1
|
Simonian TL, Meyer AS, Guo J, Sha J, Wohlschlegel JA, Droujinine IA, Perrimon N, McMahon AP. Sex and Depot Specific Adipocyte Proteome Profiling In Vivo via Intracellular Proximity Labeling. Compr Physiol 2025; 15:e70007. [PMID: 40181252 PMCID: PMC11969033 DOI: 10.1002/cph4.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
Adipose tissue has varying distributions and metabolic properties between the sexes. Inherent sex-specific differences in adipocytes may heighten the risk of metabolic disease in males. Analysis of the adipocyte proteome can potentially provide important insight. To enable cell-type specific proteomic profiling in vivo, we genetically engineered a mouse line for cell-type specific production of a promiscuous biotin ligase (BirA*G3) facilitating the rapid isolation of biotinylated cell-type specific proteomes. Adipocyte-specific activation of cytoplasmic BirA*G3 led to robust biotinylation of adipocyte proteins across all major fat depots. Comparison of brown adipose tissue (BAT) and subcutaneous white adipose tissue (SAT) proteomes identified 229 brown adipose-enriched and 35 white adipose-enriched proteins. Regional comparison of white fat depots revealed additional differences across depots. Comparison of male and female depots identified sexually dimorphic adipose proteins: AHNAK predominating in the male and ACOT2 in the female. These findings validate the genetic model and highlight insights to be gained through targeted profiling of adipocytes. The genetic tool adds to existing approaches for in vivo proximity profiling of cell-type specific proteome programs.
Collapse
Affiliation(s)
- Taylor L. Simonian
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Amanda S. Meyer
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Ilia A. Droujinine
- Department of Molecular MedicineScripps Research InstituteLa JollaCaliforniaUSA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik InstituteHarvard Medical SchoolCambridgeMassachusettsUSA
- Howard Hughes Medical InstituteChevy ChaseMarylandUSA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Lee M, Son S, Oh S, Shin E, Shin H, Kwon O, Hwang S, Song H, Lim HJ. Diet-Induced Obesity Alters Granulosa Cell Transcriptome and Ovarian Immune Environment in Mice. Life (Basel) 2025; 15:330. [PMID: 40141675 PMCID: PMC11943477 DOI: 10.3390/life15030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Obesity affects female reproductive performance by impairing the ovarian and uterine environments. Using a diet-induced obesity mouse model, we examined whether a high-fat diet (HFD) regimen affects the gene expression profile in ovarian granulosa cells (GCs) and whether short-term HFD has similar effects on gene expression as long-term HFD. C57BL/6J mice were fed a HFD or normal diet (ND) for 16-18 weeks (long-term group) or 4 weeks (short-term group). GCs were collected from each group of mice for RNA-sequencing. RT-PCR and immunofluorescence staining were performed to validate the results. RNA-sequencing analyses of the GCs revealed that several immediate early genes, including early growth response 1 (Egr1), an important mediator of ovulation, were significantly downregulated in HFD GCs. Protein tyrosine phosphatase receptor type C (Ptprc) and hematopoietic type prostaglandin D synthase (Hpgds), both of which are associated with increased inflammation, were significantly upregulated in HFD GCs. Downregulation of Egr1 was also confirmed in the GCs of short-term HFD mice, suggesting that it constitutes an early change in response to a HFD. Increased expression of several transcription factors in HFD GCs suggests that a HFD may affect the overall transcriptional landscape. The results may indicate possible modulation of the immune environment in HFD ovaries. These results provide novel insights into the molecular changes in GCs in obese environments.
Collapse
Affiliation(s)
- Minseo Lee
- Department of Veterinary Medicine, School of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sujin Son
- Department of Veterinary Medicine, School of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Surim Oh
- Department of Veterinary Medicine, School of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Eunbin Shin
- Department of Veterinary Medicine, School of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyejin Shin
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Ohrim Kwon
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Sohyun Hwang
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13520, Gyeonggi-do, Republic of Korea
| | - Haengseok Song
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Hyunjung Jade Lim
- Department of Veterinary Medicine, School of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
- Department of Biomedical Science and Technology, Institute of Biomedical Science & Technology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Zhu B, Chen X, Zhang T, Zhang Q, Fu K, Hua J, Zhang M, Qi Q, Zhao B, Zhao M, Yang L, Zhou B. Interactions between intestinal microbiota and metabolites in zebrafish larvae exposed to polystyrene nanoplastics: Implications for intestinal health and glycolipid metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134478. [PMID: 38696962 DOI: 10.1016/j.jhazmat.2024.134478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Previous studies have shown the harmful effects of nanoscale particles on the intestinal tracts of organisms. However, the specific mechanisms remain unclear. Our present study focused on examining the uptake and distribution of polystyrene nanoplastics (PS-NPs) in zebrafish larvae, as well as its toxic effects on the intestine. It was found that PS-NPs, marked with red fluorescence, primarily accumulated in the intestine section. Subsequently, zebrafish larvae were exposed to normal PS-NPs (0.2-25 mg/L) over a critical 10-day period for intestinal development. Histopathological analysis demonstrated that PS-NPs caused structural changes in the intestine, resulting in inflammation and oxidative stress. Additionally, PS-NPs disrupted the composition of the intestinal microbiota, leading to alterations in the abundance of bacterial genera such as Pseudomonas and Aeromonas, which are associated with intestinal inflammation. Metabolomics analysis showed alterations in metabolites that are primarily involved in glycolipid metabolism. Furthermore, MetOrigin analysis showed a significant correlation between bacterial flora (Pedobacter and Bacillus) and metabolites (D-Glycerate 2-phosphate and D-Glyceraldehyde 3-phosphate), which are related to the glycolysis/gluconeogenesis pathways. These findings were further validated through alterations in multiple biomarkers at various levels. Collectively, our data suggest that PS-NPs may impair the intestinal health, disrupt the intestinal microbiota, and subsequently cause metabolic disorders.
Collapse
Affiliation(s)
- Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Xianglin Chen
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Taotao Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Qianqian Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Kaiyu Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianghuan Hua
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Mengyuan Zhang
- Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qing Qi
- Wuhan Business University, Wuhan 430056, China
| | - Binbin Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Min Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
4
|
Chiang CH, Zhang TR, Hsu PS, Lin SP, Chen CY. Weight regain, but not weight loss exacerbates hepatic fibrosis during multiple weight cycling events in male mice. Eur J Nutr 2024; 63:965-976. [PMID: 38265751 DOI: 10.1007/s00394-024-03326-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
PURPOSE Weight cycling is a phenomenon characterized by fluctuating body weight that is commonly observed in individuals employing intentional weight loss methods. Despite its prevalence, the impact of weight cycling on health remains equivocal. The current investigation aimed to examine the effects of weight cycling on liver health. METHODS The weight cycling model was established by switching the feeding method of mice between ad libitum (AL) and restricted intake (DR or 60% of AL) of the breeding diet to cause weight gain and weight loss, respectively. The weight cycling model comprised two and a half cycles, with one group terminating the experience during the weight-gain period (S-AL) and the other during the weight-loss period (S-DR). Liver tissue was collected to investigate morphology alterations, apoptosis, lipid metabolism, and mitochondrial homeostasis. RESULTS The results demonstrated that the termination point of weight cycling affected body weight and hepatic steatosis. All parameters examined in the S-DR mice exhibited a comparable trend to those observed in the DR mice. Notably, S-AL mice showed a significant increase in lipid metabolism-related proteins in the liver compared to AL-fed mice, along with reduced lipid droplets. Moreover, hepatic apoptosis and fibrosis were exacerbated in the S-AL mice compared to AL mice, whereas mitochondrial fusion, biogenesis, and mitophagy were decreased in the S-AL mice. CONCLUSION Weight cycling ending in weight gain exacerbated hepatic fibrosis, potentially by inducing apoptosis or disrupting mitochondrial homeostasis. Conversely, weight cycling ending in weight loss demonstrated beneficial effects on hepatic health.
Collapse
Affiliation(s)
- Chun-Hsien Chiang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ting-Rui Zhang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pu-Sheng Hsu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Piell KM, Petri BJ, Xu J, Cai L, Rai SN, Li M, Wilkey DW, Merchant ML, Cave MC, Klinge CM. Chronic Aroclor 1260 exposure alters the mouse liver proteome, selenoproteins, and metals in steatotic liver disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104430. [PMID: 38552755 PMCID: PMC11044900 DOI: 10.1016/j.etap.2024.104430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to increase due in part to the obesity epidemic and to environmental exposures to metabolism disrupting chemicals. A single gavage exposure of male mice to Aroclor 1260 (Ar1260), an environmentally relevant mixture of non-dioxin-like polychlorinated biphenyls (PCBs), resulted in steatohepatitis and altered RNA modifications in selenocysteine tRNA 34 weeks post-exposure. Unbiased approaches identified the liver proteome, selenoproteins, and levels of 25 metals. Ar1260 altered the abundance of 128 proteins. Enrichment analysis of the liver Ar1260 proteome included glutathione metabolism and translation of selenoproteins. Hepatic glutathione peroxidase 4 (GPX4) and Selenoprotein O (SELENOO) were increased and Selenoprotein F (SELENOF), Selenoprotein S (SELENOS), Selenium binding protein 2 (SELENBP2) were decreased with Ar1260 exposure. Increased copper, selenium (Se), and zinc and reduced iron levels were detected. These data demonstrate that Ar1260 exposure alters the (seleno)proteome, Se, and metals in MASLD-associated pathways.
Collapse
Affiliation(s)
- Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Jason Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA
| | - Shesh N Rai
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ming Li
- Division of Nephrology & Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Daniel W Wilkey
- University of Louisville Hepatobiology and Toxicology Center; University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Michael L Merchant
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA; Division of Nephrology & Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; University of Louisville Hepatobiology and Toxicology Center; University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Matthew C Cave
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA; University of Louisville Hepatobiology and Toxicology Center; University of Louisville School of Medicine, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA; The University of Louisville Superfund Research Center, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
6
|
Zhang S, Cai Z, Li H. AHNAKs roles in physiology and malignant tumors. Front Oncol 2023; 13:1258951. [PMID: 38033502 PMCID: PMC10682155 DOI: 10.3389/fonc.2023.1258951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The AHNAK family currently consists of two members, namely AHNAK and AHNAK2, both of which have a molecular weight exceeding 600 kDa. Homologous sequences account for approximately 90% of their composition, indicating a certain degree of similarity in terms of molecular structure and biological functions. AHNAK family members are involved in the regulation of various biological functions, such as calcium channel modulation and membrane repair. Furthermore, with advancements in biological and bioinformatics technologies, research on the relationship between the AHNAK family and tumors has rapidly increased in recent years, and its regulatory role in tumor progression has gradually been discovered. This article briefly describes the physiological functions of the AHNAK family, and reviews and analyzes the expression and molecular regulatory mechanisms of the AHNAK family in malignant tumors using Pubmed and TCGA databases. In summary, AHNAK participates in various physiological and pathological processes in the human body. In multiple types of cancers, abnormal expression of AHNAK and AHNAK2 is associated with prognosis, and they play a key regulatory role in tumor progression by activating signaling pathways such as ERK, MAPK, Wnt, and MEK, as well as promoting epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Shusen Zhang
- Hebei Province Xingtai People’s Hospital Postdoctoral Workstation, Xingtai, China
- Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang, China
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhigang Cai
- Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang, China
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Li
- Department of surgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China
| |
Collapse
|
7
|
Óvilo C, Trakooljul N, Núñez Y, Hadlich F, Murani E, Ayuso M, García-Contreras C, Vázquez-Gómez M, Rey AI, Garcia F, García-Casco JM, López-Bote C, Isabel B, González-Bulnes A, Wimmers K, Muñoz M. SNP discovery and association study for growth, fatness and meat quality traits in Iberian crossbred pigs. Sci Rep 2022; 12:16361. [PMID: 36180572 PMCID: PMC9525691 DOI: 10.1038/s41598-022-20817-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Iberian pigs and its crosses are produced to obtain high-quality meat products. The objective of this work was to evaluate a wide panel of DNA markers, selected by biological and functional criteria, for association with traits related to muscle growth, fatness, meat quality and metabolism. We used 18 crossbred Iberian pigs with divergent postnatal growth patterns for whole genome sequencing and SNP discovery, with over 13 million variants being detected. We selected 1023 missense SNPs located on annotated genes and showing different allele frequencies between pigs with makerdly different growth patterns. We complemented this panel with 192 candidate SNPs obtained from literature mining and from muscle RNAseq data. The selected markers were genotyped in 480 Iberian × Duroc pigs from a commercial population, in which phenotypes were obtained, and an association study was performed for the 1005 successfully genotyped SNPs showing segregation. The results confirmed the effects of several known SNPs in candidate genes (such as LEPR, ACACA, FTO, LIPE or SCD on fatness, growth and fatty acid composition) and also disclosed interesting effects of new SNPs in less known genes such as LRIG3, DENND1B, SOWAHB, EPHX1 or NFE2L2 affecting body weight, average daily gain and adiposity at different ages, or KRT10, NLE1, KCNH2 or AHNAK affecting fatness and FA composition. The results provide a valuable basis for future implementation of marker-assisted selection strategies in swine and contribute to a better understanding of the genetic architecture of relevant traits.
Collapse
Affiliation(s)
- C Óvilo
- Departamento Mejora Genética Animal, INIA-CSIC, Madrid, Spain.
| | - N Trakooljul
- Research Institute for Farm Animal Biology, FBN, Dummerstorf, Germany
| | - Y Núñez
- Departamento Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - F Hadlich
- Research Institute for Farm Animal Biology, FBN, Dummerstorf, Germany
| | - E Murani
- Research Institute for Farm Animal Biology, FBN, Dummerstorf, Germany
| | - M Ayuso
- CoPeD, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - C García-Contreras
- Department of Nutrition and Sustainable Animal Production, CSIC, Granada, Spain
| | | | - A I Rey
- Departamento de Producción Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| | - F Garcia
- Departamento Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | | | - C López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| | - B Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| | - A González-Bulnes
- Facultad de Medicina Veterinaria, Universidad Cardenal Herrera-CEU, Valencia, Spain
| | - K Wimmers
- Research Institute for Farm Animal Biology, FBN, Dummerstorf, Germany
| | - M Muñoz
- Departamento Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| |
Collapse
|
8
|
Driessen M, van der Plas-Duivesteijn S, Kienhuis AS, van den Brandhof EJ, Roodbergen M, van de Water B, Spaink HP, Palmblad M, van der Ven LTM, Pennings JLA. Identification of proteome markers for drug-induced liver injury in zebrafish embryos. Toxicology 2022; 477:153262. [PMID: 35868597 DOI: 10.1016/j.tox.2022.153262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
The zebrafish embryo (ZFE) is a promising alternative non-rodent model in toxicology, and initial studies suggested its applicability in detecting hepatic responses related to drug-induced liver injury (DILI). Here, we hypothesize that detailed analysis of underlying mechanisms of hepatotoxicity in ZFE contributes to the improved identification of hepatotoxic properties of compounds and to the reduction of rodents used for hepatotoxicity assessment. ZFEs were exposed to nine reference hepatotoxicants, targeted at induction of steatosis, cholestasis, and necrosis, and effects compared with negative controls. Protein profiles of the individual compounds were generated using LC-MS/MS. We identified differentially expressed proteins and pathways, but as these showed considerable overlap, phenotype-specific responses could not be distinguished. This led us to identify a set of common hepatotoxicity marker proteins. At the pathway level, these were mainly associated with cellular adaptive stress-responses, whereas single proteins could be linked to common hepatotoxicity-associated processes. Applying several stringency criteria to our proteomics data as well as information from other data sources resulted in a set of potential robust protein markers, notably Igf2bp1, Cox5ba, Ahnak, Itih3b.2, Psma6b, Srsf3a, Ces2b, Ces2a, Tdo2b, and Anxa1c, for the detection of adverse responses.
Collapse
Affiliation(s)
- Marja Driessen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | | | - Anne S Kienhuis
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Evert-Jan van den Brandhof
- Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Marianne Roodbergen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Leo T M van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands.
| |
Collapse
|
9
|
Qiu S, Liang Z, Wu Q, Wang M, Yang M, Chen C, Zheng H, Zhu Z, Li L, Yang G. Hepatic lipid accumulation induced by a high-fat diet is regulated by Nrf2 through multiple pathways. FASEB J 2022; 36:e22280. [PMID: 35394671 DOI: 10.1096/fj.202101456r] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/11/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is reportedly involved in hepatic lipid metabolism, but the results are contradictory, and the underlying mechanism remains unclear. Here, we focused on elucidating the effects of Nrf2 on hepatic adipogenesis and on determining the possible underlying mechanism. We established a non-alcoholic fatty liver disease (NAFLD) model in a high-fat diet (HFD)-fed Nrf2 knockout (Nrf2 KO) mice; further, a cell model of lipid accumulation was established using mouse primary hepatocytes (MPHs) treated with free fatty acids (FAs). Using these models, we investigated the relationship between Nrf2 and autophagy and its role in the development of NAFLD. We observed that Nrf2 expression levels were upregulated in patients with NAFLD and diet-induced obese mice. Nrf2 deficiency led to hepatic lipid accumulation in vivo and in vitro, in addition to, promoting lipogenesis mainly by increasing SREBP-1c activity. Moreover, Nrf2 deficiency attenuated autophagic flux and inhibited the fusion of autophagosomes and lysosomes in vivo and in vitro. Decreased autophagy caused reduced lipolysis in the liver. Importantly, chromatin immunoprecipitation-qPCR (ChIP-qPCR) and dual-luciferase assay results proved that Nrf2 bound to the LAMP1 promoter and regulated its transcriptional activity. Accordingly, we report that Nrf2-LAMP1 interaction plays an indispensable role in Nrf2-regulated hepatosteatosis. Our data collectively confirm that Nrf2 deficiency promotes hepatosteatosis by enhancing SREBP-1c activity and attenuating autophagy. Our findings provide a novel multi-pathway effect of Nrf2 on lipid metabolism in the liver. We believe that multi-target intervention of Nrf2 is a novel strategy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Sheng Qiu
- Department of Endocrinology, The 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zerong Liang
- Department of Endocrinology, The 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Key Laboratory of Diagnostic Medicine (Ministry of Education), Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qinan Wu
- Endocrinology Department, Dazu Hospital of Chongqing Medical University, The People's Hospital of Dazu, Chongqing, China
| | - Miao Wang
- Department of Endocrinology, The 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mengliu Yang
- Department of Endocrinology, The 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Ling Li
- Key Laboratory of Diagnostic Medicine (Ministry of Education), Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Liu W, Pan Y, Zhu H, Zhou Y, Zhang H, Liu L, Liu Q, Ji G. CircRNA_0008194 functions as a ceRNA to promote invasion of hepatocellular carcinoma via inhibiting miR-190a/AHNAK signaling pathway. J Clin Lab Anal 2022; 36:e24286. [PMID: 35199873 PMCID: PMC8993631 DOI: 10.1002/jcla.24286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/29/2022] Open
Abstract
Background Hepatitis B virus infection was identified as the main risk factor of hepatocellular carcinoma (HCC) in China, which induced a high morbidity and mortality. In recent years, circRNAs were reported involving in the oncogenesis and development of multiple malignant tumors. Method Bioinformatical analysis has been employed to predict the relevant circRNA with AHNAK. The loss of function and gain of function have been used by knocking‐down circRNA through the shRNA technology while overexpressing through lentivirus infection. Dual‐luciferase reporter assay was used to detect circRNA binding to miRNA and target genes. We further used immunoprecipitation technique to detect the binding ability between non‐coding RNAs. Results In this study, according to the previous report, we mainly focused on AHNAK, which has been confirmed as an oncogene involving in the metastasis of HCC. Bioinformatics analysis showed that circ_0008194 could be spliced by AHNAK. In this study, the abnormal upregulated circ_0008194 in tumor tissues was detected. The positive correlation between circ_0008194 and AHNAK was also confirmed. Through knockdown and overexpression of circ_0008194, we conducted in vitro functional studies. We found circ_0008194 could induce the invasion of cells in vitro. Mechanically, circ_0008194 presented the binding ability with miR‐190a causing the suppression of miR‐190a expression, causing the competitive inhibition of AHNAK, resulting in the promotion of EMT. Conclusion Our results suggested that circ_0008194 may act as a sponge to adsorb miR‐190a, thereby promoting the expression of AHNAK and promoting the metastasis of liver cancer tumors.
Collapse
Affiliation(s)
- Wei Liu
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Medical Center for Digestive Diseases, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Pan
- Medical Center for Digestive Diseases, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hengbo Zhu
- Medical Center for Digestive Diseases, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhou
- Medical Center for Digestive Diseases, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Zhang
- Medical Center for Digestive Diseases, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liu Liu
- Medical Center for Digestive Diseases, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Liu
- Medical Center for Digestive Diseases, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guozhong Ji
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Ning L, Rui X, Bo W, Qing G. The critical roles of histone deacetylase 3 in the pathogenesis of solid organ injury. Cell Death Dis 2021; 12:734. [PMID: 34301918 PMCID: PMC8302660 DOI: 10.1038/s41419-021-04019-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Histone deacetylase 3 (HDAC3) plays a crucial role in chromatin remodeling, which, in turn, regulates gene transcription. Hence, HDAC3 has been implicated in various diseases, including ischemic injury, fibrosis, neurodegeneration, infections, and inflammatory conditions. In addition, HDAC3 plays vital roles under physiological conditions by regulating circadian rhythms, metabolism, and development. In this review, we summarize the current knowledge of the physiological functions of HDAC3 and its role in organ injury. We also discuss the therapeutic value of HDAC3 in various diseases.
Collapse
Affiliation(s)
- Li Ning
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Xiong Rui
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Wang Bo
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Geng Qing
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| |
Collapse
|