1
|
Leclair NK, Lambert WA, Wu Q, Wolansky L, Becker K, Li L, Leishangthem L, Bulsara KR. Genomic sequencing of a pregnancy associated symptomatic meningioma of the diaphragma sellae: a case report. Br J Neurosurg 2024; 38:1417-1421. [PMID: 35001774 DOI: 10.1080/02688697.2021.2024503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/29/2021] [Accepted: 12/27/2021] [Indexed: 11/02/2022]
Abstract
Pregnancy-associated meningiomas have unique considerations and features regarding their pathophysiology, location, genetic profile, and neurosurgical management. These tumours have been reported to undergo rapid growth during gestation and regression post-partum, implicating a role for female sex hormones in tumour physiology. In addition, these tumours occur at a higher incidence in the skull base compared to sporadic meningiomas in the general population, often impinging neurovascular structures and requiring emergent resection. While the genomics of sporadic meningiomas have been described, there are no reports characterizing the genetic features of those associated with pregnancy. Here we describe a patient diagnosed with a diphragma sellae meningioma early in the third trimester after presenting with rapidly deteriorating vision. At 32 weeks gestation the baby was delivered by caesarean section and the tumour subsequently removed. Genomic profiling of the tumour sample revealed variants of unknown significant (VUS) in six genes, none of which were in canonical meningioma drivers. We describe our surgical approach and discuss the relevant pathology and genomics, as well as medical and surgical management considerations of meningiomas in pregnancy.
Collapse
Affiliation(s)
- Nathan K Leclair
- School of Medicine, University of Connecticut, Farmington, CT, USA
| | | | - Qian Wu
- Department of Pathology and Laboratory Medicine, UConn Health, Farmington, CT, USA
| | - Leo Wolansky
- Department of Radiology, UConn Health, Farmington, CT, USA
| | - Kevin Becker
- Department of Oncology, UConn Health, Farmington, CT, USA
| | - Lei Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Ketan R Bulsara
- Division of Neurosurgery, Department of Surgery, UConn Health, Farmington, CT, USA
| |
Collapse
|
2
|
Ai H, He Z, Deng Z, Chu GC, Shi Q, Tong Z, Li JB, Pan M, Liu L. Structural and mechanistic basis for nucleosomal H2AK119 deubiquitination by single-subunit deubiquitinase USP16. Nat Struct Mol Biol 2024; 31:1745-1755. [PMID: 38918638 DOI: 10.1038/s41594-024-01342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Epigenetic regulators have a crucial effect on gene expression based on their manipulation of histone modifications. Histone H2AK119 monoubiquitination (H2AK119Ub), a well-established hallmark in transcription repression, is dynamically regulated by the opposing activities of Polycomb repressive complex 1 (PRC1) and nucleosome deubiquitinases including the primary human USP16 and Polycomb repressive deubiquitinase (PR-DUB) complex. Recently, the catalytic mechanism for the multi-subunit PR-DUB complex has been described, but how the single-subunit USP16 recognizes the H2AK119Ub nucleosome and cleaves the ubiquitin (Ub) remains unknown. Here we report the cryo-EM structure of USP16-H2AK119Ub nucleosome complex, which unveils a fundamentally distinct mode of H2AK119Ub deubiquitination compared to PR-DUB, encompassing the nucleosome recognition pattern independent of the H2A-H2B acidic patch and the conformational heterogeneity in the Ub motif and the histone H2A C-terminal tail. Our work highlights the mechanism diversity of H2AK119Ub deubiquitination and provides a structural framework for understanding the disease-causing mutations of USP16.
Collapse
Affiliation(s)
- Huasong Ai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Zaozhen He
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Guo-Chao Chu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qiang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zebin Tong
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Man Pan
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Cinkornpumin JK, Kwon SY, Prandstetter AM, Maxian T, Sirois J, Goldberg J, Zhang J, Saini D, Dasgupta P, Jeyarajah MJ, Renaud SJ, Paul S, Haider S, Pastor WA. Hypoxia and loss of GCM1 expression prevents differentiation and contact inhibition in human trophoblast stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612343. [PMID: 39314437 PMCID: PMC11419009 DOI: 10.1101/2024.09.10.612343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The placenta develops alongside the embryo and nurtures fetal development to term. During the first stages of embryonic development, due to low blood circulation, the blood and ambient oxygen supply is very low (~1-2% O2) and gradually increases upon placental invasion. While a hypoxic environment is associated with stem cell self-renewal and proliferation, persistent hypoxia may have severe effects on differentiating cells and could be the underlying cause of placental disorders. We find that human trophoblast stem cells (hTSC) thrive in low oxygen, whereas differentiation of hTSC to trophoblast to syncytiotrophoblast (STB) and extravillous trophoblast (EVT) is negatively affected by hypoxic conditions. The pro-differentiation factor GCM1 (human Glial Cell Missing-1) is downregulated in low oxygen, and concordantly there is substantial reduction of GCM1-regulated genes in hypoxic conditions. Knockout of GCM1 in hTSC caused impaired EVT and STB formation and function, reduced expression of differentiation-responsive genes, and resulted in maintenance of self-renewal genes. Treatment with a PI3K inhibitor reported to reduce GCM1 protein levels likewise counteracts spontaneous or directed differentiation. Additionally, chromatin immunoprecipitation of GCM1 showed enrichment of GCM1-specific binding near key transcription factors upregulated upon differentiation including the contact inhibition factor CDKN1C. Loss of GCM1 resulted in downregulation of CDKN1C and corresponding loss of contact inhibition, implicating GCM1 in regulation of this critical process.
Collapse
Affiliation(s)
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Anna-Maria Prandstetter
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - James Goldberg
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Joy Zhang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Deepak Saini
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Purbasa Dasgupta
- Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, United States
| | - Mariyan J Jeyarajah
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Stephen J Renaud
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, United States
- Institute for Reproduction and Developmental Sciences, University of Kansas, Kansas City, United States
- Department of Obstetrics and Gynecology, University of Kansas, Kansas City, United States
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Dahl J. Intraplacental Gestational Neoplasms: A Review of Clinically Relevant Diagnostically Challenging Lesions. Arch Pathol Lab Med 2024; 148:398-408. [PMID: 37977155 DOI: 10.5858/arpa.2023-0109-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 11/19/2023]
Abstract
CONTEXT.— Case studies reporting intraplacental choriocarcinoma (IPC) and intraplacental "chorangiocarcinoma" have recently increased, with IPC also represented in molecular analyses of gestational trophoblastic neoplasms. OBJECTIVE.— To provide an overview of 2 intraplacental neoplastic lesions that can have a significant impact on both mother and fetus/infant, focusing on diagnostic characteristics, and ancillary and molecular tools that support diagnosis, determine prognosis, and further elucidate the nature of these lesions. DATA SOURCES.— Data were compiled from a PubMed literature review that included diagnostic and additional keywords within the scope of study for gestational choriocarcinoma in general. Illustrative cases were retrieved from the pathology archives at Michigan Medicine, including the consultation files of the author. CONCLUSIONS.— Intraplacental gestational tumors exist along the spectrum of benign (chorangioma) to aggressive malignant (choriocarcinoma) neoplasms with a high potential for metastasis. Although most gestational choriocarcinomas follow complete hydatidiform mole, 20% to 25% occur in association with normal intrauterine gestations, including rare cases in which they are detected within the placenta (IPC). IPCs range from asymptomatic to widely metastatic, with metastases possible even when only microscopic IPCs are present. A second, even less common lesion, variably called "chorangiocarcinoma" and chorangioma with atypical trophoblast proliferation, is also reviewed. The incidence of these lesions is likely to be underestimated. Heightened suspicion and more liberal placental sampling, particularly when specific clinical features are present, may result in higher detection. Enhanced detection to provide the earliest intervention for both mother and infant may improve prognosis, particularly for asymptomatic disease that may later present with metastasis.
Collapse
Affiliation(s)
- Julia Dahl
- From the Department of Pathology, University of Michigan Health System, Ann Arbor
| |
Collapse
|
5
|
Li H, Hu X, Ning MS, Fuller GN, Stewart JM, Gilliam JC, Wu J, Le X, Vaporciyan AA, Lee JJ, Gibbons DL, Heymach JV, Futreal A, Zhang J. Case report: Molecular profiling facilitates the diagnosis of a challenging case of lung cancer with choriocarcinoma features. Front Oncol 2024; 14:1324057. [PMID: 38590653 PMCID: PMC10999639 DOI: 10.3389/fonc.2024.1324057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Accurate diagnoses are crucial in determining the most effective treatment across different cancers. In challenging cases, morphology-based traditional pathology methods have important limitations, while molecular profiling can provide valuable information to guide clinical decisions. We present a 35-year female with lung cancer with choriocarcinoma features. Her disease involved the right lower lung, brain, and thoracic lymph nodes. The pathology from brain metastasis was reported as "metastatic choriocarcinoma" (a germ cell tumor) by local pathologists. She initiated carboplatin and etoposide, a regimen for choriocarcinoma. Subsequently, her case was assessed by pathologists from an academic cancer center, who gave the diagnosis of "adenocarcinoma with aberrant expression of β-hCG" and finally pathologists at our hospital, who gave the diagnosis of "poorly differentiated carcinoma with choriocarcinoma features". Genomic profiling detected a KRAS G13R mutation and transcriptomics profiling was suggestive of lung origin. The patient was treated with carboplatin/paclitaxel/ipilimumab/nivolumab followed by consolidation radiation therapy. She had no evidence of progression to date, 16 months after the initial presentation. The molecular profiling could facilitate diagnosing of challenging cancer cases. In addition, chemoimmunotherapy and local consolidation radiation therapy may provide promising therapeutic options for patients with lung cancer exhibiting choriocarcinoma features.
Collapse
Affiliation(s)
- Hui Li
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xin Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Matthew S. Ning
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory N. Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John M. Stewart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Jia Wu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ara A. Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Gergely L, Repiska V, Petrovic R, Korbel M, Danihel L, Sufliarsky J, Kubickova M, Gbelcova H, Priscakova P. Short tandem repeats genotyping of gestational choriocarcinoma - our experiences. Taiwan J Obstet Gynecol 2024; 63:73-76. [PMID: 38216273 DOI: 10.1016/j.tjog.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVE This short communication demonstrates how short tandem repeat genotyping can identify the origin of gestational choriocarcinoma. MATERIALS AND METHODS The origin of gestational choriocarcinoma in our three cases was determined using the short tandem repeats genotyping technique, which involved quantitative fluorescent PCR and fragmentation analysis. RESULTS In Case 1 despite no medical history of molar pregnancy, DNA analysis indicated that the choriocarcinoma originated from a homozygous complete hydatidiform mole. We conclude, that the patient's complete abortion 10 years prior to the choriocarcinoma diagnosis was an undiagnosed complete hydatidiform mole. In Case 2 and Case 3 the clinically presumed origin of choriocarcinoma was confirmed. CONCLUSION Determining the origin of choriocarcinoma is essential for clinical application, as it affects the FIGO scoring system for gestational trophoblastic neoplasia, which determines the patient's prognosis and treatment approach.
Collapse
Affiliation(s)
- Lajos Gergely
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia; Centre for Gestational Trophoblastic Disease of Slovak Republic, Bratislava, Slovakia.
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia; Centre for Gestational Trophoblastic Disease of Slovak Republic, Bratislava, Slovakia.
| | - Robert Petrovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia.
| | - Miroslav Korbel
- 1st Department of Obstetrics and Gynaecology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia; Centre for Gestational Trophoblastic Disease of Slovak Republic, Bratislava, Slovakia.
| | - Ludovit Danihel
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia; Centre for Gestational Trophoblastic Disease of Slovak Republic, Bratislava, Slovakia.
| | - Jozef Sufliarsky
- Centre for Gestational Trophoblastic Disease of Slovak Republic, Bratislava, Slovakia; Department of Oncology, Faculty of Medicine, Comenius University Bratislava, National Cancer Institute, Bratislava, Slovakia.
| | - Michaela Kubickova
- Centre for Gestational Trophoblastic Disease of Slovak Republic, Bratislava, Slovakia; Department of Oncology, Faculty of Medicine, Comenius University Bratislava, National Cancer Institute, Bratislava, Slovakia.
| | - Helena Gbelcova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia.
| | - Petra Priscakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia; Centre for Gestational Trophoblastic Disease of Slovak Republic, Bratislava, Slovakia.
| |
Collapse
|
7
|
Yolk sac tumor of postpubertal-type does not exhibit immunohistochemical loss of SMARCB1/INI1 and SMARCA4/BRG1…but choriocarcinoma? Pathol Res Pract 2023; 241:154269. [PMID: 36502737 DOI: 10.1016/j.prp.2022.154269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
The recently described SWI/SNF complex-deficient sinonasal carcinoma (SMARCB1 & SMARCA4) may exhibit a yolk sac-like morphology. Tumors with similar features (yolk sac-like histology combined with the immunohistochemical loss of SMARCB1/INI1 and/or SMARCA4/BRG1) have also been described in other sites, such as the female genital tract. In this study, we immunohistochemically assessed SMARCB1/INI1 and SMARCA4/BRG1 expression to evaluate if these proteins could be involved in the pathogenesis of testicular yolk sac tumors of postpubertal type (YSTpt). Specifically, we analyzed a retrospective case series comprising pure YSTpt and mixed germ cell tumors of the testis (GCTT) with YSTpt components. In the present study, no testicular YSTpt showed loss of SMARCB1/INI1 (0/24, 0%) or SMARCA4/BRG1 (0/24, 0%). However, testicular choriocarcinoma (CHC) and isolated syncytiotrophoblast cells (iSTCs) demonstrated abnormal staining patterns for SMARCA4/BRG1 [CHC: 4/4 (100%); iSTCs: 12/12 (100%), respectively], including focal or diffuse loss of expression in a subset of cases. The results of our study suggest that functional loss of SMARCA4/BRG1 represents a recurrent event that may be relevant for the pathogenesis of a subset of testicular CHC.
Collapse
|
8
|
Onishi I, Kirimura S, Wakejima R, Okubo K, Odai T, Kakuta R, Kano Y, Ikeda S, Akashi T, Kitagawa M. Primary pulmonary choriocarcinoma with a genomic sequence. Pathol Int 2021; 72:141-143. [PMID: 34904768 DOI: 10.1111/pin.13193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Iichiroh Onishi
- Division of Surgical Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Susumu Kirimura
- Division of Surgical Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Wakejima
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Okubo
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tamami Odai
- Department of Women's Health, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryota Kakuta
- Department of Precision Cancer Medicine, Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihito Kano
- Department of Precision Cancer Medicine, Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sadakatsu Ikeda
- Department of Precision Cancer Medicine, Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takumi Akashi
- Division of Surgical Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Division of Surgical Pathology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
9
|
Wu Y, Ren P, Chen J, Ai L. A Case of Pregnancy with Choriocarcinoma Complicated by a Cerebral Hemorrhage and Lung Metastasis. Case Rep Oncol 2021; 14:1182-1188. [PMID: 34703434 PMCID: PMC8460957 DOI: 10.1159/000516802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/04/2022] Open
Abstract
Pregnancy with choriocarcinoma is a rare tumor. It is rare for neonates to survive the third trimester. This article reports the clinical data of a live fetal pregnancy with choriocarcinoma complicated by brain and lung metastases. The patient was admitted to the hospital for “menopause 28 weeks + 5 days, dizziness with nausea and vomiting 2 days.” After 5 hours of admission, the patient had sudden convulsions, urinary incontinence, and coma. A head computed tomography (CT) examination in the emergency department revealed a cerebral hemorrhage in the right occipital lobe and broke into the ventricular system with brain herniation. She was immediately transferred to the intensive care unit for the emergency cesarean section and intracerebral hematoma removal. A postoperative CT scan revealed that the tumor in the upper lobe of the right lung was considered lung cancer, with multiple metastases in both lungs. Postoperative pathology was metastatic choriocarcinoma tissue seen in the blood clot. Based on the pathological diagnosis of choriocarcinoma, a chemotherapy regimen was developed with 2 courses of EP regimen and 8 courses of combined EMA-CO chemotherapy regimen. The patients were followed up for 2 years and ultimately resolved.
Collapse
Affiliation(s)
- Yan Wu
- Department of Obstetrics and Gynecology, Women and Children Hospital of Jiaxing University, Jiaxing City, China
| | - Peng Ren
- Department of Pathology, Women and Children Hospital of Jiaxing University, Jiaxing City, China
| | - Jian Chen
- Department of Radiology, Women and Children Hospital of Jiaxing University, Jiaxing City, China
| | - Ling Ai
- Department of Obstetrics and Gynecology, Women and Children Hospital of Jiaxing University, Jiaxing City, China
| |
Collapse
|
10
|
Jung SH, Park HC, Choi YJ, Song SY, Chung YJ, Lee SH. Molecular genetic evidence supporting diverse histogenic origins of germ cell tumors. J Pathol 2021; 256:38-49. [PMID: 34561860 DOI: 10.1002/path.5799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 09/20/2021] [Indexed: 11/10/2022]
Abstract
Germ cell tumors (GCTs) originate during the histogenesis of primordial germ cells to mature gametes. Previous studies identified five histogenic mechanisms in ovarian mature teratomas (type I: failure of meiosis I; type II: failure of meiosis II; type III: duplication of the genome of a mature gamete; type IV: no meiosis; and type V: fusion of two different ova), but those of other GCTs remain elusive. In this study, we analyzed 84 GCTs of various pathologic types to identify the histogenesis using single-nucleotide polymorphism array by analyzing copy-neutral loss of heterozygosity (CN-LOH) and copy number alterations (CNAs). We detected types I and II in ovarian teratomas, type III in ovarian teratomas and yolk sac tumors (YSTs), and type IV in all GCT types. The GCTs with multiple-type histogenesis (I-IV) (ovarian mature/immature teratomas and YST) show meiotic CN-LOH with scant CNAs. Type IV-only GCTs are either with mitotic CN-LOH and abundant CNAs (seminoma, dysgerminoma, testicular mixed GCTs) or with scant CNAs and no CN-LOH (pediatric testicular and mediastinal teratomas). The development sequences of CN-LOH and CNA are different between the multiple type (I-IV) GCTs and type IV-only GCTs. We analyzed two different histologic areas in eight GCTs (one mature teratoma with a mucin-secreting adenoma, two immature teratomas, and five mixed GCTs). We found that GCTs (mature teratoma, immature teratoma, and mixed GCT) showed different genomic alterations between histologic areas, suggesting that genomic differences within a GCT could accompany histologic differentiation. Of note, we found evidence for collision tumors in a mixed GCT. Our data indicate that GCTs may have various histogenesis and intratumoral genomic differences, which might provide important information for the identification of GCTs, especially for those with different histologic areas. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Seung-Hyun Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Precision Medicine Research Center/IRCGP, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon-Chun Park
- Department of Precision Medicine Research Center/IRCGP, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youn Jin Choi
- Department of Obstetrics/Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Yong Song
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Department of Precision Medicine Research Center/IRCGP, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sug Hyung Lee
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
11
|
Peng X, Zhang Z, Mo Y, Liu J, Wang S, Liu H. Bioinformatics Analysis of Choriocarcinoma-Related MicroRNA-Transcription Factor-Target Gene Regulatory Networks and Validation of Key miRNAs. Onco Targets Ther 2021; 14:3903-3919. [PMID: 34234459 PMCID: PMC8254590 DOI: 10.2147/ott.s311291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The aim of the current research was to construct a miRNA-transcription factor (TF)-target gene regulatory network in order to investigate the mechanism underlying choriocarcinoma and to verify the network through the overexpression or silencing of hub miRNAs in vitro. Materials and Methods A mRNA expression dataset and two miRNA expression datasets were analysed to identify differentially expressed genes (DEGs) and miRNAs (DEMs) between normal cells and choriocarcinoma cells. The top 400 upregulated and downregulated DEGs were identified as candidate DEGs, which were then mapped to construct protein–protein interaction (PPI) networks and select hub genes. Moreover, the DGIdb database was utilized to select candidate drugs for hub genes. Moreover, DEM target genes were predicted through the miRWalk2.0 database and overlaid with candidate DEGs to identify the differentially expressed target genes (DETGs). Furthermore, we established miRNA-TF-target gene regulatory networks and performed functional enrichment analysis of hub DEMs. Finally, we transfected mimics or inhibitors of hub DEMs into choriocarcinoma cells and assessed cell proliferation and migration to verify the vital role of hub DEMs in choriocarcinoma. Results A total of 140 DEMs and 400 candidate DEGs were screened from choriocarcinoma cells and normal cells. A PPI network of 400 candidate DEGs was established. Twenty-nine hub genes and 99 associated small molecules were identified to provide potential target drugs for choriocarcinoma treatment. We obtained 70 DETGs of DEMs derived from the intersection between predicted miRNA target genes and candidate DEGs. Subsequently, 3 hub DEMs were selected, and miRNA-TF-target gene regulatory networks containing 4 TFs, 3 TFs and 3 TFs for each network were constructed. The RT-PCR results confirmed that miR-29b-3p was highly expressed and that miR-519c-3p and miR-520a-5p were expressed at low levels in choriocarcinoma cells. The overexpression or silencing results suggested that 3 dysregulated hub DEMs jointly accelerated the proliferation and migration of choriocarcinoma. Conclusion Association of miRNA-TF-target gene regulatory networks may help us explore the underlying mechanism and provide potential targets for the diagnosis and treatment of choriocarcinoma.
Collapse
Affiliation(s)
- Xiaotong Peng
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Zhirong Zhang
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yanqun Mo
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Junliang Liu
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Shuo Wang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Huining Liu
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| |
Collapse
|
12
|
Di Fiore R, Suleiman S, Felix A, O’Toole SA, O’Leary JJ, Ward MP, Beirne J, Sabol M, Ozretić P, Yordanov A, Vasileva-Slaveva M, Kostov S, Nikolova M, Said-Huntingford I, Ayers D, Ellul B, Pentimalli F, Giordano A, Calleja-Agius J. An Overview of the Role of Long Non-Coding RNAs in Human Choriocarcinoma. Int J Mol Sci 2021; 22:ijms22126506. [PMID: 34204445 PMCID: PMC8235025 DOI: 10.3390/ijms22126506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Choriocarcinoma (CC), a subtype of trophoblastic disease, is a rare and highly aggressive neoplasm. There are two main CC subtypes: gestational and non-gestational, (so called when it develops as a component of a germ cell tumor or is related to a somatic mutation of a poorly differentiated carcinoma), each with very diverse biological activity. A therapeutic approach is highly effective in patients with early-stage CC. The advanced stage of the disease also has a good prognosis with around 95% of patients cured following chemotherapy. However, advancements in diagnosis and treatment are always needed to improve outcomes for patients with CC. Long non-coding (lnc) RNAs are non-coding transcripts that are longer than 200 nucleotides. LncRNAs can act as oncogenes or tumor suppressor genes. Deregulation of their expression has a key role in tumor development, angiogenesis, differentiation, migration, apoptosis, and proliferation. Furthermore, detection of cancer-associated lncRNAs in body fluids, such as blood, saliva, and urine of cancer patients, is emerging as a novel method for cancer diagnosis. Although there is evidence for the potential role of lncRNAs in a number of cancers of the female genital tract, their role in CC is poorly understood. This review summarizes the current knowledge of lncRNAs in gestational CC and how this may be applied to future therapeutic strategies in the treatment of this rare cancer.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Correspondence: (R.D.F.); (J.C.-A.); Tel.: +356-2340-3871 (R.D.F.); +356-2340-1892 (J.C.-A.)
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - Ana Felix
- Department of Pathology, Campo dos Mártires da Pátria, Instituto Portugues de Oncologia de Lisboa, NOVA Medical School, UNL, 130, 1169-056 Lisboa, Portugal;
| | - Sharon A. O’Toole
- Departments of Obstetrics and Gynaecology and Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, 8 Dublin, Ireland;
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, Trinity St James’s Cancer Institute, 8 Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - Mark P. Ward
- Department of Histopathology, Trinity College Dublin, Trinity St James’s Cancer Institute, 8 Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - James Beirne
- Department of Gynaecological Oncology, Trinity St James Cancer Institute, St James Hospital, 8 Dublin, Ireland;
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (P.O.)
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (P.O.)
| | - Angel Yordanov
- Department of Gynecologic Oncology, Medical University Pleven, 5800 Pleven, Bulgaria;
| | | | - Stoyan Kostov
- Department of Gynecology, Medical University Varna “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria;
| | - Margarita Nikolova
- Saint Marina University Hospital—Pleven, Medical University Pleven, 5800 Pleven, Bulgaria;
| | - Ian Said-Huntingford
- Department of Histopathology, Mater Dei Hospital, Birkirkara Bypass, MSD 2090 Msida, Malta;
| | - Duncan Ayers
- Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta; (D.A.); (B.E.)
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Bridget Ellul
- Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta; (D.A.); (B.E.)
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Correspondence: (R.D.F.); (J.C.-A.); Tel.: +356-2340-3871 (R.D.F.); +356-2340-1892 (J.C.-A.)
| |
Collapse
|