Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yu Zheng
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Woo SG, Moon SJ, Kim SK, Kim TH, Lim HS, Yeon GH, Sung BH, Lee CH, Lee SG, Hwang JH, Lee DH. A designed whole-cell biosensor for live diagnosis of gut inflammation through nitrate sensing. Biosens Bioelectron 2020; 168:112523. [PMID: 32871497 DOI: 10.1016/j.bios.2020.112523] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
Microbes reprogrammed using advanced genetic circuits are envisaged as emerging living diagnostics for a wide range of diseases and play key roles in regulating gut microbiota to treat disease-associated symptoms in a non-invasive manner. Here, we developed a designer probiotic Escherichia coli that senses and responds to nitrate, a biomarker of gut inflammation. To this end, we first employed the NarX-NarL two-component regulatory system in E. coli to construct a nitrate-responsive genetic circuit. Next, we optimized the nitrate biosensor for the best performance using measures of sensitivity and specificity. We then introduced this genetic circuit into a probiotic E. coli Nissle 1917. We demonstrated that the designed biosensor can sense elevated nitrate levels during gut inflammation in mice with native gut microbiota. Moreover, using Boolean AND gate, we generated a genetically encoded biosensor for simultaneous sensing of the thiosulfate and nitrate biomarkers, thus increasing the tool's specificity for diagnosing gut inflammation. The nitrate-responsive genetic circuit will enable new approaches for non-invasive diagnostics of inflammation-associated diseases.
Collapse
Affiliation(s)
- Seung-Gyun Woo
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Sung-Je Moon
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea; Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seong Keun Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Tae Hyun Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyun Seung Lim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Gun-Hwi Yeon
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Chul-Ho Lee
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea; Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Jung Hwan Hwang
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea; Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
14
|
Luteolin alleviates ochratoxin A induced oxidative stress by regulating Nrf2 and HIF-1α pathways in NRK-52E rat kidney cells. Food Chem Toxicol 2020; 141:111436. [DOI: 10.1016/j.fct.2020.111436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
|
15
|
Moon SJ, Kim JH, Choi YK, Lee CH, Hwang JH. Ablation of Gadd45β ameliorates the inflammation and renal fibrosis caused by unilateral ureteral obstruction. J Cell Mol Med 2020; 24:8814-8825. [PMID: 32570293 PMCID: PMC7412396 DOI: 10.1111/jcmm.15519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 01/03/2023] Open
Abstract
The growth arrest and DNA damage‐inducible beta (Gadd45β) protein have been associated with various cellular functions, but its role in progressive renal disease is currently unknown. Here, we examined the effect of Gadd45β deletion on cell proliferation and apoptosis, inflammation, and renal fibrosis in an early chronic kidney disease (CKD) mouse model following unilateral ureteral obstruction (UUO). Wild‐type (WT) and Gadd45β‐knockout (KO) mice underwent either a sham operation or UUO and the kidneys were sampled eight days later. A histological assay revealed that ablation of Gadd45β ameliorated UUO‐induced renal injury. Cell proliferation was higher in Gadd45β KO mouse kidneys, but apoptosis was similar in both genotypes after UUO. Expression of pro‐inflammatory cytokines after UUO was down‐regulated in the kidneys from Gadd45β KO mice, whereas UUO‐mediated immune cell infiltration remained unchanged. The expression of pro‐inflammatory cytokines in response to LPS stimulation decreased in bone marrow‐derived macrophages from Gadd45β KO mice compared with that in WT mice. Importantly, UUO‐induced renal fibrosis was ameliorated in Gadd45β KO mice unlike in WT mice. Gadd45β was involved in TGF‐β signalling pathway regulation in kidney fibroblasts. Our findings demonstrate that Gadd45β plays a crucial role in renal injury and may be a therapeutic target for the treatment of CKD.
Collapse
Affiliation(s)
- Sung-Je Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,University of Science and Technology, Daejeon, Korea
| | - Jae-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,University of Science and Technology, Daejeon, Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,University of Science and Technology, Daejeon, Korea
| |
Collapse
|