1
|
Bai H, Dang Q, Chen G, Xie L, Wang S, Jiang N, Wu X, Zhang S, Wang X. MyD88 inhibitor TJ-M2010-5 alleviates spleen impairment and inflammation by inhibiting the PI3K/miR-136-5p/AKT3 pathway in the early infection of Trichinella spiralis. Vet Res 2025; 56:28. [PMID: 39905552 DOI: 10.1186/s13567-025-01459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 02/06/2025] Open
Abstract
Trichinella spiralis (T. spiralis) has been reported to induce inflammation, which can cause immune system dysregulation. Myeloid differentiation primary response gene 88 (MyD88) is implicated in inflammation signalling pathways. TJ-M2010-5 is a novel MyD88 inhibitor with remarkable protective effects against several diseases. However, the precise mechanism of TJ-M2010-5's involvement in spleen impairment and inflammation in the early infection of T. spiralis has yet to be fully elucidated. This study analysed histological, inflammation, and macrophage polarisation of the early T. spiralis-infected mice treated with TJ-M2010-5. MyD88 promoter methylation results showed that the methylation levels in the 5 d group were lower compared to the control group (P < 0.05). Furthermore, the methylation led to an imbalance in anti-inflammatory regulation in the infected mice. After TJ-M2010-5 treatment, spleen impairment was reduced. Sequencing analysis showed that TJ-M2010-5 significantly up-regulated 9 and down-regulated 10 miRNAs compared with the 5 d group. A dual-luciferase reporter assay further revealed that miR-136-5p is involved in the TJ-M2010-5 treatment by targeting AKT3. In RAW264.7 cells, TJ-M2010-5 pre-treatment significantly reversed the M1 polarisation and inhibited nitric oxide (NO) production. LC-MS/MS results showed TJ-M2010-5 was hepatosplenic-targeted. In conclusion, the study demonstrates that TJ-M2010-5 could effectively alleviate spleen impairment and reduce inflammation in mice infected with T. spiralis in its early stages by blocking the activation of PI3K/miR-136-5p/AKT3.
Collapse
Affiliation(s)
- Huifang Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Qianqian Dang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Guoliang Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lingfeng Xie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Saining Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ning Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaoxia Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shuyan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xuelin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Liu Q, Bin DH, Wang ZY, Peng KP, Tang W, Huang JW, Xu LZ, Wang XY, Yang PC, Tian GX. The Immune Regulatory Functions in B Cells Are Restored by CpG to Reduce Experimental Food Allergy. Immunology 2025; 174:128-138. [PMID: 39385432 DOI: 10.1111/imm.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Dysfunctional immune regulation contributes to the pathogenesis of food allergy (FA). The mechanism behind regulatory B-cell dysfunction is unclear. CpG has immune regulatory functions. The purpose of this study is to use CpG to recover the immune suppressive functions of B cells in mice with FA. An FA mouse model was created using ovalbumin as the specific antigen. Flow cytometry was used to isolate B cells from the intestinal tissues. The immune regulatory functions of B cells were assessed using immunological approaches. The results showed that the FA response was linked to low IL-10 levels in gut lavage fluids of FA mice. FA mouse intestinal B cells produced lower amounts of IL-10 as compared with B cells isolated from naïve control mice. Impaired immune suppressive functions were observed in B cells isolated from the FA mouse intestine. The inducibility of the Il10 expression in naïve B cells of the intestine of FA mice was defective. The induction of Il10 expression in FA B cells could be restored by CpG through regulating the methylation status of the Cmip promoter. CpG promoted the therapeutic efficacy of allergen specific immunotherapy by restoring the induction of IL-10+ B cells in the intestine. The expression of Il10 in B cells of the FA mouse intestine was impaired. Administration of CpG could restore the expression of Il10 in B cells in the intestine and promote immunotherapy for FA.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Ultrasoud, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dong-Hua Bin
- Department of Anus and Intesine, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhuo-Ya Wang
- Postgraduate Medical Education Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ke-Ping Peng
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wang Tang
- Department of Ultrasoud, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing-Weng Huang
- Department of Anus and Intesine, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ling-Zhi Xu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Xiang-Yu Wang
- Department of Gastroenterology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ping-Chang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Gui-Xiang Tian
- Department of Ultrasoud, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Liu Y, Yin W. CD36 in liver diseases. Hepatol Commun 2025; 9:e0623. [PMID: 39774047 PMCID: PMC11717518 DOI: 10.1097/hc9.0000000000000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein with the ability to bind to multiple ligands and perform diverse functions. Through the recognition of long-chain fatty acids, proteins containing thrombospondin structural homology repeat domains such as thrombospondin-1, and molecules with molecular structures consistent with danger- or pathogen-associated molecular patterns, CD36 participates in various physiological and pathological processes of the body. CD36 is widely expressed in various cell types, including hepatocytes and KCs in the liver, where it plays a pivotal role in lipid metabolism, inflammation, and oxidative stress. Accumulating evidence suggests that CD36 plays a complex role in the development of nonalcoholic simple fatty liver disease and NASH and contributes to the pathogenesis of inflammatory liver injury, hepatitis B/hepatitis C, liver fibrosis, and liver cancer. This review summarizes the current understanding of the structural properties, expression patterns, and functional mechanisms of CD36 in the context of liver pathophysiology. Furthermore, the potential of CD36 as a therapeutic target for the prevention and treatment of liver diseases is highlighted.
Collapse
|
4
|
Wang J, Guo H, Zheng LF, Li P, Zhao TJ. Context-specific fatty acid uptake is a finely-tuned multi-level effort. Trends Endocrinol Metab 2024:S1043-2760(24)00256-X. [PMID: 39490380 DOI: 10.1016/j.tem.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
Fatty acids (FAs) are essential nutrients that play multiple roles in cellular activities. To meet cell-specific needs, cells exhibit differential uptake of FAs in diverse physiological or pathological contexts, coordinating to maintain metabolic homeostasis. Cells tightly regulate the localization and transcription of CD36 and other key proteins that transport FAs across the plasma membrane in response to different stimuli. Dysregulation of FA uptake results in diseases such as obesity, steatotic liver, heart failure, and cancer progression. Targeting FA uptake might provide potential therapeutic strategies for metabolic diseases and cancer. Here, we review recent advances in context-specific regulation of FA uptake, focusing on the regulation of CD36 in metabolic organs and other cells.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lang-Fan Zheng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Peng Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Tong-Jin Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
5
|
Yang Y, Rivera L, Fang S, Cavalier M, Suris A, Zhou Y, Huang Y. Maternal high-fat diet alters Tet-mediated epigenetic regulation during heart development. iScience 2024; 27:110631. [PMID: 39262804 PMCID: PMC11388159 DOI: 10.1016/j.isci.2024.110631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024] Open
Abstract
Imbalanced dietary intake, such as a high-fat diet (HFD) during pregnancy, has been associated with adverse offspring outcomes. Metabolic stress from imbalanced food intake alters the function of epigenetic regulators, resulting in abnormal transcriptional outputs in embryos to cause congenital disorders. We report herein that maternal HFD exposure causes metabolic changes in pregnant mice and non-compaction cardiomyopathy (NCC) in E15.5 embryos, accompanied by decreased 5-hydroxymethylcytosine (5hmC) levels and altered chromatin accessibility in embryonic heart tissues. Remarkably, maternal vitamin C supplementation mitigates these detrimental effects, likely by restoring iron, a cofactor for Tet enzymes, in a reduced state. Using a genetic approach, we further demonstrated that the cardioprotective benefits of vitamin C under HFD conditions are attributable to enhanced Tet activity. Our results highlight an interaction between maternal diet, specifically HFD or vitamin C, and epigenetic modifications during early heart development, emphasizing the importance of balanced maternal nutrition for healthy embryonic development.
Collapse
Affiliation(s)
- Yuhan Yang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Logan Rivera
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Shaohai Fang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Maryn Cavalier
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Ashley Suris
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
6
|
Sun F, Yang Y, Jia L, Dong QQ, Hu W, Tao H, Lu C, Yang JJ. TET3 boosts hepatocyte autophagy and impairs non-alcoholic fatty liver disease by increasing ENPP1 promoter hypomethylation. Free Radic Biol Med 2024; 218:166-177. [PMID: 38582229 DOI: 10.1016/j.freeradbiomed.2024.04.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Dysregulated ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family occurs in metabolic reprogramming pathological processes. Nonetheless, the epigenetic mechanisms by which ENPP family impacts NAFLD, also known as metabolic dysfunction-associated steatotic liver disease (MASLD), is poorly appreciated. METHODS We investigated the causes and consequences of ENPP1 promoter hypomethylation may boost NAFLD using NAFLD clinical samples, as well as revealed the underlying mechanisms using high-fat diet (HFD) + carbon tetrachloride (CCl4) induced mouse model of NAFLD and FFA treatment of cultured hepatocyte. RESULTS Herein, we report that the expression level of ENPP1 are increased in patients with NAFLD liver tissue and in mouse model of NAFLD. Hypomethylation of ENPP1, is associated with the perpetuation of hepatocyte autophagy and liver fibrosis in the NAFLD. ENPP1 hypomethylation is mediated by the DNA demethylase TET3 in NAFLD liver fibrosis and hepatocyte autophagy. Additionally, knockdown of TET3 methylated ENPP1 promoter, reduced the ENPP1 expression, ameliorated the experimental NAFLD. Mechanistically, TET3 epigenetically promoted ENPP1 expression via hypomethylation of the promoter. Knocking down TET3 can inhibit the hepatocyte autophagy but an overexpression of ENPP1 showing rescue effect. CONCLUSIONS We describe a novel epigenetic mechanism wherein TET3 promoted ENPP1 expression through promoter hypomethylation is a critical mediator of NAFLD. Our findings provide new insight into the development of preventative measures for NAFLD.
Collapse
Affiliation(s)
- Feng Sun
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yang Yang
- Department of General Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Lin Jia
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qi-Qi Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan, 232001, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
7
|
Li Q, Pan Y, Zhang J, Hu B, Qin D, Liu S, Chen N, Zhang L. TET2 regulation of alcoholic fatty liver via Srebp1 mRNA in paraspeckles. iScience 2024; 27:109278. [PMID: 38482502 PMCID: PMC10933471 DOI: 10.1016/j.isci.2024.109278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 01/06/2025] Open
Abstract
Epigenetic modifications have emerged as key regulators of metabolism-related complex diseases including the alcoholic fatty liver disease (AFLD) prevalent chronic liver disorder with significant economic implications. Building upon previous research that emphasizes ten-eleven translocation (TET) proteins' involvement in adipocyte insulin sensitization and fatty acid oxidation, we explored the role of TET2 protein in AFLD pathogenesis which catalyzes 5-methylcytosine into 5-hydroxymethylcytosine in DNA/RNA. Our findings revealed that TET2 deficiency exacerbates AFLD progression. And TET2 influenced the expression and activity of sterol regulatory element binding protein 1 (SREBP1), a key regulator of hepatic lipid synthesis, by modulating Srebp1 mRNA retention. Employing RIP-qPCR and bisulfite sequencing techniques, we provided evidence of TET2-mediated epigenetic modifications on Srebp1 mRNA, thereby affecting lipid metabolism. Through elucidating the role of methylation in RNA nuclear retention via paraspeckles, our study enhances understanding of AFLD pathogenesis from an epigenetic perspective, paving the way for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Qinjin Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanyan Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Boxu Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dan Qin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shenghui Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ning Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lisheng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Bi H, Zhou B, Yang J, Lu Y, Mao F, Song Y. Whole-genome DNA methylation and gene expression profiling in the livers of mice with nonalcoholic steatohepatitis. Life Sci 2023; 329:121951. [PMID: 37473799 DOI: 10.1016/j.lfs.2023.121951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
AIMS Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the major causes of liver-related morbidity and mortality. It ranges simple steatosis to non-alcoholic steatohepatitis (NASH). Previous studies have shown that epigenetic factors, such as DNA methylation, can contribute to the development and progression of simple steatosis. However, the profiling of whole-genome DNA methylation remains poorly characterized in NASH. MAIN METHODS In this study, we established a mouse model of diet-induced NASH, by maintaining male mice on a high-fructose-high-cholesterol diet (HFHC), to generate hepatic steatosis, inflammation and injury. We profiled hepatic gene expression by RNA-Sequencing and locus-specific 5-methylcytosine level, using Whole Genome Bisulfite Sequencing (WGBS). KEY FINDINGS We identified >1000 differentially methylated regions in NASH versus control group, indicating that NASH diet could modulate the liver methylome. Furthermore, integrated analysis of methylome and transcriptome identified certain key methylated genes and pathways, which may be involved in steroid metabolism and inflammation response. The liver methylation levels of key genes especially Tgfb, Msn, Iqgap1, Cyba, Fcgr1 decreased, and their consequent increased expression may lead to NASH development. SIGNIFICANCE We found that HFHC diet-induced NASH could induces genome-wide differential DNA methylation changes. Thus, we proposed that DNA methylation profiles of genomes may be a useful signature of gene transcription and may play an important role in the development of NASH. We also screened and validated the changes of key genes, which may provide new perspectives for the mechanistic study of NASH in future.
Collapse
Affiliation(s)
- Hanqi Bi
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai, China
| | - Bing Zhou
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Yang
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Mao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuping Song
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Ning Y, Fang S, Fang J, Lin K, Nie H, Xiong P, Qiu P, Zhao Q, Wang H, Wang F. Guanylate-binding proteins signature predicts favorable prognosis, immune-hot microenvironment, and immunotherapy response in hepatocellular carcinoma. Cancer Med 2023; 12:17504-17521. [PMID: 37551111 PMCID: PMC10501289 DOI: 10.1002/cam4.6347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The role of guanylate-binding proteins (GBPs) in various cancers has been elucidated recently. However, our knowledge of the clinical relevance and biological characteristics of GBPs in hepatocellular carcinoma (HCC) remains limited. METHODS A total of 955 HCC patients were enrolled from five independent public HCC cohorts. The role of GBP molecules in HCC was preliminarily investigated, and a GBP family signature, termed GBPs-score, was constructed by principal component analysis to combine the GBP molecule values. We revealed the effects of GBP genes and GBPs-score in HCC via well-established bioinformatics methods and validated GBP1-5 experimentally in a tissue microarray (TMA) cohort. RESULTS GBPs molecules were closely associated with the prognosis of patients with HCC, and a high GBPs-score highly inferred a favorable survival outcome. We also revealed high GBPs-score was related to anti-tumor immunity, the immune-hot tumor microenvironment (TME), and immunotherapy response. Among the GBPs members, GBP1-5 rather than GBP6/7 may be dominant in these fields. The TMA analysis based on immunohistochemistry showed positive correlations between GBP1-5 and the immune-hot TME with abundant infiltration of CD8+ T cells in HCC. CONCLUSIONS Our integrative study revealed the genetic and immunologic characterizations of GBPs in HCC and highlighted their potential values as promising biomarkers for prognosis and immunotherapy.
Collapse
Affiliation(s)
- Yumei Ning
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Shilin Fang
- Department of Infectious DiseaseZhongnan Hospital of Wuhan University, Hubei AIDS Clinical Training CenterWuhanChina
| | - Jun Fang
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Renmin Hospital of Huangmei CountyHuanggangChina
| | - Kun Lin
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Haihang Nie
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Peiling Xiong
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Peishan Qiu
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Qiu Zhao
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Haizhou Wang
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Fan Wang
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| |
Collapse
|
10
|
Zaiou M. Peroxisome Proliferator-Activated Receptor-γ as a Target and Regulator of Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease. Cells 2023; 12:cells12081205. [PMID: 37190114 DOI: 10.3390/cells12081205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) belongs to the superfamily of nuclear receptors that control the transcription of multiple genes. Although it is found in many cells and tissues, PPARγ is mostly expressed in the liver and adipose tissue. Preclinical and clinical studies show that PPARγ targets several genes implicated in various forms of chronic liver disease, including nonalcoholic fatty liver disease (NAFLD). Clinical trials are currently underway to investigate the beneficial effects of PPARγ agonists on NAFLD/nonalcoholic steatohepatitis. Understanding PPARγ regulators may therefore aid in unraveling the mechanisms governing the development and progression of NAFLD. Recent advances in high-throughput biology and genome sequencing have greatly facilitated the identification of epigenetic modifiers, including DNA methylation, histone modifiers, and non-coding RNAs as key factors that regulate PPARγ in NAFLD. In contrast, little is still known about the particular molecular mechanisms underlying the intricate relationships between these events. The paper that follows outlines our current understanding of the crosstalk between PPARγ and epigenetic regulators in NAFLD. Advances in this field are likely to aid in the development of early noninvasive diagnostics and future NAFLD treatment strategies based on PPARγ epigenetic circuit modification.
Collapse
Affiliation(s)
- Mohamed Zaiou
- Institut Jean-Lamour, Université de Lorraine, UMR 7198 CNRS, 54505 Vandoeuvre-les-Nancy, France
| |
Collapse
|
11
|
Kim U, Lee DS. Epigenetic Regulations in Mammalian Cells: Roles and Profiling Techniques. Mol Cells 2023; 46:86-98. [PMID: 36859473 PMCID: PMC9982057 DOI: 10.14348/molcells.2023.0013] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/03/2023] Open
Abstract
The genome is almost identical in all the cells of the body. However, the functions and morphologies of each cell are different, and the factors that determine them are the genes and proteins expressed in the cells. Over the past decades, studies on epigenetic information, such as DNA methylation, histone modifications, chromatin accessibility, and chromatin conformation have shown that these properties play a fundamental role in gene regulation. Furthermore, various diseases such as cancer have been found to be associated with epigenetic mechanisms. In this study, we summarized the biological properties of epigenetics and single-cell epigenomic profiling techniques, and discussed future challenges in the field of epigenetics.
Collapse
Affiliation(s)
- Uijin Kim
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Dong-Sung Lee
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| |
Collapse
|