1
|
Dernovšek J, Goričan T, Gedgaudas M, Zajec Ž, Urbančič D, Jug A, Skok Ž, Sturtzel C, Distel M, Grdadolnik SG, Babu K, Panchamatia A, Stachowski TR, Fischer M, Ilaš J, Zubrienė A, Matulis D, Zidar N, Tomašič T. Hiding in plain sight: Optimizing topoisomerase IIα inhibitors into Hsp90β selective binders. Eur J Med Chem 2024; 280:116934. [PMID: 39388906 DOI: 10.1016/j.ejmech.2024.116934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Due to their impact on several oncogenic client proteins, the Hsp90 family of chaperones has been widely studied for the development of potential anticancer agents. Although several Hsp90 inhibitors have entered clinical trials, most were unsuccessful because they induced a heat shock response (HSR). This issue can be circumvented by using isoform-selective inhibitors, but the high similarity in the ATP-binding sites between the isoforms presents a challenge. Given that Hsp90 shares a conserved Bergerat fold with bacterial DNA gyrase B and human topoisomerase IIα, we repurposed our ATP-competitive inhibitors of these two proteins for Hsp90 inhibition. We virtually screened a library of in-house inhibitors and identified eleven hits for evaluation of Hsp90 binding. Among these, compound 11 displayed low micromolar affinity for Hsp90 and demonstrated a 12-fold selectivity for Hsp90β over its closest isoform, Hsp90α. Out of 29 prepared analogs, 16 showed a preference for Hsp90β over Hsp90α. Furthermore, eleven of these compounds inhibited the growth of several cancer cell lines in vitro. Notably, compound 24e reduced intracellular levels of Hsp90 client proteins in MCF-7 cells, leading to cell cycle arrest in the G0/G1 phase without inducing HSR. This inhibitor exhibited at least a 27-fold preference for Hsp90β and was selective against topoisomerase IIα, a panel of 22 representative protein kinases, and proved to be non-toxic in a zebrafish larvae toxicology model. Finally, molecular modeling, corroborated by STD NMR studies, and the binding of 24e to the S52A mutant of Hsp90α confirmed that the serine to alanine switch drives the selectivity between the two cytoplasmic isoforms.
Collapse
Affiliation(s)
- Jaka Dernovšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tjaša Goričan
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Marius Gedgaudas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7 (C319), LT-10257, Vilnius, Lithuania
| | - Živa Zajec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Dunja Urbančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Ana Jug
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Žiga Skok
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Kesavan Babu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Ashna Panchamatia
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Timothy R Stachowski
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Marcus Fischer
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7 (C319), LT-10257, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7 (C319), LT-10257, Vilnius, Lithuania
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Yoon NG, Choi D, Lee JH, Kim SY, Im JY, Yun J, Yang S, Kim T, Kang S, Kang BH. Development of a Fluorescence Probe for High-Throughput Screening of Allosteric Inhibitors Targeting TRAP1. J Med Chem 2024; 67:21421-21437. [PMID: 39568139 DOI: 10.1021/acs.jmedchem.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a molecular chaperone implicated in pro-tumorigenic pathways by regulating the folding of substrate proteins (clients) within cancer cells. Recent research has pinpointed a potentially druggable allosteric site within the client binding site (CBS) of TRAP1, suggesting this site might offer a more effective strategy for developing potent and selective TRAP1 inhibitors. However, the absence of reliable assay systems has hindered quantitative evaluation of inhibitors. In this study, we have developed a fluorescent probe, Rho6TPP, designed to target the CBS. Utilizing fluorescence polarization-based high-throughput screening assays, Rho6TPP exhibits excellent signal-to-noise ratio (>20), Z factor (>0.6), and Z' factor (>0.6). Additionally, it facilitates comparative analysis of existing small molecules and discovery of novel binders. MitoTam, a mitochondria-targeted tamoxifen, emerges as a potent CBS-targeting TRAP1 inhibitor. Our findings highlight the potential of Rho6TPP as a crucial tool for advancing the development of CBS-targeting TRAP1 inhibitors.
Collapse
Affiliation(s)
- Nam Gu Yoon
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Danbi Choi
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Hye Lee
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - So-Yeon Kim
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Young Im
- SmartinBio Inc., Cheongju 28160, Republic of Korea
| | - Jisu Yun
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sujae Yang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Taeeun Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soosung Kang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- SmartinBio Inc., Cheongju 28160, Republic of Korea
| |
Collapse
|
3
|
Singh P, Jay DG. The Role of eHsp90 in Extracellular Matrix Remodeling, Tumor Invasiveness, and Metastasis. Cancers (Basel) 2024; 16:3873. [PMID: 39594828 PMCID: PMC11592750 DOI: 10.3390/cancers16223873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Identifying proteins that act in tumor invasiveness and metastasis remains a critical unmet need in our search for effective cancer therapy. Hsp90, an abundant intracellular chaperone protein, plays a key role in maintaining cell homeostasis, and its elevated activity is pivotal in cancer progression. Due to the reliance of cancer cells on Hsp90's chaperone function to sustain tumor growth and spread, Hsp90 inhibitors have been the subject of numerous clinical trials over the past two decades. However, these efforts have largely been unsuccessful, primarily due to the cellular toxicity caused by pan-Hsp90 inhibitors at doses required for anticancer efficacy. Therefore, novel approaches to target Hsp90 are necessary. An identified subpopulation of Hsp90 located outside cells (eHsp90) may offer a promising alternative as a therapeutic target against cancer. Studies including our own have shown that eHsp90 is released specifically by cancer cells, and eHsp90 has unique interactors and functions extracellularly to promote tumor invasiveness, the initial step in metastasis. Inhibition of eHsp90 has been shown to suppress metastasis in animal models, indicating its therapeutic potential, although the underlying mechanisms remain incompletely understood. Cancer cells modulate the tumor microenvironment (TME) during the invasion, especially the ECM proteins and the state of the ECM is a strong predictor of invasive and metastatic cancer. Given that most of the known eHsp90 clients are ECM proteins or are proteins involved in ECM modulation, ECM remodelling could be the key mechanism through which eHsp90 enhances invasiveness. This review will focus on ECM modulation by eHsp90 as a driver of cancer invasion and metastasis. We will also discuss the potency of inhibiting eHsp90 in inhibiting invasion and metastatic spread in preclinical models and the using circulating Hsp90 patient samples as a biomarker of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Pragya Singh
- Graduate School of Biomedical Sciences, Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Daniel G. Jay
- Graduate School of Biomedical Sciences, Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
4
|
Yang L, Zhu JC, Li SJ, Zeng X, Xue XR, Dai Y, Wei ZF. HSP90β shapes the fate of Th17 cells with the help of glycolysis-controlled methylation modification. Br J Pharmacol 2024; 181:3886-3907. [PMID: 38881036 DOI: 10.1111/bph.16432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND AND PURPOSE Ulcerative colitis (UC) is a refractory inflammatory disease associated with immune dysregulation. Elevated levels of heat shock protein (HSP) 90 in the β but not α subtype were positively associated with disease status in UC patients. This study validated the possibility that pharmacological inhibition or reduction of HSP90β would alleviate colitis, induced by dextran sulfate sodium, in mice and elucidated its mechanisms. EXPERIMENTAL APPROACH Histopathological and biochemical analysis assessed disease severity, and bioinformatics and correlation analysis explained the association between the many immune cells and HSP90β. Flow cytometry was used to analyse the homeostasis and transdifferentiation of Th17 and Treg cells. In vitro inhibition and adoptive transfer assays were used to investigate functions of the phenotypically transformed Th17 cells. Metabolomic analysis, DNA methylation detection and chromatin immunoprecipitation were used to explore these mechanisms. KEY RESULTS The selective pharmacological inhibitor (HSP90βi) and shHSP90β significantly mitigated UC in mice and promoted transformation of Th17 to Treg cell phenotype, via Foxp3 transcription. The phenotypically-transformed Th17 cells by HSP90βi or shHSP90β were able to inhibit lymphocyte proliferation and colitis in mice. HSP90βi and shHSP90β selectively weakened glycolysis by stopping the direct association of HSP90β and GLUT1, the key glucose transporter, to accelerate ubiquitination degradation of GLUT1, and enhance the methylation of Foxp3 CNS2 region. Then, the mediator path was identified as the "lactate-STAT5-TET2" cascade. CONCLUSION AND IMPLICATIONS HSP90β shapes the fate of Th17 cells via glycolysis-controlled methylation modification to affect UC progression, which provides a new therapeutic target for UC.
Collapse
Affiliation(s)
- Ling Yang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing-Chao Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shi-Jia Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xi Zeng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin-Ru Xue
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhi-Feng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Zhang Q, Yan L, Zhang L, Yu J, Han Z, Liu H, Gu J, Wang K, Wang J, Chen F, Zhao R, Yan Y, Jiang C, You Q, Wang L. Allosteric Activation of Protein Phosphatase 5 with Small Molecules. J Med Chem 2024; 67:15080-15097. [PMID: 39145509 DOI: 10.1021/acs.jmedchem.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The activation of PP5 is essential for a variety of cellular processes, as it participates in a variety of biological pathways by dephosphorylating substrates. However, activation of PP5 by small molecules has been a challenge due to its native "self-inhibition" mechanism, which is controlled by the N-terminal TPR domain and the C-terminal αJ helix. Here, we reported the discovery of DDO-3733, a well-identified TPR-independent PP5 allosteric activator, which facilitates the dephosphorylation process of downstream substrates. Considering the negative regulatory effect of PP5 on heat shock transcription factor HSF1, pharmacologic activation of PP5 by DDO-3733 was found to reduce the HSP90 inhibitor-induced heat shock response. These results provide a chemical tool to advance the exploration of PP5 as a potential therapeutic target and highlight the value of pharmacological activation of PP5 to reduce heat shock toxicity of HSP90 inhibitors.
Collapse
Affiliation(s)
- Qiuyue Zhang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Yan
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lixiao Zhang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zeyu Han
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Liu
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinying Gu
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Keran Wang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiayi Wang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fangsu Chen
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Rongde Zhao
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Yan
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Gedgaudas M, Kaziukonytė P, Kairys V, Mickevičiūtė A, Zubrienė A, Brukštus A, Matulis D, Kazlauskas E. Comprehensive analysis of resorcinyl-imidazole Hsp90 inhibitor design. Eur J Med Chem 2024; 273:116505. [PMID: 38788300 DOI: 10.1016/j.ejmech.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Human Hsp90 chaperones are implicated in various aspects of cancer. Due to this, Hsp90 has been explored as potential target in cancer treatment. Initial attempts to use Hsp90 inhibitors in drug trials failed due to toxicity and inefficacy. The next generation of drugs were less toxic but still insufficiently effective in a clinical setting. Recently, a lot of effort is being put into understanding the consequences of Hsp90 isoform selective inhibition, expecting that this might hold the key in targeting Hsp90 for disease treatment. Here we investigate a series of compounds containing the aryl-resorcinol scaffold with a 5-membered ring as a promising class of new human Hsp90 inhibitors, reaching nanomolar affinity. We compare how the replacement of 5-membered ring, from thiadiazole to imidazole, as well as a variety of their substituents, influences the potency of these inhibitors for Hsp90 alpha and beta isoforms. To further elucidate the dissimilarity in ligand selectivity between the isoforms, a mutant protein was constructed and tested against the ligand library. In addition, we performed a series of molecular dynamics (MD) and docking simulations to further explain our experimental findings as well as evaluated key compounds in cell assays. Our results deepen the understanding of Hsp90 isoform ligand selectivity and serve as an informative base for further Hsp90 inhibitor optimization.
Collapse
Affiliation(s)
- Marius Gedgaudas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Paulina Kaziukonytė
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225, Vilnius, Lithuania
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Algirdas Brukštus
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania.
| |
Collapse
|
7
|
Martino C, Badalamenti R, Frinchi M, Chiarelli R, Palumbo Piccionello A, Urone G, Mauro M, Arizza V, Luparello C, Di Liberto V, Mudò G, Vazzana M. The stunting effect of an oxylipins-containing macroalgae extract on sea urchin reproduction and neuroblastoma cells viability. CHEMOSPHERE 2024; 359:142278. [PMID: 38734249 DOI: 10.1016/j.chemosphere.2024.142278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Different bioactive molecules extracted from macroalgae, including oxylipins, showed interesting potentials in different applications, from healthcare to biomaterial manufacturing and environmental remediation. Thus far, no studies reported the effects of oxylipins-containing macroalgae extracts on embryo development of marine invertebrates and on neuroblastoma cancer cells. Here, the effects of an oxylipins-containing extract from Ericaria brachycarpa, a canopy-forming brown algae, were investigated on the development of Arbacia lixula sea urchin embryos and on SH-SY5Y neuroblastoma cells viability. Embryos and cells were exposed to concentrations covering a full 0-100% dose-response curve, with doses ranging from 0 to 40 μg mL-1 for embryos and from 0 to 200 μg mL-1 for cells. These natural marine toxins caused a dose-dependent decrease of normal embryos development and of neuroblastoma cells viability. Toxicity was higher for exposures starting from the gastrula embryonal stage if compared to the zygote and pluteus stages, with an EC50 significantly lower by 33 and 68%, respectively. Embryos exposed to low doses showed a general delay in development with a decrease in the ability to calcify, while higher doses caused 100% block of embryo growth. Exposure of SH-SY5Y neuroblastoma cells to 40 μg mL-1 for 72 h caused 78% mortality, while no effect was observed on their neuronal-like cells derivatives, suggesting a selective targeting of proliferating cells. Western Blot experiments on both model systems displayed the modulation of different molecular markers (HSP60, HSP90, LC3, p62, CHOP and cleaved caspase-7), showing altered stress response and enhanced autophagy and apoptosis, confirmed by increased fragmented DNA in apoptotic nuclei. Our study gives new insights into the molecular strategies that marine invertebrates use when responding to their environmental natural toxins and suggests the E. brachycarpa's extract as a potential source for the development of innovative, environmentally friendly products with larvicide and antineoplastic activity.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy.
| | - Rosario Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Monica Frinchi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy.
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Giulia Urone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Giuseppa Mudò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| |
Collapse
|
8
|
Xiong J, Wang L, Feng Y, Zhen C, Hang S, Yu J, Lu H, Jiang Y. Geldanamycin confers fungicidal properties to azole by triggering the activation of succinate dehydrogenase. Life Sci 2024; 348:122699. [PMID: 38718854 DOI: 10.1016/j.lfs.2024.122699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
AIMS Azoles have been widely employed for the treatment of invasive fungal diseases; however, their efficacy is diminished as pathogenic fungi tolerate them due to their fungistatic properties. Geldanamycin (GdA) can render azoles fungicidal by inhibiting the ATPase and molecular chaperone activities of heat shock protein 90 (Hsp90). Nonetheless, the clinical applicability of GdA is restricted due to its cytotoxic ansamycin scaffold structure, its induction of cytoprotective heat shock responses, and the conservative nature of Hsp90. Hence, it is imperative to elucidate the mechanism of action of GdA to confer fungicidal properties to azoles and mitigate the toxic adverse effects associated with GdA. MATERIALS AND METHODS Through various experimental methods, including the construction of gene-deleted Candida albicans mutants, in vitro drug sensitivity experiments, Western blot analysis, reactive oxygen species (ROS) assays, and succinate dehydrogenase activity assays, we identified Hsp90 client proteins associated with the tolerance of C. albicans to azoles. KEY FINDINGS It was observed that GdA effectively hindered the entry of Hsp90 into mitochondria, resulting in the alleviation of inhibitory effect of Hsp90 on succinate dehydrogenase. Consequently, the activation of succinate dehydrogenase led to an increased production of ROS. within the mitochondria, thereby facilitating the antifungal effects of azoles against C. albicans. SIGNIFICANCE This research presents a novel approach for conferring fungicidal properties to azoles, which involves specifically disrupting the interaction of between Hsp90 and succinate dehydrogenase rather than employing a non-specific inhibition of ATPase activity of Hsp90.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Wang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanru Feng
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cheng Zhen
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Sijin Hang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jinhua Yu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Lin J(C, Hwang S(W, Luo H, Mohamud Y. Double-Edged Sword: Exploring the Mitochondria-Complement Bidirectional Connection in Cellular Response and Disease. BIOLOGY 2024; 13:431. [PMID: 38927311 PMCID: PMC11200454 DOI: 10.3390/biology13060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Mitochondria serve an ultimate purpose that seeks to balance the life and death of cells, a role that extends well beyond the tissue and organ systems to impact not only normal physiology but also the pathogenesis of diverse diseases. Theorized to have originated from ancient proto-bacteria, mitochondria share similarities with bacterial cells, including their own circular DNA, double-membrane structures, and fission dynamics. It is no surprise, then, that mitochondria interact with a bacterium-targeting immune pathway known as a complement system. The complement system is an ancient and sophisticated arm of the immune response that serves as the body's first line of defense against microbial invaders. It operates through a complex cascade of protein activations, rapidly identifying and neutralizing pathogens, and even aiding in the clearance of damaged cells and immune complexes. This dynamic system, intertwining innate and adaptive immunity, holds secrets to understanding numerous diseases. In this review, we explore the bidirectional interplay between mitochondrial dysfunction and the complement system through the release of mitochondrial damage-associated molecular patterns. Additionally, we explore several mitochondria- and complement-related diseases and the potential for new therapeutic strategies.
Collapse
Affiliation(s)
- Jingfei (Carly) Lin
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Sinwoo (Wendy) Hwang
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
10
|
Liu Z, Yang L, Wu W, Chen Z, Xie Z, Shi D, Cai N, Zhuo S. Prognosis and therapeutic significance of IGF-1R-related signaling pathway gene signature in glioma. Front Cell Dev Biol 2024; 12:1375030. [PMID: 38665430 PMCID: PMC11043541 DOI: 10.3389/fcell.2024.1375030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Background Glioma is the most common cancer of the central nervous system with poor therapeutic response and clinical prognosis. Insulin-like growth factor 1 receptor (IGF-1R) signaling is implicated in tumor development and progression and induces apoptosis of cancer cells following functional inhibition. However, the relationship between the IGF-1R-related signaling pathway genes and glioma prognosis or immunotherapy/chemotherapy is poorly understood. Methods LASSO-Cox regression was employed to develop a 16-gene risk signature in the TCGA-GBMLGG cohort, and all patients with glioma were divided into low-risk and high-risk subgroups. The relationships between the risk signature and the tumor immune microenvironment (TIME), immunotherapy response, and chemotherapy response were then analyzed. Immunohistochemistry was used to evaluate the HSP90B1 level in clinical glioma tissue. Results The gene risk signature yielded superior predictive efficacy in prognosis (5-year area under the curve: 0.875) and can therefore serve as an independent prognostic indicator in patients with glioma. The high-risk subgroup exhibited abundant immune infltration and elevated immune checkpoint gene expression within the TIME. Subsequent analysis revealed that patients in the high-risk subgroup benefited more from chemotherapy. Immunohistochemical analysis confirmed that HSP90B1 was overexpressed in glioma, with significantly higher levels observed in glioblastoma than in astrocytoma or oligodendrocytoma. Conclusion The newly identified 16-gene risk signature demonstrates a robust predictive capacity for glioma prognosis and plays a pivotal role in the TIME, thereby offering valuable insights for the exploration of novel biomarkers and targeted therapeutics.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liangwang Yang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wenqi Wu
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zejun Chen
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhengxing Xie
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Daoming Shi
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ning Cai
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shenghua Zhuo
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
11
|
Huang X, Zhang W, Yang N, Zhang Y, Qin T, Ruan H, Zhang Y, Tian C, Mo X, Tang W, Liu J, Zhang B. Identification of HSP90B1 in pan-cancer hallmarks to aid development of a potential therapeutic target. Mol Cancer 2024; 23:19. [PMID: 38243263 PMCID: PMC10799368 DOI: 10.1186/s12943-023-01920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
Heat shock proteins play crucial roles in various biochemical processes, encompassing protein folding and translocation. HSP90B1, a conserved member of the heat shock protein family, growing evidences have demonstrated that it might be closely associated with cancer development. In the present study, we employed multi-omics analyses and cohort validations to explore the dynamic expression of HSP90B1 in pan-cancer and comprehensively evaluate HSP90B1 as a novel biomarker that hold promise for precision cancer diagnostics and therapeutics. The results suggest HSP90B1 was highly expressed in various kinds of tumors, often correlating with a poor prognosis. Notably, methylation of HSP90B1 emerged as a protective factor in several cancer types. In immune infiltration analysis, the expression of HSP90B1 in most tumors showed a negative association with CD8 + T cells. HSP90B1 expression was positively correlated with microsatellite instability and tumor mutational burden. HSP90B1 expression was also discovered to be positively correlated with tumor metabolism, cell cycle-related pathways and the expression of immune checkpoint genes. The expression of HSP90B1 was mainly negatively correlated with immunostimulatory genes and positively correlated with immunosuppressive genes, as well as strongly correlated with chemokines and their receptor genes. In addition, the HSP90B1 inhibitor PU-WS13 demonstrated significant efficacy in suppressing cancer cell proliferation in both leukemic and solid tumor cells, and remarkably reduced the expression of the cancer cell surface immune checkpoint PD-L1. The single-cell RNA sequencing analysis further highlighted that HSP90B1 was significantly higher in tumor cells compared to surrounding cells, revealing a potential target therapeutic window. Taken together, HSP90B1 emerges as a promising avenue for breakthroughs in cancer diagnosis, prognosis and therapy. This study provides a rationale for HSP90B1 targeted cancer diagnosis and therapy in future.
Collapse
Affiliation(s)
- Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Weiming Zhang
- Department of Clinical Oncology, Wuming Hospital of Guangxi Medical University, Nanning, The People's Republic of China
| | - Na Yang
- Department of Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, The People's Republic of China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan, The People's Republic of China
| | - Yujie Zhang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Tianyu Qin
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Hanyi Ruan
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Yan Zhang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Chao Tian
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xianwei Mo
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| | - Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan, The People's Republic of China.
| |
Collapse
|
12
|
Ben Abdallah H, Bregnhøj A, Ghatnekar G, Iversen L, Johansen C. Heat shock protein 90 inhibition attenuates inflammation in models of atopic dermatitis: a novel mechanism of action. Front Immunol 2024; 14:1289788. [PMID: 38274815 PMCID: PMC10808526 DOI: 10.3389/fimmu.2023.1289788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Background Heat shock protein 90 (HSP90) is an important chaperone supporting the function of many proinflammatory client proteins. Recent studies indicate HSP90 inhibition may be a novel mechanism of action for inflammatory skin diseases; however, this has not been explored in atopic dermatitis (AD). Objectives Our study aimed to investigate HSP90 as a novel target to treat AD. Methods Experimental models of AD were used including primary human keratinocytes stimulated with cytokines (TNF/IFNγ or TNF/IL-4) and a mouse model established by MC903 applications. Results In primary human keratinocytes using RT-qPCR, the HSP90 inhibitor RGRN-305 strongly suppressed the gene expression of Th1- (TNF, IL1B, IL6) and Th2-associated (CCL17, CCL22, TSLP) cytokines and chemokines related to AD. We next demonstrated that topical and oral RGRN-305 robustly suppressed MC903-induced AD-like inflammation in mice by reducing clinical signs of dermatitis (oedema and erythema) and immune cell infiltration into the skin (T cells, neutrophils, mast cells). Interestingly, topical RGRN-305 exhibited similar or slightly inferior efficacy but less weight loss compared with topical dexamethasone. Furthermore, RNA sequencing of skin biopsies revealed that RGRN-305 attenuated MC903-induced transcriptome alterations, suppressing genes implicated in inflammation including AD-associated cytokines (Il1b, Il4, Il6, Il13), which was confirmed by RT-qPCR. Lastly, we discovered using Western blot that RGRN-305 disrupted JAK-STAT signaling by suppressing the activity of STAT3 and STAT6 in primary human keratinocytes, which was consistent with enrichment analyses from the mouse model. Conclusion HSP90 inhibition by RGRN-305 robustly suppressed inflammation in experimental models mimicking AD, proving that HSP90 inhibition may be a novel mechanism of action in treating AD.
Collapse
Affiliation(s)
- Hakim Ben Abdallah
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Bregnhøj
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lars Iversen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Kitaeva KV, Solovyeva VV, Blatt NL, Rizvanov AA. Eternal Youth: A Comprehensive Exploration of Gene, Cellular, and Pharmacological Anti-Aging Strategies. Int J Mol Sci 2024; 25:643. [PMID: 38203812 PMCID: PMC10778954 DOI: 10.3390/ijms25010643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The improvement of human living conditions has led to an increase in average life expectancy, creating a new social and medical problem-aging, which diminishes the overall quality of human life. The aging process of the body begins with the activation of effector signaling pathways of aging in cells, resulting in the loss of their normal functions and deleterious effects on the microenvironment. This, in turn, leads to chronic inflammation and similar transformations in neighboring cells. The cumulative retention of these senescent cells over a prolonged period results in the deterioration of tissues and organs, ultimately leading to a reduced quality of life and an elevated risk of mortality. Among the most promising methods for addressing aging and age-related illnesses are pharmacological, genetic, and cellular therapies. Elevating the activity of aging-suppressing genes, employing specific groups of native and genetically modified cells, and utilizing senolytic medications may offer the potential to delay aging and age-related ailments over the long term. This review explores strategies and advancements in the field of anti-aging therapies currently under investigation, with a particular emphasis on gene therapy involving adeno-associated vectors and cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Nataliya L. Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
14
|
Kim S, Yoon NG, Im JY, Lee JH, Kim J, Jeon Y, Choi YJ, Lee J, Uemura A, Park DH, Kang BH. Targeting the Mitochondrial Chaperone TRAP1 Alleviates Vascular Pathologies in Ischemic Retinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302776. [PMID: 37983591 PMCID: PMC10787068 DOI: 10.1002/advs.202302776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
Activation of hypoxia-inducible factor 1α (HIF1α) contributes to blood-retinal barrier (BRB) breakdown and pathological neovascularization responsible for vision loss in ischemic retinal diseases. During disease progression, mitochondrial biology is altered to adapt to the ischemic environment created by initial vascular dysfunction, but the mitochondrial adaptive mechanisms, which ultimately contribute to the pathogenesis of ischemic retinopathy, remain incompletely understood. In the present study, it is identified that expression of mitochondrial chaperone tumor necrosis factor receptor-associated protein 1 (TRAP1) is essential for BRB breakdown and pathologic retinal neovascularization in mouse models mimicking ischemic retinopathies. Genetic Trap1 ablation or treatment with small molecule TRAP1 inhibitors, such as mitoquinone (MitoQ) and SB-U015, alleviate retinal pathologies via proteolytic HIF1α degradation, which is mediated by opening of the mitochondrial permeability transition pore and activation of calcium-dependent protease calpain-1. These findings suggest that TRAP1 can be a promising target for the development of new treatments against ischemic retinopathy, such as retinopathy of prematurity and proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- So‐Yeon Kim
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Nam Gu Yoon
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | | | - Ji Hye Lee
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Juhee Kim
- Department of Ophthalmology, School of MedicineKyungpook National University, Kyungpook National University HospitalDaegu41944Republic of Korea
- Cell & Matrix Research InstituteKyungpook National UniversityDaegu41944Republic of Korea
| | - Yujin Jeon
- Department of Ophthalmology, School of MedicineKyungpook National University, Kyungpook National University HospitalDaegu41944Republic of Korea
- Cell & Matrix Research InstituteKyungpook National UniversityDaegu41944Republic of Korea
| | - Young Jae Choi
- Bioanalysis and Pharmacokinetics Research GroupKorea Institute of ToxicologyDaejeon34114Republic of Korea
| | - Jong‐Hwa Lee
- Bioanalysis and Pharmacokinetics Research GroupKorea Institute of ToxicologyDaejeon34114Republic of Korea
- Department of Human and Environment ToxicologyUniversity of Science & TechnologyDaejeon34113Republic of Korea
| | - Akiyoshi Uemura
- Department of Ophthalmology and Visual ScienceNagoya City University Graduate School of Medical SciencesNagoya467‐8601Japan
| | - Dong Ho Park
- Department of Ophthalmology, School of MedicineKyungpook National University, Kyungpook National University HospitalDaegu41944Republic of Korea
- Cell & Matrix Research InstituteKyungpook National UniversityDaegu41944Republic of Korea
| | - Byoung Heon Kang
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
- SmartinBio Inc.Cheongju28160Republic of Korea
| |
Collapse
|
15
|
Hasan A, Khamjan N, Lohani M, Mir SS. Targeted Inhibition of Hsp90 in Combination with Metformin Modulates Programmed Cell Death Pathways in A549 Lung Cancer Cells. Appl Biochem Biotechnol 2023; 195:7338-7378. [PMID: 37000353 DOI: 10.1007/s12010-023-04424-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/01/2023]
Abstract
The pathophysiology of lung cancer is dependent on the dysregulation in the apoptotic and autophagic pathways. The intricate link between apoptosis and autophagy through shared signaling pathways complicates our understanding of how lung cancer pathophysiology is regulated. As drug resistance is the primary reason behind treatment failure, it is crucial to understand how cancer cells may respond to different therapies and integrate crosstalk between apoptosis and autophagy in response to them, leading to cell death or survival. Thus, in this study, we have tried to evaluate the crosstalk between autophagy and apoptosis in A549 lung cancer cell line that could be modulated by employing a combination therapy of metformin (6 mM), an anti-diabetic drug, with gedunin (12 µM), an Hsp90 inhibitor, to provide insights into the development of new cancer therapeutics. Our results demonstrated that metformin and gedunin were cytotoxic to A549 lung cancer cells. Combination of metformin and gedunin generated ROS and promoted MMP loss and DNA damage. The combination further increased the expression of AMPKα1 and promoted the nuclear localization of AMPKα1/α2. The expression of Hsp90 was downregulated, further decreasing the expression of its clients, EGFR, PIK3CA, AKT1, and AKT3. Inhibition of the EGFR/PI3K/AKT pathway upregulated TP53 and inhibited autophagy. The combination was promoting nuclear localization of p53; however, some cytoplasmic signals were also detected. Further increase in the expression of caspase 9 and caspase 3 was observed. Thus, we concluded that the combination of metformin and gedunin upregulates apoptosis by inhibiting the EGFR/PI3K/AKT pathway and autophagy in A549 lung cancer cells.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India
- Current Address: Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Nizar Khamjan
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Kingdom of Saudi Arabia
| | - Mohtashim Lohani
- Medical Research Center, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
- Emergency Medical Services, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India.
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
16
|
Lan X, Ren J, Du X, Zhang L, Wang S, Yang X, Lu S. lnc-HC ameliorates steatosis by promoting miR-130b-3p biogenesis and the assembly of an RNA-induced silencing complex. Mol Cell Endocrinol 2023; 578:112061. [PMID: 37678604 DOI: 10.1016/j.mce.2023.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Hepatic lipid deposition is the main cause of non-alcoholic fatty liver disease (NAFLD). Our previous study identified that lnc-HC prevents NAFLD by increasing the expression of miR-130b-3p. In the present study, we show that lnc-HC, an lncRNA derived from hepatocytes, positively controls miR-130b-3p maturation at multiple levels and contributes to its action by enhancing the assembly of an RNA-induced silencing complex (RISC). lnc-HC negatively regulates the downstream target genes of miR-130b-3p, including peroxisome proliferator-activated receptor gamma (PPARγ) and acyl-CoA synthetase long-chain family member 1 and 4 (Acsl1 and Acsl4, respectively), thus suppressing hepatic lipid droplet accumulation. Mechanistically, lnc-HC enhanced the promoter activity of miR-130b-3p by positively regulating the expression of transcription factors MAF bZIP transcription factor B (Mafb) and Jun proto-oncogene (Jun). Then, lnc-HC contributed the processing step of primary (pri-) miR-130b and strengthened the interaction between Drosha enzyme and the 5'-flanking sequence of pri-miR-130b to produce more precursor transcripts. Through direct binding with the chaperone heat shock protein 90 alpha family class A member 1 (HSP90AA1), lnc-HC contributed to RISC assembly, which was composed of HSP90AA1, argonaute RISC catalytic component 2 (AGO2) and miR-130b-3p. In a high-fat, high-cholesterol-induced hepatic lipid disorder E3 model, we confirmed that the hepatic expression of lnc-HC/miR-130b-3p negatively correlated with that of the target genes and was closely associated with liver triglycerides concentration. These findings provide a deeper understanding of the regulatory roles of lnc-HC in hepatic lipid metabolism and NAFLD development.
Collapse
Affiliation(s)
- Xi Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China
| | - Jiajun Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China
| | - Xiaojuan Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China
| | | | - Xudong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China.
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China.
| |
Collapse
|
17
|
Xiang Y, Liu X, Sun Q, Liao K, Liu X, Zhao Z, Feng L, Liu Y, Wang B. The development of cancers research based on mitochondrial heat shock protein 90. Front Oncol 2023; 13:1296456. [PMID: 38098505 PMCID: PMC10720920 DOI: 10.3389/fonc.2023.1296456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Mitochondrial heat shock protein 90 (mtHsp90), including Tumor necrosis factor receptor-associated protein 1 (TRAP1) and Hsp90 translocated from cytoplasm, modulating cellular metabolism and signaling pathways by altering the conformation, activity, and stability of numerous client proteins, and is highly expressed in tumors. mtHsp90 inhibition results in the destabilization and eventual degradation of its client proteins, leading to interference with various tumor-related pathways and efficient control of cancer cell development. Among these compounds, gamitrinib, a specific mtHsp90 inhibitor, has demonstrated its safety and efficacy in several preclinical investigations and is currently undergoing evaluation in clinical trials. This review aims to provide a comprehensive overview of the present knowledge pertaining to mtHsp90, encompassing its structure and function. Moreover, our main emphasis is on the development of mtHsp90 inhibitors for various cancer therapies, to present a thorough overview of the recent pre-clinical and clinical advancements in this field.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Qi Sun
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Kuo Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaohan Liu
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Zihui Zhao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lishuang Feng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
18
|
Merfeld T, Peng S, Keegan BM, Crowley VM, Brackett CM, Gutierrez A, McCann NR, Reynolds TS, Rhodes MC, Byrd KM, Deng J, Matts RL, Blagg BSJ. Elucidation of novel TRAP1-Selective inhibitors that regulate mitochondrial processes. Eur J Med Chem 2023; 258:115531. [PMID: 37307624 PMCID: PMC10529355 DOI: 10.1016/j.ejmech.2023.115531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
Hsp90 isoform-selective inhibitors represent a new paradigm for novel anti-cancer drugs as each of the four isoforms have specific cellular localization, function, and client proteins. The mitochondrial isoform, TRAP1, is the least understood member of the Hsp90 family due to the lack of small molecule tools to study its biological function. Herein, we report novel TRAP1-selective inhibitors used to interrogate TRAP1's biological function along with co-crystal structures of such compounds bound to the N-terminus of TRAP1. Solution of the co-crystal structure allowed for a structure-based approach that resulted in compound 36, which is a 40 nM inhibitor with >250-fold TRAP1 selectivity over Grp94, the isoform with the highest structural similarity to TRAP1 within the N-terminal ATP binding site. Lead compounds 35 and 36 were found to selectively induce TRAP1 client protein degradation without inducing the heat shock response or disrupting Hsp90-cytosolic clients. They were also shown to inhibit OXPHOS, alter cellular metabolism towards glycolysis, disrupt TRAP1 tetramer stability, and disrupt the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Taylor Merfeld
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Shuxia Peng
- Department of Biochemistry & Molecular Biology, Oklahoma State University, NRC 246 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Bradley M Keegan
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Vincent M Crowley
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Christopher M Brackett
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Andrew Gutierrez
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Nathan R McCann
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tyelor S Reynolds
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew C Rhodes
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Katherine M Byrd
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Junpeng Deng
- Department of Biochemistry & Molecular Biology, Oklahoma State University, NRC 246 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Robert L Matts
- Department of Biochemistry & Molecular Biology, Oklahoma State University, NRC 246 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
19
|
Fang X, Feng J, Wang K, Luan Y. Development of VER-50589 analogs as novel Hsp90 inhibitors. Bioorg Med Chem Lett 2023; 91:129375. [PMID: 37315698 DOI: 10.1016/j.bmcl.2023.129375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
As an important target for tumor therapy, heat shock protein 90 has attracted tremendous attention. Through structure analysis, we rationally designed three analogs of VER-50589 which is a known and potent Hsp90 inhibitor. Target inhibitory activity result showed that one compound dubbed as 12-1 exhibited strong inhibitory activity against Hsp90 with an IC50 value of 9 nM. In tumor cell viability experiment, compound 12-1 robustly repressed the proliferation against six human tumor cells with IC50 values all in nanomolar range scoring over VER-50589 and geldanamycin. 12-1 was able to induce apoptosis of tumor cells and arrest the tumor cell cycle in G0/G1 phase. Meanwhile, western blot results showed that 12-1 could significantly downregulated the expression of two Hsp90 client proteins CDK4 and HER2. Finally, molecular dynamic simulation showed that compound 12-1 could fit well with ATP binding site on N-terminal of Hsp90.
Collapse
Affiliation(s)
- Xixi Fang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China; Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jinhong Feng
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Ji' nan, Shandong, China
| | - Kewei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
20
|
Wurnig S, Vogt M, Hogenkamp J, Dienstbier N, Borkhardt A, Bhatia S, Hansen FK. Development of the first geldanamycin-based HSP90 degraders. Front Chem 2023; 11:1219883. [PMID: 37448856 PMCID: PMC10336212 DOI: 10.3389/fchem.2023.1219883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the early clinical promise, adverse events such as acquired resistance and dose-limiting toxicities have barred the widespread use of HSP90 inhibitors as anticancer drugs. A new approach involving proteolysis-targeting chimeras (PROTACs) to degrade the protein instead of inhibiting it may overcome these problems. In this work, we describe the design, synthesis, and evaluation of cereblon-recruiting geldanamycin-based HSP90 degraders based on the PROTAC technology. Our best degrader, 3a, effectively decreased HSP90α and HSP90β levels in cells utilizing the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Silas Wurnig
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Melina Vogt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Hogenkamp
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Dienstbier
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
21
|
Wang Q, Liu P, Wen Y, Li K, Bi B, Li BB, Qiu M, Zhang S, Li Y, Li J, Chen H, Yin Y, Zeng L, Zhang C, He Y, Zhao J. Metal-enriched HSP90 nanoinhibitor overcomes heat resistance in hyperthermic intraperitoneal chemotherapy used for peritoneal metastases. Mol Cancer 2023; 22:95. [PMID: 37316830 DOI: 10.1186/s12943-023-01790-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Clinical hyperthermic intraperitoneal chemotherapy (HIPEC) is regarded as a potential treatment that can prolong survival of patients with peritoneal metastases after cytoreductive surgery. However, treated tumor cells are prone to becoming heat resistant to HIPEC therapy through high expression of heat shock proteins (HSPs). Here, a carrier-free bifunctional nanoinhibitor was developed for HIPEC therapy in the management of peritoneal metastases. Self-assembly of the nanoinhibitor was formed by mixing Mn ion and epigallocatechin gallate (EGCG) in a controllable manner. Such nanoinhibitor directly inhibited HSP90 and impaired the HSP90 chaperone cycle by reduced intracellular ATP level. Additionally, heat and Mn ion synergistically induced oxidative stress and expression of caspase 1, which activated GSDMD by proteolysis and caused pyroptosis in tumor cells, triggering immunogenic inflammatory cell death and induced maturation of dendritic cells through the release of tumor antigens. This strategy to inhibit heat resistance in HIPEC presented an unprecedented paradigm for converting "cold" tumors into "hot" ones, thus significantly eradicating disseminated tumors located deep in the abdominal cavity and stimulating immune response in peritoneal metastases of a mouse model. Collectively, the nanoinhibitor effectively induced pyroptosis of colon tumor cells under heat conditions by inhibiting heat stress resistance and increasing oxidative stress, which may provide a new strategy for treatment of colorectal peritoneal metastases.
Collapse
Affiliation(s)
- Qiang Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Peng Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Kuan Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Bo Bi
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Bin-Bin Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Miaojuan Qiu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Shiqiang Zhang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jia Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Hengxing Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Yuan Yin
- Gastric Cancer Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Sichuan, China
| | - Leli Zeng
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Jing Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
22
|
Shen L, Chen YL, Huang CC, Shyu YC, Seftor REB, Seftor EA, Hendrix MJC, Chien DS, Chu YW. CVM-1118 (foslinanib), a 2-phenyl-4-quinolone derivative, promotes apoptosis and inhibits vasculogenic mimicry via targeting TRAP1. Pathol Oncol Res 2023; 29:1611038. [PMID: 37351538 PMCID: PMC10283505 DOI: 10.3389/pore.2023.1611038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
CVM-1118 (foslinanib) is a phosphoric ester compound selected from 2-phenyl-4-quinolone derivatives. The NCI 60 cancer panel screening showed CVM-1125, the major active metabolite of CVM-1118, to exhibit growth inhibitory and cytotoxic effects at nanomolar range. CVM-1118 possesses multiple bioactivities, including inducing cellular apoptosis, cell cycle arrest at G2/M, as well as inhibiting vasculogenic mimicry (VM) formation. The TNF receptor associated protein 1 (TRAP1) was identified as the binding target of CVM-1125 using nematic protein organization technique (NPOT) interactome analysis. Further studies demonstrated CVM-1125 reduced the protein level of TRAP1 and impeded its downstream signaling by reduction of cellular succinate levels and destabilization of HIF-1α. The pharmacogenomic biomarkers associated with CVM-1118 were also examined by Whole Genome CRISPR Knock-Out Screening. Two hits (STK11 and NF2) were confirmed with higher sensitivity to the drug in cell knock-down experiments. Biological assays indicate that the mechanism of action of CVM-1118 is via targeting TRAP1 to induce mitochondrial apoptosis, suppress tumor cell growth, and inhibit vasculogenic mimicry formation. Most importantly, the loss-of-function mutations of STK11 and NF2 are potential biomarkers of CVM-1118 which can be applied in the selection of cancer patients for CVM-1118 treatment. CVM-1118 is currently in its Phase 2a clinical development.
Collapse
Affiliation(s)
| | | | | | - Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital Keelung Branch, Keelung, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | | | - Elisabeth A. Seftor
- Department of Biology, Shepherd University, Shepherdstown, WV, United States
| | - Mary J. C. Hendrix
- Department of Biology, Shepherd University, Shepherdstown, WV, United States
| | | | | |
Collapse
|
23
|
Zhang W, Lee AM, Jena S, Huang Y, Ho Y, Tietz KT, Miller CR, Su MC, Mentzer J, Ling AL, Li Y, Dehm SM, Huang RS. Computational drug discovery for castration-resistant prostate cancers through in vitro drug response modeling. Proc Natl Acad Sci U S A 2023; 120:e2218522120. [PMID: 37068243 PMCID: PMC10151558 DOI: 10.1073/pnas.2218522120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/17/2023] [Indexed: 04/19/2023] Open
Abstract
Prostate cancer (PC) is the most frequently diagnosed malignancy and a leading cause of cancer deaths in US men. Many PC cases metastasize and develop resistance to systemic hormonal therapy, a stage known as castration-resistant prostate cancer (CRPC). Therefore, there is an urgent need to develop effective therapeutic strategies for CRPC. Traditional drug discovery pipelines require significant time and capital input, which highlights a need for novel methods to evaluate the repositioning potential of existing drugs. Here, we present a computational framework to predict drug sensitivities of clinical CRPC tumors to various existing compounds and identify treatment options with high potential for clinical impact. We applied this method to a CRPC patient cohort and nominated drugs to combat resistance to hormonal therapies including abiraterone and enzalutamide. The utility of this method was demonstrated by nomination of multiple drugs that are currently undergoing clinical trials for CRPC. Additionally, this method identified the tetracycline derivative COL-3, for which we validated higher efficacy in an isogenic cell line model of enzalutamide-resistant vs. enzalutamide-sensitive CRPC. In enzalutamide-resistant CRPC cells, COL-3 displayed higher activity for inhibiting cell growth and migration, and for inducing G1-phase cell cycle arrest and apoptosis. Collectively, these findings demonstrate the utility of a computational framework for independent validation of drugs being tested in CRPC clinical trials, and for nominating drugs with enhanced biological activity in models of enzalutamide-resistant CRPC. The efficiency of this method relative to traditional drug development approaches indicates a high potential for accelerating drug development for CRPC.
Collapse
Affiliation(s)
- Weijie Zhang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN55455
- The Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Adam M. Lee
- The Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Sampreeti Jena
- The Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Yingbo Huang
- The Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Yeung Ho
- Department of Laboratory Medicine and Pathology, The University of Minnesota Medical School, Minneapolis, MN55455
| | - Kiel T. Tietz
- Department of Laboratory Medicine and Pathology, The University of Minnesota Medical School, Minneapolis, MN55455
| | - Conor R. Miller
- Department of Laboratory Medicine and Pathology, The University of Minnesota Medical School, Minneapolis, MN55455
| | - Mei-Chi Su
- The Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Joshua Mentzer
- The Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Alexander L. Ling
- The Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Yingming Li
- Department of Laboratory Medicine and Pathology, The University of Minnesota Medical School, Minneapolis, MN55455
| | - Scott M. Dehm
- Department of Laboratory Medicine and Pathology, The University of Minnesota Medical School, Minneapolis, MN55455
| | - R. Stephanie Huang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN55455
- The Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
24
|
Chin HK, Lu MC, Hsu KC, El-Shazly M, Tsai TN, Lin TY, Shih SP, Lin TE, Wen ZH, Yang YCSH, Liu YC. Exploration of anti-leukemic effect of soft coral-derived 13-acetoxysarcocrassolide: Induction of apoptosis via oxidative stress as a potent inhibitor of heat shock protein 90 and topoisomerase II. Kaohsiung J Med Sci 2023. [PMID: 37052190 DOI: 10.1002/kjm2.12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
13-Acetoxysarcocrassolide (13-AC) is a marine cembranoid derived from the aquaculture soft coral of Lobophytum crassum. The cytotoxic effect of 13-AC against leukemia cells was previously reported but its mechanism of action is still unexplored. In the current study, we showed that 13-AC induced apoptosis of human acute lymphoblastic leukemia Molt4 cells, as evidenced by the cleavage of PARP and caspases, phosphatidylserine externalization, as well as the disruption of mitochondrial membrane potential. The use of N-acetylcysteine (NAC), a reactive oxygen species (ROS) scavenger, attenuated the cytotoxic effect induced by 13-AC. Molecular docking and thermal shift assay indicated that the cytotoxic mechanism of action of 13-AC involved the inhibition of heat shock protein 90 (Hsp 90) activity by eliciting the level of Hsp 70 and topoisomerase IIα in Molt4 cells. 13-AC also exhibited potent antitumor activity by reducing the tumor volume (48.3%) and weight (72.5%) in the in vivo Molt4 xenograft mice model. Our findings suggested that the marine cembranoid, 13-AC, acted as a dual inhibitor of Hsp 90 and topoisomerase IIα, exerting more potent apoptotic activity via the enhancement of ROS generation.
Collapse
Affiliation(s)
- Hsien-Kuo Chin
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Master Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Tsen-Ni Tsai
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tzu-Yung Lin
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Tony Eight Lin
- Master Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cellular Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
25
|
Kulaphisit M, Pomlok K, Saenjum C, Mungkornasawakul P, Trisuwan K, Wipasa J, Inta A, Smith DR, Lithanatudom P. The anti-leukemic activity of a luteolin-apigenin enriched fraction from an edible and ethnomedicinal plant, Elsholtzia stachyodes, is exerted through an ER stress/autophagy/cell cycle arrest/ apoptotic cell death signaling axis. Biomed Pharmacother 2023; 160:114375. [PMID: 36753951 DOI: 10.1016/j.biopha.2023.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Elsholtzia is a genus in the family Lamiaceae, and some species in this genus are commonly used for food and in ethnomedicinal formulations by some ethnic groups of China and Thailand. Despite their apparent utility, few studies have been conducted to evaluate their potential as sources of medicinally active agents. PURPOSE We aimed to investigate the cytotoxicity of ethanolic extracts from three selected edible plant species of the genus Elsholtzia and the most promising extract was further characterized for the bioactive constituents and signaling mechanisms associated with the anti-leukemic activity. MATERIALS AND METHODS Ethanolic extracts were screened for cytotoxicity using flow cytometry. HPLC and LC-MS were used to analyze the chemical constituents of the most potent fraction from E. stachyodes. The relevant mechanism of action was assessed by western blot and multispectral imaging flow cytometry (MIFC). RESULTS The most potent anti-leukemic activity was observed with the ethanolic extract from E. stachyodes. Luteolin and apigenin were characterized as the major constituents in the fraction from E. stachyodes. Mechanistically, the luteolin-apigenin enriched fraction (LAEF) induced the UPR, increased autophagic flux, induced cell cycle arrest and apoptotic cell death. LAEF showed significantly less cytotoxicity towards peripheral blood mononuclear cells (PBMCs) as compared to leukemia cell lines. CONCLUSION This study is the first to report E. stachyodes as a new source of luteolin and apigenin which are capable of triggering leukemic cell death. This could lead to a novel strategy against leukemia using ethnomedicinal plant extracts as an alternative or supplemental anti-cancer agent.
Collapse
Affiliation(s)
- Mattapong Kulaphisit
- PhD Degree Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kumpanat Pomlok
- PhD Degree Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chalermpong Saenjum
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-based Economic and Society, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | - Kongkiat Trisuwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraprapa Wipasa
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Angkana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Pathrapol Lithanatudom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-based Economic and Society, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
26
|
Chowdhury SR, Koley T, Singh M, Samath EA, Kaur P. Association of Hsp90 with p53 and Fizzy related homolog (Fzr) synchronizing Anaphase Promoting Complex (APC/C): An unexplored ally towards oncogenic pathway. Biochim Biophys Acta Rev Cancer 2023; 1878:188883. [PMID: 36972769 DOI: 10.1016/j.bbcan.2023.188883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The intricate molecular interactions leading to the oncogenic pathway are the consequence of cell cycle modification controlled by a bunch of cell cycle regulatory proteins. The tumor suppressor and cell cycle regulatory proteins work in coordination to maintain a healthy cellular environment. The integrity of this cellular protein pool is perpetuated by heat shock proteins/chaperones, which assist in proper protein folding during normal and cellular stress conditions. Among these versatile groups of chaperone proteins, Hsp90 is one of the significant ATP-dependent chaperones that aid in stabilizing many tumor suppressors and cell cycle regulator protein targets. Recently, studies have revealed that in cancerous cell lines, Hsp90 stabilizes mutant p53, 'the guardian of the genome.' Hsp90 also has a significant impact on Fzr, an essential regulator of the cell cycle having an important role in the developmental process of various organisms, including Drosophila, yeast, Caenorhabditis elegans, and plants. During cell cycle progression, p53 and Fzr coordinately regulate the Anaphase Promoting Complex (APC/C) from metaphase to anaphase transition up to cell cycle exit. APC/C mediates proper centrosome function in the dividing cell. The centrosome acts as the microtubule organizing center for the correct segregation of the sister chromatids to ensure perfect cell division. This review examines the structure of Hsp90 and its co-chaperones, which work in synergy to stabilize proteins such as p53 and Fizzy-related homolog (Fzr) to synchronize the Anaphase Promoting Complex (APC/C). Dysfunction of this process activates the oncogenic pathway leading to the development of cancer. Additionally, an overview of current drugs targeting Hsp90 at various phases of clinical trials has been included.
Collapse
Affiliation(s)
- Sanghati Roy Chowdhury
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tirthankar Koley
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
27
|
Targeting Mitochondrial Metabolic Reprogramming as a Potential Approach for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24054954. [PMID: 36902385 PMCID: PMC10003438 DOI: 10.3390/ijms24054954] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Abnormal energy metabolism is a characteristic of tumor cells, and mitochondria are important components of tumor metabolic reprogramming. Mitochondria have gradually received the attention of scientists due to their important functions, such as providing chemical energy, producing substrates for tumor anabolism, controlling REDOX and calcium homeostasis, participating in the regulation of transcription, and controlling cell death. Based on the concept of reprogramming mitochondrial metabolism, a range of drugs have been developed to target the mitochondria. In this review, we discuss the current progress in mitochondrial metabolic reprogramming and summarized the corresponding treatment options. Finally, we propose mitochondrial inner membrane transporters as new and feasible therapeutic targets.
Collapse
|
28
|
Huffman OG, Chau DB, Dinicu AI, DeBernardo R, Reizes O. Mechanistic Insights on Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. Cancers (Basel) 2023; 15:cancers15051402. [PMID: 36900195 PMCID: PMC10000881 DOI: 10.3390/cancers15051402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Epithelial ovarian cancer is an aggressive disease of the female reproductive system and a leading cause of cancer death in women. Standard of care includes surgery and platinum-based chemotherapy, yet patients continue to experience a high rate of recurrence and metastasis. Hyperthermic intraperitoneal chemotherapy (HIPEC) treatment in highly selective patients extends overall survival by nearly 12 months. The clinical studies are highly supportive of the use of HIPEC in the treatment of ovarian cancer, though the therapeutic approach is limited to academic medical centers. The mechanism underlying HIPEC benefit remains unknown. The efficacy of HIPEC therapy is impacted by several procedural and patient/tumor factors including the timing of surgery, platinum sensitivity, and molecular profiling such as homologous recombination deficiency. The present review aims to provide insight into the mechanistic benefit of HIPEC treatment with a focus on how hyperthermia activates the immune response, induces DNA damage, impairs DNA damage repair pathways, and has a synergistic effect with chemotherapy, with the ultimate outcome of increasing chemosensitivity. Identifying the points of fragility unmasked by HIPEC may provide the key pathways that could be the basis of new therapeutic strategies for ovarian cancer patients.
Collapse
Affiliation(s)
- Olivia G. Huffman
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Danielle B. Chau
- Division of Gynecologic Oncology, Obstetrics, Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, OH 44124, USA
| | - Andreea I. Dinicu
- Division of Gynecologic Oncology, Obstetrics, Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, OH 44124, USA
| | - Robert DeBernardo
- Division of Gynecologic Oncology, Obstetrics, Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, OH 44124, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-445-0880
| |
Collapse
|
29
|
Gajjala PR, Singh P, Odayar V, Ediga HH, McCormack FX, Madala SK. Wilms Tumor 1-Driven Fibroblast Activation and Subpleural Thickening in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2023; 24:2850. [PMID: 36769178 PMCID: PMC9918078 DOI: 10.3390/ijms24032850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that is often fatal due to the formation of irreversible scar tissue in the distal areas of the lung. Although the pathological and radiological features of IPF lungs are well defined, the lack of insight into the fibrogenic role of fibroblasts that accumulate in distinct anatomical regions of the lungs is a critical knowledge gap. Fibrotic lesions have been shown to originate in the subpleural areas and extend into the lung parenchyma through processes of dysregulated fibroproliferation, migration, fibroblast-to-myofibroblast transformation, and extracellular matrix production. Identifying the molecular targets underlying subpleural thickening at the early and late stages of fibrosis could facilitate the development of new therapies to attenuate fibroblast activation and improve the survival of patients with IPF. Here, we discuss the key cellular and molecular events that contribute to (myo)fibroblast activation and subpleural thickening in IPF. In particular, we highlight the transcriptional programs involved in mesothelial to mesenchymal transformation and fibroblast dysfunction that can be targeted to alter the course of the progressive expansion of fibrotic lesions in the distal areas of IPF lungs.
Collapse
Affiliation(s)
| | | | | | | | | | - Satish K. Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH 45267-0564, USA
| |
Collapse
|
30
|
Samant RS, Batista S, Larance M, Ozer B, Milton CI, Bludau I, Wu E, Biggins L, Andrews S, Hervieu A, Johnston HE, Al-Lazikhani B, Lamond AI, Clarke PA, Workman P. Native Size-Exclusion Chromatography-Based Mass Spectrometry Reveals New Components of the Early Heat Shock Protein 90 Inhibition Response Among Limited Global Changes. Mol Cell Proteomics 2023; 22:100485. [PMID: 36549590 PMCID: PMC9898794 DOI: 10.1016/j.mcpro.2022.100485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (HSP90) works in concert with co-chaperones to stabilize its client proteins, which include multiple drivers of oncogenesis and malignant progression. Pharmacologic inhibitors of HSP90 have been observed to exert a wide range of effects on the proteome, including depletion of client proteins, induction of heat shock proteins, dissociation of co-chaperones from HSP90, disruption of client protein signaling networks, and recruitment of the protein ubiquitylation and degradation machinery-suggesting widespread remodeling of cellular protein complexes. However, proteomics studies to date have focused on inhibitor-induced changes in total protein levels, often overlooking protein complex alterations. Here, we use size-exclusion chromatography in combination with mass spectrometry (SEC-MS) to characterize the early changes in native protein complexes following treatment with the HSP90 inhibitor tanespimycin (17-AAG) for 8 h in the HT29 colon adenocarcinoma cell line. After confirming the signature cellular response to HSP90 inhibition (e.g., induction of heat shock proteins, decreased total levels of client proteins), we were surprised to find only modest perturbations to the global distribution of protein elution profiles in inhibitor-treated HT29 cells at this relatively early time-point. Similarly, co-chaperones that co-eluted with HSP90 displayed no clear difference between control and treated conditions. However, two distinct analysis strategies identified multiple inhibitor-induced changes, including known and unknown components of the HSP90-dependent proteome. We validate two of these-the actin-binding protein Anillin and the mitochondrial isocitrate dehydrogenase 3 complex-as novel HSP90 inhibitor-modulated proteins. We present this dataset as a resource for the HSP90, proteostasis, and cancer communities (https://www.bioinformatics.babraham.ac.uk/shiny/HSP90/SEC-MS/), laying the groundwork for future mechanistic and therapeutic studies related to HSP90 pharmacology. Data are available via ProteomeXchange with identifier PXD033459.
Collapse
Affiliation(s)
- Rahul S Samant
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom; Signalling Programme, The Babraham Institute, Cambridge, United Kingdom.
| | - Silvia Batista
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Mark Larance
- Centre for Gene Regulation & Expression, University of Dundee, Dundee, United Kingdom
| | - Bugra Ozer
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Christopher I Milton
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Isabell Bludau
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Estelle Wu
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Laura Biggins
- Bioinformatics Group, The Babraham Institute, Cambridge, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, United Kingdom
| | - Alexia Hervieu
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Harvey E Johnston
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Bissan Al-Lazikhani
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Angus I Lamond
- Centre for Gene Regulation & Expression, University of Dundee, Dundee, United Kingdom
| | - Paul A Clarke
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Paul Workman
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
31
|
Payload diversification: a key step in the development of antibody-drug conjugates. J Hematol Oncol 2023; 16:3. [PMID: 36650546 PMCID: PMC9847035 DOI: 10.1186/s13045-022-01397-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Antibody-drug conjugates (ADCs) is a fast moving class of targeted biotherapeutics that currently combines the selectivity of monoclonal antibodies with the potency of a payload consisting of cytotoxic agents. For many years microtubule targeting and DNA-intercalating agents were at the forefront of ADC development. The recent approval and clinical success of trastuzumab deruxtecan (Enhertu®) and sacituzumab govitecan (Trodelvy®), two topoisomerase 1 inhibitor-based ADCs, has shown the potential of conjugating unconventional payloads with differentiated mechanisms of action. Among future developments in the ADC field, payload diversification is expected to play a key role as illustrated by a growing number of preclinical and clinical stage unconventional payload-conjugated ADCs. This review presents a comprehensive overview of validated, forgotten and newly developed payloads with different mechanisms of action.
Collapse
|
32
|
Khadela A, Chavda VP, Soni S, Megha K, Pandya AJ, Vora L. Anti-Androgenic Therapies Targeting the Luminal Androgen Receptor of a Typical Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010233. [PMID: 36612226 PMCID: PMC9818775 DOI: 10.3390/cancers15010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Triple-negative tumors are progressively delineating their existence over the extended spectrum of breast cancers, marked by intricate molecular heterogeneity, a low overall survival rate, and an unexplored therapeutic approach. Although the basal subtype transcends the group and contributes approximately 80% to triple-negative breast cancer (TNBC) cases, the exceptionally appearing mesenchymal and luminal androgen receptor (LAR) subtypes portray an unfathomable clinical course. LAR with a distinct generic profile frequently metastasizes to regional lymph nodes and bones. This subtype is minimally affected by chemotherapy and shows the lowest pathologic complete response. The androgen receptor is the only sex steroid receptor that plays a cardinal role in the progression of breast cancers and is typically overexpressed in LAR. The partial AR antagonist bicalutamide and the next-generation AR inhibitor enzalutamide are being assessed in standard protocols for the mitigation of TNBC. There arises an inevitable need to probe into the strategies that could neutralize these androgen receptors and alleviate the trajectory of concerning cancer. This paper thus focuses on reviewing literature that provides insights into the anti-androgenic elements against LAR typical TNBC that could pave the way for clinical advancements in this dynamic sphere of oncology.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
- Correspondence: (V.P.C.); (L.V.)
| | - Shruti Soni
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Kaivalya Megha
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Aanshi J. Pandya
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (V.P.C.); (L.V.)
| |
Collapse
|
33
|
Kang S, Kang BH. Structure, Function, and Inhibitors of the Mitochondrial Chaperone TRAP1. J Med Chem 2022; 65:16155-16172. [PMID: 36507721 DOI: 10.1021/acs.jmedchem.2c01633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial molecular chaperone modulating cellular metabolism and signaling pathways by altering the conformation, activity, and stability of numerous substrate proteins called clients. It exerts its chaperone function as an adaptive response to counter cellular stresses instead of maintaining housekeeping protein homeostasis. However, the stress-adaptive machinery becomes dysregulated to support the progression and maintenance of human diseases, such as cancers; therefore, TRAP1 has been proposed as a promising target protein for anticancer drug development. In this review, by collating recent reports on high-resolution TRAP1 structures and structure-activity relationships of inhibitors, we aimed to provide better insights into the chaperoning mechanism of the emerging drug target and to suggest an efficient strategy for the development of potent TRAP1 inhibitors.
Collapse
Affiliation(s)
- Soosung Kang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
34
|
Iyengar BR, Wagner A. Bacterial Hsp90 predominantly buffers but does not potentiate the phenotypic effects of deleterious mutations during fluorescent protein evolution. Genetics 2022; 222:iyac154. [PMID: 36227141 PMCID: PMC9713429 DOI: 10.1093/genetics/iyac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022] Open
Abstract
Chaperones facilitate the folding of other ("client") proteins and can thus affect the adaptive evolution of these clients. Specifically, chaperones affect the phenotype of proteins via two opposing mechanisms. On the one hand, they can buffer the effects of mutations in proteins and thus help preserve an ancestral, premutation phenotype. On the other hand, they can potentiate the effects of mutations and thus enhance the phenotypic changes caused by a mutation. We study that how the bacterial Hsp90 chaperone (HtpG) affects the evolution of green fluorescent protein. To this end, we performed directed evolution of green fluorescent protein under low and high cellular concentrations of Hsp90. Specifically, we evolved green fluorescent protein under both stabilizing selection for its ancestral (green) phenotype and directional selection toward a new (cyan) phenotype. While Hsp90 did only affect the rate of adaptive evolution transiently, it did affect the phenotypic effects of mutations that occurred during adaptive evolution. Specifically, Hsp90 allowed strongly deleterious mutations to accumulate in evolving populations by buffering their effects. Our observations show that the role of a chaperone for adaptive evolution depends on the organism and the trait being studied.
Collapse
Affiliation(s)
- Bharat Ravi Iyengar
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
- Institute for Evolution and Biodiversity, Westfalian Wilhelms—University of Münster, 48149 Münster, Germany
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM 87501, USA
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, 7600 Stellenbosch, South Africa
| |
Collapse
|
35
|
Thompson BH, Sharp CP, Dry IR, Dalziel RG, Gaunt ER. 1 Cellular protein TTC4 and its cofactor HSP90 are pro-viral for bovine herpesvirus 1. Virus Res 2022; 321:198927. [PMID: 36100007 DOI: 10.1016/j.virusres.2022.198927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022]
Abstract
Bovine Herpesvirus Type 1 (BoHV-1) infection causes infectious bovine rhinotracheitis and genital disease in cattle, with significant economic and welfare impacts. However, the role of cellular host factors during viral replication remains poorly characterised. A previously performed genome-wide CRISPR knockout screen identified pro- and antiviral host factors acting during BoHV-1 replication. Herein we validate a pro-viral role for a candidate from this screen: the cellular protein tetracopeptide repeat protein 4 (TTC4). We show that TTC4 transcript production is upregulated during BoHV-1 infection. Depletion of TTC4 protein impairs BoHV-1 protein production but does not reduce production of infectious virions, whereas overexpression of exogenous TTC4 results in a significant increase in production of infectious BoHV-1 virions. TTC4 itself is poorly characterized (especially in the context of virus infection), but is a known co-chaperone of heat shock protein 90 (HSP90). HSP90 has a well-characterized pro-viral role during the replication of diverse herpesviruses, and we therefore hypothesized that HSP90 is also pro-viral for BoHV-1. Drug-mediated inhibition of HSP90 using geldanamycin at sub-cytotoxic concentrations inhibited both BoHV-1 protein production and viral genome replication, indicating a pro-viral role for HSP90 during BoHV-1 infection. Our data demonstrates pro-viral roles for both TTC4 and HSP90 during BoHV-1 replication; possibly, interactions between these two proteins are required for optimal BoHV-1 replication, or the two proteins may have independent pro-viral roles.
Collapse
Affiliation(s)
- Beth H Thompson
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian EH25 9RG, UK
| | - Colin P Sharp
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian EH25 9RG, UK
| | - Inga R Dry
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian EH25 9RG, UK
| | - Robert G Dalziel
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian EH25 9RG, UK
| | - Eleanor R Gaunt
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian EH25 9RG, UK.
| |
Collapse
|
36
|
Evaluation of the Heat Shock Protein 90 Inhibitor Ganetespib as a Sensitizer to Hyperthermia-Based Cancer Treatments. Cancers (Basel) 2022; 14:cancers14215250. [PMID: 36358669 PMCID: PMC9654690 DOI: 10.3390/cancers14215250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Hyperthermia boosts the effects of radio- and chemotherapy regimens, but its clinical potential is hindered by the ability of (cancer) cells to activate a protective mechanism known as the heat stress response. Strategies that inhibit its activation or functions have the potential, therefore, to improve the overall efficacy of hyperthermia-based treatments. In this study, we evaluated the efficacy of the HSP90 inhibitor ganetespib in promoting the effects of radiotherapy or cisplatin combined with hyperthermia in vitro and in a cervix cancer mouse model. Abstract Hyperthermia is being used as a radio- and chemotherapy sensitizer for a growing range of tumor subtypes in the clinic. Its potential is limited, however, by the ability of cancer cells to activate a protective mechanism known as the heat stress response (HSR). The HSR is marked by the rapid overexpression of molecular chaperones, and recent advances in drug development make their inhibition an attractive option to improve the efficacy of hyperthermia-based therapies. Our previous in vitro work showed that a single, short co-treatment with a HSR (HSP90) inhibitor ganetespib prolongs and potentiates the effects of hyperthermia on DNA repair, enhances hyperthermic sensitization to radio- and chemotherapeutic agents, and reduces thermotolerance. In the current study, we first validated these results using an extended panel of cell lines and more robust methodology. Next, we examined the effects of hyperthermia and ganetespib on global proteome changes. Finally, we evaluated the potential of ganetespib to boost the efficacy of thermo-chemotherapy and thermo-radiotherapy in a xenograft murine model of cervix cancer. Our results revealed new insights into the effects of HSR inhibition on cellular responses to heat and show that ganetespib could be employed to increase the efficacy of hyperthermia when combined with radiation.
Collapse
|
37
|
Zhang J, Li H, Liu Y, Zhao K, Wei S, Sugarman ET, Liu L, Zhang G. Targeting HSP90 as a Novel Therapy for Cancer: Mechanistic Insights and Translational Relevance. Cells 2022; 11:cells11182778. [PMID: 36139353 PMCID: PMC9497295 DOI: 10.3390/cells11182778] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Heat shock protein (HSP90), a highly conserved molecular chaperon, is indispensable for the maturation of newly synthesized poly-peptides and provides a shelter for the turnover of misfolded or denatured proteins. In cancers, the client proteins of HSP90 extend to the entire process of oncogenesis that are associated with all hallmarks of cancer. Accumulating evidence has demonstrated that the client proteins are guided for proteasomal degradation when their complexes with HSP90 are disrupted. Accordingly, HSP90 and its co-chaperones have emerged as viable targets for the development of cancer therapeutics. Consequently, a number of natural products and their analogs targeting HSP90 have been identified. They have shown a strong inhibitory effect on various cancer types through different mechanisms. The inhibitors act by directly binding to either HSP90 or its co-chaperones/client proteins. Several HSP90 inhibitors—such as geldanamycin and its derivatives, gamitrinib and shepherdin—are under clinical evaluation with promising results. Here, we review the subcellular localization of HSP90, its corresponding mechanism of action in the malignant phenotypes, and the recent progress on the development of HSP90 inhibitors. Hopefully, this comprehensive review will shed light on the translational potential of HSP90 inhibitors as novel cancer therapeutics.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Houde Li
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong 999077, China
| | - Kejia Zhao
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Shiyou Wei
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Eric T. Sugarman
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Lunxu Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong 999077, China
- Correspondence:
| |
Collapse
|
38
|
Stachowski TR, Vanarotti M, Seetharaman J, Lopez K, Fischer M. Water Networks Repopulate Protein-Ligand Interfaces with Temperature. Angew Chem Int Ed Engl 2022; 61:e202112919. [PMID: 35648650 PMCID: PMC9329195 DOI: 10.1002/anie.202112919] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 12/14/2022]
Abstract
High-resolution crystal structures highlight the importance of water networks in protein-ligand interactions. However, as these are typically determined at cryogenic temperature, resulting insights may be structurally precise but not biologically accurate. By collecting 10 matched room-temperature and cryogenic datasets of the biomedical target Hsp90α, we identified changes in water networks that impact protein conformations at the ligand binding interface. Water repositioning with temperature repopulates protein ensembles and ligand interactions. We introduce Flipper conformational barcodes to identify temperature-sensitive regions in electron density maps. This revealed that temperature-responsive states coincide with ligand-responsive regions and capture unique binding signatures that disappear upon cryo-cooling. Our results have implications for discovering Hsp90 selective ligands, and, more generally, for the utility of hidden protein and water conformations in drug discovery.
Collapse
Affiliation(s)
- Timothy R. Stachowski
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTN 38105USA
| | - Murugendra Vanarotti
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTN 38105USA
| | - Jayaraman Seetharaman
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTN 38105USA
| | - Karlo Lopez
- School of Natural SciencesMathematicsand EngineeringCalifornia State UniversityBakersfieldCA 93311USA
| | - Marcus Fischer
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTN 38105USA
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTN 38105USA
| |
Collapse
|
39
|
Cheng Y, Wang Q, Zhang Z, Zhao C, Zhou H, Xu J, Gu Q. Saucerneol attenuates nasopharyngeal carcinoma cells proliferation and metastasis through selectively targeting Grp94. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154133. [PMID: 35504052 DOI: 10.1016/j.phymed.2022.154133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is highly prevalent in southern China. The remote metastasis of advanced NPC requires chemotherapeutic treatments to reduce the mortality. Our previous work revealed that saucerneol (SN) showed cytotoxicity against several nasopharyngeal carcinoma (NPC) cells. This work aims to investigate the effect of SN in NPC growth and exploring the mechanism of action. STUDY DESIGN Applying in vivo study, in vitro study and in silico study to indicate the mechanism of SN in inhibiting NPC growth. METHODS Saucerneol (SN) toxicity was measured with MTT assay. NPC proliferation was measured with EdU and colony formation assays, cell cycle was detected with flow cytometry. NPC migration and invasion were measured with scratch assay and matrigel transwell method. Further, human NPC xenograft tumor models were established in nude mice to evaluate the therapeutic efficacy of SN in vivo. Toxicological analysis was performed on H&E staining and IHC. Quantitative real-time PCR and Western blot analyses were used to evaluate the expression levels of key molecules in PI3K/AKT/mTOR, MAPK, NF-κB, and HIF-1α signal pathways. Target predicting was conducted using computational method, and target identification was carried out by ATPase assay and TSA. RESULTS SN, a potent NPC inhibitor that was previously isolated from Saururus chinensis in our lab, is proven to inhibit the proliferation and metastasis of HONE1 cell lines and inhibit the growth of human NPC xenografts in nude mice. Moreover, we further articulate the molecular mechanism of action for SN and, reveal that SN promotes the expression of cell cycle-dependent kinase inhibitory protein p21 Waf1/Cip1 through targeting Grp94 and then inhibiting PI3K/AKT signaling pathway as well as up-regulating p53 to disrupt the progression of HONE1 cells. CONCLUSION SN significantly inhibits NPC cells proliferation and metastasis in vitro and in vivo via selectively inhibit Grp94 and then blocking PI3K/AKT/mTOR/HIF-1α signaling pathway. This study firstly provides a novel selective Grp94 inhibitor as a NPC candidate.
Collapse
Affiliation(s)
- Yanfang Cheng
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qian Wang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhikang Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Chao Zhao
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
40
|
Özgür A, Kaplan Ö, Gökşen Tosun N, Türkekul İ, Gökçe İ. Green synthesis of silver nanoparticles using Macrolepiota procera extract and investigation of their HSP27, HSP70, and HSP90 inhibitory potentials in human cancer cells. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2089303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Aykut Özgür
- Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Artova Vocational School, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Özlem Kaplan
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Nazan Gökşen Tosun
- Department of Biomaterials and Tissue Engineering, Institute of Graduate Studies, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - İbrahim Türkekul
- Department of Biology, Faculty of Arts and Sciences, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - İsa Gökçe
- Department of Bioengineering, Faculty of Engineering and Architecture, Tokat Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|
41
|
Pan- and isoform-specific inhibition of Hsp90: Design strategy and recent advances. Eur J Med Chem 2022; 238:114516. [DOI: 10.1016/j.ejmech.2022.114516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/11/2022]
|
42
|
Stachowski TR, Vanarotti M, Seetharaman J, Lopez K, Fischer M. Water Networks Repopulate Protein‐Ligand Interfaces With Temperature. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Timothy R Stachowski
- St Jude Children's Research Hospital Chemical Biology & Therapeutics UNITED STATES
| | - Murugendra Vanarotti
- St Jude Children's Research Hospital Chemical Biology & Therapeutics UNITED STATES
| | | | - Karlo Lopez
- California State University - Bakersfield School of Natural Sciences, Mathematics, and Engineering UNITED STATES
| | - Marcus Fischer
- St. Jude Children's Research Hospital Chemical Biology & Therapeutics 262 Danny Thomas Place 38105 Memphis UNITED STATES
| |
Collapse
|
43
|
The Antileukemic and Anti-Prostatic Effect of Aeroplysinin-1 Is Mediated through ROS-Induced Apoptosis via NOX Activation and Inhibition of HIF-1a Activity. Life (Basel) 2022; 12:life12050687. [PMID: 35629355 PMCID: PMC9145196 DOI: 10.3390/life12050687] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Aeroplysinin-1 is a brominated isoxazoline alkaloid that has exhibited a potent antitumor cell effect in previous reports. We evaluated the cytotoxicity of aeroplysinin-1 against leukemia and prostate cancer cells in vitro. This marine alkaloid inhibited the cell proliferation of leukemia Molt-4, K562 cells, and prostate cancer cells Du145 and PC-3 with IC50 values of 0.12 ± 0.002, 0.54 ± 0.085, 0.58 ± 0.109 and 0.33 ± 0.042 µM, respectively, as shown by the MTT assay. Furthermore, in the non-malignant cells, CCD966SK and NR8383, its IC50 values were 1.54 ± 0.138 and 6.77 ± 0.190 μM, respectively. In a cell-free system, the thermal shift assay and Western blot assay verified the binding affinity of aeroplysinin-1 to Hsp90 and Topo IIα, which inhibited their activity. Flow cytometry analysis showed that the cytotoxic effect of aeroplysinin-1 is mediated through mitochondria-dependent apoptosis induced by reactive oxygen species (ROS). ROS interrupted the cellular oxidative balance by activating NOX and inhibiting HIF-1α and HO-1 expression. Pretreatment with N-acetylcysteine (NAC) reduced Apl-1-induced mitochondria-dependent apoptosis and preserved the expression of NOX, HO-1, and HIF-1a. Our findings indicated that aeroplysinin-1 targeted leukemia and prostate cancer cells through multiple pathways, suggesting its potential application as an anti-leukemia and prostate cancer drug lead.
Collapse
|
44
|
Mohajershojai T, Jha P, Boström A, Frejd FY, Yazaki PJ, Nestor M. In Vitro Characterization of 177Lu-DOTA-M5A Anti-Carcinoembryonic Antigen Humanized Antibody and HSP90 Inhibition for Potentiated Radioimmunotherapy of Colorectal Cancer. Front Oncol 2022; 12:849338. [PMID: 35433442 PMCID: PMC9010075 DOI: 10.3389/fonc.2022.849338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Carcinoembryonic antigen (CEA) is an antigen that is highly expressed in colorectal cancers and widely used as a tumor marker. 131I and 90Y-radiolabeled anti-CEA monoclonal antibodies (mAbs) have previously been assessed for radioimmunotherapy in early clinical trials with promising results. Moreover, the heat shock protein 90 inhibitor onalespib has previously demonstrated radiotherapy potentiation effects in vivo. In the present study, a 177Lu-radiolabeled anti-CEA hT84.66-M5A mAb (M5A) conjugate was developed and the potential therapeutic effects of 177Lu-DOTA-M5A and/or onalespib were investigated. The 177Lu radiolabeling of M5A was first optimized and characterized. Binding specificity and affinity of the conjugate were then evaluated in a panel of gastrointestinal cancer cell lines. The effects on spheroid growth and cell viability, as well as molecular effects from treatments, were then assessed in several three-dimensional (3D) multicellular colorectal cancer spheroid models. Stable and reproducible radiolabeling was obtained, with labeling yields above 92%, and stability was retained at least 48 h post-radiolabeling. Antigen-specific binding of the radiolabeled conjugate was demonstrated on all CEA-positive cell lines. Dose-dependent therapeutic effects of both 177Lu-DOTA-M5A and onalespib were demonstrated in the spheroid models. Moreover, effects were potentiated in several dose combinations, where spheroid sizes and viabilities were significantly decreased compared to the corresponding monotherapies. For example, the combination treatment with 350 nM onalespib and 20 kBq 177Lu-DOTA-M5A resulted in 2.5 and 2.3 times smaller spheroids at the experimental endpoint than the corresponding monotreatments in the SNU1544 spheroid model. Synergistic effects were demonstrated in several of the more effective combinations. Molecular assessments validated the therapy results and displayed increased apoptosis in several combination treatments. In conclusion, the combination therapy of anti-CEA 177Lu-DOTA-M5A and onalespib showed enhanced therapeutic effects over the individual monotherapies for the potential treatment of colorectal cancer. Further in vitro and in vivo studies are warranted to confirm the current study findings.
Collapse
Affiliation(s)
| | - Preeti Jha
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Paul J Yazaki
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Hsp90 in Human Diseases: Molecular Mechanisms to Therapeutic Approaches. Cells 2022; 11:cells11060976. [PMID: 35326427 PMCID: PMC8946885 DOI: 10.3390/cells11060976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The maturation of hemeprotein dictates that they incorporate heme and become active, but knowledge of this essential cellular process remains incomplete. Studies on chaperon Hsp90 has revealed that it drives functional heme maturation of inducible nitric oxide synthase (iNOS), soluble guanylate cyclase (sGC) hemoglobin (Hb) and myoglobin (Mb) along with other proteins including GAPDH, while globin heme maturations also need an active sGC. In all these cases, Hsp90 interacts with the heme-free or apo-protein and then drives the heme maturation by an ATP dependent process before dissociating from the heme-replete proteins, suggesting that it is a key player in such heme-insertion processes. As the studies on globin maturation also need an active sGC, it connects the globin maturation to the NO-sGC (Nitric oxide-sGC) signal pathway, thereby constituting a novel NO-sGC-Globin axis. Since many aggressive cancer cells make Hbβ/Mb to survive, the dependence of the globin maturation of cancer cells places the NO-sGC signal pathway in a new light for therapeutic intervention. Given the ATPase function of Hsp90 in heme-maturation of client hemeproteins, Hsp90 inhibitors often cause serious side effects and this can encourage the alternate use of sGC activators/stimulators in combination with specific Hsp90 inhibitors for better therapeutic intervention.
Collapse
|
46
|
Rao VS, Gu Q, Tzschentke S, Lin K, Ganig N, Thepkaysone ML, Wong FC, Polster H, Seifert L, Seifert AM, Buck N, Riediger C, Weiße J, Gutschner T, Michen S, Temme A, Schneider M, Baenke F, Weitz J, Kahlert C. Extravesicular TIMP-1 is a non-invasive independent prognostic marker and potential therapeutic target in colorectal liver metastases. Oncogene 2022; 41:1809-1820. [PMID: 35140332 PMCID: PMC8933275 DOI: 10.1038/s41388-022-02218-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/08/2022] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
Abstract
Molecular reprogramming of stromal microarchitecture by tumour-derived extracellular vesicles (EVs) is proposed to favour pre-metastatic niche formation. We elucidated the role of extravesicular tissue inhibitor of matrix metalloproteinase-1 (TIMP1EV) in pro-invasive extracellular matrix (ECM) remodelling of the liver microenvironment to aid tumour progression in colorectal cancer (CRC). Immunohistochemistry analysis revealed a high expression of stromal TIMP1 in the invasion front that was associated with poor progression-free survival in patients with colorectal liver metastases. Molecular analysis identified TIMP1EV enrichment in CRC-EVs as a major factor in the induction of TIMP1 upregulation in recipient fibroblasts. Mechanistically, we proved that EV-mediated TIMP1 upregulation in recipient fibroblasts induced ECM remodelling. This effect was recapitulated by human serum-derived EVs providing strong evidence that CRC release active EVs into the blood circulation of patients for the horizontal transfer of malignant traits to recipient cells. Moreover, EV-associated TIMP1 binds to HSP90AA, a heat-shock protein, and the inhibition of HSP90AA on human-derived serum EVs attenuates TIMP1EV-mediated ECM remodelling, rendering EV-associated TIMP1 a potential therapeutic target. Eventually, in accordance with REMARK guidelines, we demonstrated in three independent cohorts that EV-bound TIMP1 is a robust circulating biomarker for a non-invasive, preoperative risk stratification in patients with colorectal liver metastases.
Collapse
Affiliation(s)
- Venkatesh Sadananda Rao
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Qianyu Gu
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sandra Tzschentke
- Department of Medicine, Haematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Kuailu Lin
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nicole Ganig
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - May-Linn Thepkaysone
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Fang Cheng Wong
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Heike Polster
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lena Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases, Partner site Dresden, Heidelberg, Germany
| | - Adrian M Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases, Partner site Dresden, Heidelberg, Germany
| | - Nathalie Buck
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Carina Riediger
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jonas Weiße
- Junior Research Group 'RNA Biology and Pathogenesis', Medical Faculty, Martin-Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Tony Gutschner
- Junior Research Group 'RNA Biology and Pathogenesis', Medical Faculty, Martin-Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Susanne Michen
- Department of Neurosurgery, Section of Experimental Neurosurgery and Tumour Immunology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Achim Temme
- Department of Neurosurgery, Section of Experimental Neurosurgery and Tumour Immunology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Franziska Baenke
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases, Partner site Dresden, Heidelberg, Germany
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany. .,National Center for Tumor Diseases, Partner site Dresden, Heidelberg, Germany.
| |
Collapse
|
47
|
Fu Z, Jia B. Advances in the role of heat shock protein 90 in prostate cancer. Andrologia 2022; 54:e14376. [PMID: 35075667 DOI: 10.1111/and.14376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/10/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is one of the most common tumours in adult men and heat shock proteins play an important biological function in prostate cancer as molecular chaperones involved in the pathogenesis, diagnosis, treatment and prognosis of a wide range of tumours. Among them, increased expression of HSP90, a member of the heat shock protein family, is associated with resistance to prostate cancer denervation and can promote tumour resistance, invasion and bone metastasis, thus making prostate cancer more difficult to treat. Therefore, targeting HSP90 in prostate cancer could be a promising strategy for oncology treatment. This paper reviews the structure and function of HSP90, HSP90-mediated denudation resistance in prostate cancer and HSP90-targeted antitumor therapy, with the aim of providing a new theoretical basis for prostate cancer treatment options in the clinical setting.
Collapse
Affiliation(s)
- Zheng Fu
- Guizhou Medical University, Guiyang, China
| | - Benzhong Jia
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
48
|
Heat Shock Proteins in Benign Prostatic Hyperplasia and Prostate Cancer. Int J Mol Sci 2022; 23:ijms23020897. [PMID: 35055079 PMCID: PMC8779911 DOI: 10.3390/ijms23020897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Two out of three diseases of the prostate gland affect aging men worldwide. Benign prostatic hyperplasia (BPH) is a noncancerous enlargement affecting millions of men. Prostate cancer (PCa) in turn is the second leading cause of cancer death. The factors influencing the occurrence of BPH and PCa are different; however, in the course of these two diseases, the overexpression of heat shock proteins is observed. Heat shock proteins (HSPs), chaperone proteins, are known to be one of the main proteins playing a role in maintaining cell homeostasis. HSPs take part in the process of the proper folding of newly formed proteins, and participate in the renaturation of damaged proteins. In addition, they are involved in the transport of specific proteins to the appropriate cell organelles and directing damaged proteins to proteasomes or lysosomes. Their function is to protect the proteins against degradation factors that are produced during cellular stress. HSPs are also involved in modulating the immune response and the process of apoptosis. One well-known factor affecting HSPs is the androgen receptor (AR)—a main player involved in the development of BPH and the progression of prostate cancer. HSPs play a cytoprotective role and determine the survival of cancer cells. These chaperones are often upregulated in malignancies and play an indispensable role in tumor progression. Therefore, HSPs are considered as one of the therapeutic targets in anti-cancer therapies. In this review article, we discuss the role of different HSPs in prostate diseases, and their potential as therapeutic targets.
Collapse
|
49
|
Dabravolski SA, Sukhorukov VN, Kalmykov VA, Orekhov NA, Grechko AV, Orekhov AN. Heat Shock Protein 90 as Therapeutic Target for CVDs and Heart Ageing. Int J Mol Sci 2022; 23:ijms23020649. [PMID: 35054835 PMCID: PMC8775949 DOI: 10.3390/ijms23020649] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, representing approximately 32% of all deaths worldwide. Molecular chaperones are involved in heart protection against stresses and age-mediated accumulation of toxic misfolded proteins by regulation of the protein synthesis/degradation balance and refolding of misfolded proteins, thus supporting the high metabolic demand of the heart cells. Heat shock protein 90 (HSP90) is one of the main cardioprotective chaperones, represented by cytosolic HSP90a and HSP90b, mitochondrial TRAP1 and ER-localised Grp94 isoforms. Currently, the main way to study the functional role of HSPs is the application of HSP inhibitors, which could have a different way of action. In this review, we discussed the recently investigated role of HSP90 proteins in cardioprotection, atherosclerosis, CVDs development and the involvements of HSP90 clients in the activation of different molecular pathways and signalling mechanisms, related to heart ageing.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
- Correspondence:
| | - Vasily N. Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.N.S.); (V.A.K.)
- Laboratory of Medical Genetics, Russian Medical Research Center of Cardiology, Institute of Experimental Cardiology, 15-a 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Vladislav A. Kalmykov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.N.S.); (V.A.K.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Nikolay A. Orekhov
- Institute for Atherosclerosis Research, 4-1-207 Osennyaya Str., 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Str., 109240 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, 4-1-207 Osennyaya Str., 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| |
Collapse
|
50
|
Magwenyane AM, Lawal MM, Amoako DG, Somboro AM, Agoni C, Khan RB, Mhlongo NN, Kumalo HM. Exploring the inhibitory mechanism of resorcinylic isoxazole amine NVP-AUY922 towards the discovery of potential heat shock protein 90 (Hsp90) inhibitors. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|