1
|
Ghanbari M, Khosroshahi NS, Alamdar M, Abdi A, Aghazadeh A, Feizi MAH, Haghi M. An Updated Review on the Significance of DNA and Protein Methyltransferases and De-methylases in Human Diseases: From Molecular Mechanism to Novel Therapeutic Approaches. Curr Med Chem 2024; 31:3550-3587. [PMID: 37287285 DOI: 10.2174/0929867330666230607124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
Epigenetic mechanisms are crucial in regulating gene expression. These mechanisms include DNA methylation and histone modifications, like methylation, acetylation, and phosphorylation. DNA methylation is associated with gene expression suppression; however, histone methylation can stimulate or repress gene expression depending on the methylation pattern of lysine or arginine residues on histones. These modifications are key factors in mediating the environmental effect on gene expression regulation. Therefore, their aberrant activity is associated with the development of various diseases. The current study aimed to review the significance of DNA and histone methyltransferases and demethylases in developing various conditions, like cardiovascular diseases, myopathies, diabetes, obesity, osteoporosis, cancer, aging, and central nervous system conditions. A better understanding of the epigenetic roles in developing diseases can pave the way for developing novel therapeutic approaches for affected patients.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Alamdar
- Department of Genetics Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Adel Abdi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Chang K, Gao D, Yan J, Lin L, Cui T, Lu S. Critical Roles of Protein Arginine Methylation in the Central Nervous System. Mol Neurobiol 2023; 60:6060-6091. [PMID: 37415067 DOI: 10.1007/s12035-023-03465-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
A remarkable post-transitional modification of both histones and non-histone proteins is arginine methylation. Methylation of arginine residues is crucial for a wide range of cellular process, including signal transduction, DNA repair, gene expression, mRNA splicing, and protein interaction. Arginine methylation is modulated by arginine methyltransferases and demethylases, like protein arginine methyltransferase (PRMTs) and Jumonji C (JmjC) domain containing (JMJD) proteins. Symmetric dimethylarginine and asymmetric dimethylarginine, metabolic products of the PRMTs and JMJD proteins, can be changed by abnormal expression of these proteins. Many pathologies including cancer, inflammation and immune responses have been closely linked to aberrant arginine methylation. Currently, the majority of the literature discusses the substrate specificity and function of arginine methylation in the pathogenesis and prognosis of cancers. Numerous investigations on the roles of arginine methylation in the central nervous system (CNS) have so far been conducted. In this review, we display the biochemistry of arginine methylation and provide an overview of the regulatory mechanism of arginine methyltransferases and demethylases. We also highlight physiological functions of arginine methylation in the CNS and the significance of arginine methylation in a variety of neurological diseases such as brain cancers, neurodegenerative diseases and neurodevelopmental disorders. Furthermore, we summarize PRMT inhibitors and molecular functions of arginine methylation. Finally, we pose important questions that require further research to comprehend the roles of arginine methylation in the CNS and discover more effective targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Kewei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dan Gao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Liyan Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Tingting Cui
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shemin Lu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Department of Biochemistry and Molecular Biology, and Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
3
|
Acosta CH, Clemons GA, Citadin CT, Carr WC, Udo MSB, Tesic V, Sanicola HW, Freelin AH, Toms JB, Jordan JD, Guthikonda B, Rodgers KM, Wu CYC, Lee RHC, Lin HW. PRMT7 can prevent neurovascular uncoupling, blood-brain barrier permeability, and mitochondrial dysfunction in repetitive and mild traumatic brain injury. Exp Neurol 2023; 366:114445. [PMID: 37196697 PMCID: PMC10960645 DOI: 10.1016/j.expneurol.2023.114445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Mild traumatic brain injury (TBI) comprises the largest percentage of TBI-related injuries, with pathophysiological and functional deficits that persist in a subset of TBI patients. In our three-hit paradigm of repetitive and mild traumatic brain injury (rmTBI), we observed neurovascular uncoupling via decreased red blood cell velocity, microvessel diameter, and leukocyte rolling velocity 3 days post-rmTBI via intra-vital two-photon laser scanning microscopy. Furthermore, our data suggest increased blood-brain barrier (BBB) permeability (leakage), with corresponding decrease in junctional protein expression post-rmTBI. Mitochondrial oxygen consumption rates (measured via Seahorse XFe24) were also altered 3 days post-rmTBI, along with disrupted mitochondrial dynamics of fission and fusion. Overall, these pathophysiological findings correlated with decreased protein arginine methyltransferase 7 (PRMT7) protein levels and activity post-rmTBI. Here, we increased PRMT7 levels in vivo to assess the role of the neurovasculature and mitochondria post-rmTBI. In vivo overexpression of PRMT7 using a neuronal specific AAV vector led to restoration of neurovascular coupling, prevented BBB leakage, and promoted mitochondrial respiration, altogether to suggest a protective and functional role of PRMT7 in rmTBI.
Collapse
Affiliation(s)
- Christina H Acosta
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Garrett A Clemons
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Cristiane T Citadin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - William C Carr
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Mariana Sayuri Berto Udo
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Henry W Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America; Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Anne H Freelin
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Jamie B Toms
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - J Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Krista M Rodgers
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America; Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America.
| |
Collapse
|
4
|
Acosta CH, Clemons GA, Citadin CT, Carr WC, Udo MSB, Tesic V, Sanicola HW, Freelin AH, Toms JB, Jordan JD, Guthikonda B, Wu CYC, Lee RHC, Lin HW. A role for protein arginine methyltransferase 7 in repetitive and mild traumatic brain injury. Neurochem Int 2023; 166:105524. [PMID: 37030326 PMCID: PMC10988608 DOI: 10.1016/j.neuint.2023.105524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
Mild traumatic brain injury affects the largest proportion of individuals in the United States and world-wide. Pre-clinical studies of repetitive and mild traumatic brain injury (rmTBI) have been limited in their ability to recapitulate human pathology (i.e. diffuse rotational injury). We used the closed-head impact model of engineered rotation acceleration (CHIMERA) to simulate rotational injury observed in patients and to study the pathological outcomes post-rmTBI using C57BL/6J mice. Enhanced cytokine production was observed in both the cortex and hippocampus to suggest neuroinflammation. Furthermore, microglia were assessed via enhanced iba1 protein levels and morphological changes using immunofluorescence. In addition, LC/MS analyses revealed excess glutamate production, as well as diffuse axonal injury via Bielschowsky's silver stain kit. Moreover, the heterogeneous nature of rmTBI has made it challenging to identify drug therapies that address rmTBI, therefore we sought to identify novel targets in the concurrent rmTBI pathology. The pathophysiological findings correlated with a time-dependent decrease in protein arginine methyltransferase 7 (PRMT7) protein expression and activity post-rmTBI along with dysregulation of PRMT upstream mediators s-adenosylmethionine and methionine adenosyltransferase 2 (MAT2) in vivo. In addition, inhibition of the upstream mediator MAT2A using the HT22 hippocampal neuronal cell line suggest a mechanistic role for PRMT7 via MAT2A in vitro. Collectively, we have identified PRMT7 as a novel target in rmTBI pathology in vivo and a mechanistic link between PRMT7 and upstream mediator MAT2A in vitro.
Collapse
Affiliation(s)
- Christina H Acosta
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Garrett A Clemons
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Cristiane T Citadin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - William C Carr
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Henry W Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Anne H Freelin
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jamie B Toms
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - J Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
5
|
Cali E, Suri M, Scala M, Ferla MP, Alavi S, Faqeih EA, Bijlsma EK, Wigby KM, Baralle D, Mehrjardi MYV, Schwab J, Platzer K, Steindl K, Hashem M, Jones M, Niyazov DM, Jacober J, Littlejohn RO, Weis D, Zadeh N, Rodan L, Goldenberg A, Lecoquierre F, Dutra-Clarke M, Horvath G, Young D, Orenstein N, Bawazeer S, Vulto-van Silfhout AT, Herenger Y, Dehghani M, Seyedhassani SM, Bahreini A, Nasab ME, Ercan-Sencicek AG, Firoozfar Z, Movahedinia M, Efthymiou S, Striano P, Karimiani EG, Salpietro V, Taylor JC, Redman M, Stegmann APA, Laner A, Abdel-Salam G, Li M, Bengala M, Müller AJ, Digilio MC, Rauch A, Gunel M, Titheradge H, Schweitzer DN, Kraus A, Valenzuela I, McLean SD, Phornphutkul C, Salih M, Begtrup A, Schnur RE, Torti E, Haack TB, Prada CE, Alkuraya FS, Houlden H, Maroofian R. Biallelic PRMT7 pathogenic variants are associated with a recognizable syndromic neurodevelopmental disorder with short stature, obesity, and craniofacial and digital abnormalities. Genet Med 2023; 25:135-142. [PMID: 36399134 PMCID: PMC10620944 DOI: 10.1016/j.gim.2022.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder. METHODS We assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature. RESULTS The main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss. CONCLUSION This study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities.
Collapse
Affiliation(s)
- Elisa Cali
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, United Kingdom
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Matteo P Ferla
- Genomic Medicine theme, Oxford Biomedical Research Centre, NIHR, Oxford, Oxfordshire, United Kingdom; Wellcome Centre for Human Genetics, Oxford University, Oxford, Oxfordshire, United Kingdom
| | - Shahryar Alavi
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Palindrome, Isfahan, Iran
| | - Eissa Ali Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical, City, Riyadh, Saudi Arabia
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kristen M Wigby
- Division of Medical Genetics, Department of Pediatrics, University of California, and Rady Children's Hospital, San Diego, CA
| | - Diana Baralle
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Mohammad Y V Mehrjardi
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Jennifer Schwab
- Division of Human Genetics, Warren Alpert Medical School of Brown University, Hasbro Children's Hospital/Rhode Island Hospital, Providence, RI
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Marilyn Jones
- Division of Medical Genetics, Department of Pediatrics, University of California, and Rady Children's Hospital, San Diego, CA
| | - Dmitriy M Niyazov
- Section of Medical Genetics, Department of Pediatrics, Ochsner Health System and University of Queensland, New Orleans, LA
| | - Jennifer Jacober
- Section of Medical Genetics, Department of Pediatrics, Ochsner Health System and University of Queensland, New Orleans, LA
| | | | - Denisa Weis
- Department of Medical Genetics, Kepler University Hospital Med Campus IV, Johannes Kepler University, Linz, Austria
| | - Neda Zadeh
- Children's Hospital of Orange County, Orange, CA; Genetics Center, Orange, California
| | - Lance Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Alice Goldenberg
- Department of Genetics and Reference Center for Developmental Disorders, Normandie University, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, Rouen, France
| | - François Lecoquierre
- Department of Genetics and Reference Center for Developmental Disorders, Normandie University, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, Rouen, France
| | - Marina Dutra-Clarke
- Division of Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Gabriella Horvath
- BC Children's Hospital Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Dana Young
- Adult Metabolic Diseases Clinic, Vancouver General Hospital, Vancouver, Canada
| | - Naama Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shahad Bawazeer
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical, City, Riyadh, Saudi Arabia
| | | | | | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | | | - Amir Bahreini
- Palindrome, Isfahan, Iran; KaryoGen, Isfahan, Iran; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA
| | | | - A Gulhan Ercan-Sencicek
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT; Masonic Medical Research Institute, Utica, NY
| | - Zahra Firoozfar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Palindrome, Isfahan, Iran
| | - Mojtaba Movahedinia
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ehsan Ghayoor Karimiani
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran; Molecular and Clinical Sciences Institute, St. George's, University of London, London, United Kingdom; Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Vincenzo Salpietro
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Jenny C Taylor
- Genomic Medicine theme, Oxford Biomedical Research Centre, NIHR, Oxford, Oxfordshire, United Kingdom; Wellcome Centre for Human Genetics, Oxford University, Oxford, Oxfordshire, United Kingdom
| | - Melody Redman
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, United Kingdom
| | - Alexander P A Stegmann
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Andreas Laner
- MGZ - Medizinisch Genetisches Zentrum, Munich, Germany
| | - Ghada Abdel-Salam
- Human Genetics and Genome Research Division, Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | | | - Mario Bengala
- Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy
| | - Amelie Johanna Müller
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Maria C Digilio
- Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Murat Gunel
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT
| | - Hannah Titheradge
- West Midlands Regional Genetics Service and Birmingham Health Partners, Birmingham, United Kingdom; Women's and Children's NHS Trust, Birmingham, United Kingdom
| | - Daniela N Schweitzer
- Division of Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Alison Kraus
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, United Kingdom; Castle Hill Hospital, Cottingham, Hull, United Kingdom
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, University Hospital Vall d'Hebron, Barcelona, Spain; Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Scott D McLean
- Department of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, San Antonio, TX
| | - Chanika Phornphutkul
- Section of Medical Genetics, Department of Pediatrics, Ochsner Health System and University of Queensland, New Orleans, LA
| | - Mustafa Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Pediatrics, College of Medicine, AlMughtaribeen University, Khartoum, Sudan
| | | | | | | | - Tobias B Haack
- Institute of Human Genetics and Applied Genomics University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Carlos E Prada
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, OH; Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
6
|
Iannelli G, Milite C, Marechal N, Cura V, Bonnefond L, Troffer-Charlier N, Feoli A, Rescigno D, Wang Y, Cipriano A, Viviano M, Bedford MT, Cavarelli J, Castellano S, Sbardella G. Turning Nonselective Inhibitors of Type I Protein Arginine Methyltransferases into Potent and Selective Inhibitors of Protein Arginine Methyltransferase 4 through a Deconstruction-Reconstruction and Fragment-Growing Approach. J Med Chem 2022; 65:11574-11606. [PMID: 35482954 PMCID: PMC9469100 DOI: 10.1021/acs.jmedchem.2c00252] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Protein arginine
methyltransferases (PRMTs) are important therapeutic
targets, playing a crucial role in the regulation of many cellular
processes and being linked to many diseases. Yet, there is still much
to be understood regarding their functions and the biological pathways
in which they are involved, as well as on the structural requirements
that could drive the development of selective modulators of PRMT activity.
Here we report a deconstruction–reconstruction approach that,
starting from a series of type I PRMT inhibitors previously identified
by us, allowed for the identification of potent and selective inhibitors
of PRMT4, which regardless of the low cell permeability show an evident
reduction of arginine methylation levels in MCF7 cells and a marked
reduction of proliferation. We also report crystal structures with
various PRMTs supporting the observed specificity and selectivity.
Collapse
Affiliation(s)
| | | | - Nils Marechal
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Vincent Cura
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Luc Bonnefond
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Nathalie Troffer-Charlier
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | | | | | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | | | | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jean Cavarelli
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | | | | |
Collapse
|
7
|
Ma T, Li L, Chen R, Yang L, Sun H, Du S, Xu X, Cao Z, Zhang X, Zhang L, Shi X, Liu JY. Protein arginine methyltransferase 7 modulates neuronal excitability by interacting with NaV1.9. Pain 2022; 163:753-764. [PMID: 34326297 PMCID: PMC8929296 DOI: 10.1097/j.pain.0000000000002421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Human NaV1.9 (hNaV1.9), encoded by SCN11A, is preferentially expressed in nociceptors, and its mutations have been linked to pain disorders. NaV1.9 could be a promising drug target for pain relief. However, the modulation of NaV1.9 activity has remained elusive. Here, we identified a new candidate NaV1.9-interacting partner, protein arginine methyltransferase 7 (PRMT7). Whole-cell voltage-clamp recordings showed that coelectroporation of human SCN11A and PRMT7 in dorsal root ganglion (DRG) neurons of Scn11a-/- mice increased the hNaV1.9 current density. By contrast, a PRMT7 inhibitor (DS-437) reduced mNaV1.9 currents in Scn11a+/+ mice. Using the reporter molecule CD4, we observed an increased distribution of hLoop1 on the cell surface of PRMT7-overexpressing HKE293T cells. Furthermore, we found that PRMT7 mainly binds to residues 563 to 566 within the first intracellular loop of hNaV1.9 (hLoop1) and methylates hLoop1 at arginine residue 519. Moreover, overexpression of PRMT7 increased the number of action potential fired in DRG neurons of Scn11a+/+ mice but not Scn11a-/- mice. However, DS-437 significantly inhibited the action potential frequency of DRG neurons and relieved pain hypersensitivity in Scn11aA796G/A796G mice. In summary, our observations revealed that PRMT7 modulates neuronal excitability by regulating NaV1.9 currents, which may provide a potential method for pain treatment.
Collapse
Affiliation(s)
- Tingbin Ma
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Lulu Li
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Rui Chen
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Luyao Yang
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Hao Sun
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Shiyue Du
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Xuan Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhijian Cao
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital of HUST, Wuhan, China
| | - Luoying Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Xiaoliu Shi
- Department of Medical Genetics, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Yu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
PRMT7: A Pivotal Arginine Methyltransferase in Stem Cells and Development. Stem Cells Int 2021; 2021:6241600. [PMID: 34712331 PMCID: PMC8548130 DOI: 10.1155/2021/6241600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Protein arginine methylation is a posttranslational modification catalyzed by protein arginine methyltransferases (PRMTs), which play critical roles in many biological processes. To date, nine PRMT family members, namely, PRMT1, 2, 3, 4, 5, 6, 7, 8, and 9, have been identified in mammals. Among them, PRMT7 is a type III PRMT that can only catalyze the formation of monomethylarginine and plays pivotal roles in several kinds of stem cells. It has been reported that PRMT7 is closely associated with embryonic stem cells, induced pluripotent stem cells, muscle stem cells, and human cancer stem cells. PRMT7 deficiency or mutation led to severe developmental delay in mice and humans, which is possibly due to its crucial functions in stem cells. Here, we surveyed and summarized the studies on PRMT7 in stem cells and development in mice and humans and herein provide a discussion of the underlying molecular mechanisms. Furthermore, we also discuss the roles of PRMT7 in cancer, adipogenesis, male reproduction, cellular stress, and cellular senescence, as well as the future perspectives of PRMT7-related studies. Overall, PRMT7 mediates the proliferation and differentiation of stem cells. Deficiency or mutation of PRMT7 causes developmental delay, including defects in skeletal muscle, bone, adipose tissues, neuron, and male reproduction. A better understanding of the roles of PRMT7 in stem cells and development as well as the underlying mechanisms will provide information for the development of strategies for in-depth research of PRMT7 and stem cells as well as their applications in life sciences and medicine.
Collapse
|
9
|
Bryant JP, Heiss J, Banasavadi-Siddegowda YK. Arginine Methylation in Brain Tumors: Tumor Biology and Therapeutic Strategies. Cells 2021; 10:cells10010124. [PMID: 33440687 PMCID: PMC7827394 DOI: 10.3390/cells10010124] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification that plays a pivotal role in cellular regulation. Protein arginine methyltransferases (PRMTs) catalyze the modification of target proteins by adding methyl groups to the guanidino nitrogen atoms of arginine residues. Protein arginine methylation takes part in epigenetic and cellular regulation and has been linked to neurodegenerative diseases, metabolic diseases, and tumor progression. Aberrant expression of PRMTs is associated with the development of brain tumors such as glioblastoma and medulloblastoma. Identifying PRMTs as plausible contributors to tumorigenesis has led to preclinical and clinical investigations of PRMT inhibitors for glioblastoma and medulloblastoma therapy. In this review, we discuss the role of arginine methylation in cancer biology and provide an update on the use of small molecule inhibitors of PRMTs to treat glioblastoma, medulloblastoma, and other cancers.
Collapse
|