1
|
Yang H, Zheng P, Hu J, Lin Z, Sriboonvorakul N, Lin S. Spatial Metabolomics Reveals the Effects of Dietary Capsaicin Intervention on Interscapular Adipose Tissue Metabolome in Mice. Foods 2024; 13:3943. [PMID: 39683015 DOI: 10.3390/foods13233943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Capsaicin is a polyphenol with a well-known anti-obesity potential, which could activate brown adipose tissue and promote the browning of white adipose tissue. Indeed, conventional proteomics have been used to investigate the browning effects of capsaicin on adipose tissue. However, the existence of a layer of white adipose tissue above the interscapular brown adipose tissue poses a great challenge to obtain intact interscapular brown adipose tissue without including adjacent white adipose tissue. Therefore, the traditional method normally focuses on changes occurring in the bottom layer of interscapular brown adipose tissue. Spatial metabolomics is an omics method that enables the analysis of metabolite distributions in tissue sections. Therefore, in the current study, spatial metabolomics was utilized to investigate the effects of dietary capsaicin intervention on interscapular brown adipose tissue and adjacent white adipose tissue. The results indicated several noteworthy findings that capsaicin treatment may induce similar metabolite alterations across various regions of brown adipose tissue irrespective of their proximity to WAT, while it also markedly influences the metabolites in the adjacent white adipose tissue. A KEGG pathway analysis further revealed these changes were associated with key characteristics of beige energy metabolism pathways, such as thermogenesis, glycerol phospholipid metabolism, and pentose phosphate pathway. Taken together, this study may supplement useful details to understand the mechanisms of capsaicin enhancing BAT activity and promoting WAT browning.
Collapse
Affiliation(s)
- Haoqing Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peiying Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Zhongjing Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Natthida Sriboonvorakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
2
|
Van Hul M, Cani PD, Petitfils C, De Vos WM, Tilg H, El-Omar EM. What defines a healthy gut microbiome? Gut 2024; 73:1893-1908. [PMID: 39322314 PMCID: PMC11503168 DOI: 10.1136/gutjnl-2024-333378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
The understanding that changes in microbiome composition can influence chronic human diseases and the efficiency of therapies has driven efforts to develop microbiota-centred therapies such as first and next generation probiotics, prebiotics and postbiotics, microbiota editing and faecal microbiota transplantation. Central to microbiome research is understanding how disease impacts microbiome composition and vice versa, yet there is a problematic issue with the term 'dysbiosis', which broadly links microbial imbalances to various chronic illnesses without precision or definition. Another significant issue in microbiome discussions is defining 'healthy individuals' to ascertain what characterises a healthy microbiome. This involves questioning who represents the healthiest segment of our population-whether it is those free from illnesses, athletes at peak performance, individuals living healthily through regular exercise and good nutrition or even elderly adults or centenarians who have been tested by time and achieved remarkable healthy longevity.This review advocates for delineating 'what defines a healthy microbiome?' by considering a broader range of factors related to human health and environmental influences on the microbiota. A healthy microbiome is undoubtedly linked to gut health. Nevertheless, it is very difficult to pinpoint a universally accepted definition of 'gut health' due to the complexities of measuring gut functionality besides the microbiota composition. We must take into account individual variabilities, the influence of diet, lifestyle, host and environmental factors. Moreover, the challenge in distinguishing causation from correlation between gut microbiome and overall health is presented.The review also highlights the resource-heavy nature of comprehensive gut health assessments, which hinders their practicality and broad application. Finally, we call for continued research and a nuanced approach to better understand the intricate and evolving concept of gut health, emphasising the need for more precise and inclusive definitions and methodologies in studying the microbiome.
Collapse
Affiliation(s)
- Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Camille Petitfils
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Willem M De Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | - Emad M El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical Campuses, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Lisboa FSS, Benevento EM, Kaneko LO, Bertolucci V, Rosini Silva ÁA, Sardim AC, Ruiz VF, Dos Reis IGM, Porcari AM, Messias LHD. Plasma metabolites associated with biopsychosocial parameters in overweight/obese women with severe knee osteoarthritis. Front Cell Dev Biol 2024; 12:1454084. [PMID: 39296935 PMCID: PMC11408288 DOI: 10.3389/fcell.2024.1454084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Obesity aligned with quadriceps muscle weakness contributes to the high incidence of knee osteoarthritis (KOA), which is prevalent in women. Although molecular signatures of KOA have been suggested, the association between biopsychosocial responses and the plasma metabolomic profile in overweight/ obese women with KOA remains in its early stages of investigation. This study aims to associate the plasma metabolome with biopsychosocial parameters of overweight/obese women diagnosed with KOA. Methods Twenty-eight overweight/obese women (Control-n = 14; KOA-n = 14) underwent two visits to the laboratory. Functional tests and questionnaires assessing biopsychosocial parameters were administered during the first visit. After 48 h, the participants returned to the laboratory for blood collection. Specific to the KOA condition, the Numerical Pain Rating Scale (NPRS), Tampa Scale for Kinesiophobia (TSK), and Knee injury and Osteoarthritis Outcome Score (KOOS) were applied. Results Thirteen molecules were different between groups, and four correlated with KOA's biopsychosocial parameters. DG 22:4-2OH and gamma-Glutamylvaline were inversely associated with KOSS leisure and TSK score, respectively. LysoPE 18:0 and LysoPE 20:5 were positively associated with KOSS symptoms and TSK score, respectively. Discussion While the correlations of LysoPE 18:0 and gamma-Glutamylvaline are supported by existing literature, this is not the case for DG 22:4-2OH and LysoPE 20:5. Further studies are recommended to better elucidate these correlations before dismissing their potential involvement in the biopsychosocial factors of the disease.
Collapse
Affiliation(s)
- Fabiola Socorro Silva Lisboa
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, Brazil
- Research Group on Musculoskeletal Rehabilitation, São Francisco University, Bragança Paulista, Brazil
| | - Enzo Martins Benevento
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, Brazil
- Research Group on Musculoskeletal Rehabilitation, São Francisco University, Bragança Paulista, Brazil
| | - Luisa Oliveira Kaneko
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, Brazil
| | - Vanessa Bertolucci
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, Brazil
| | - Álex Ap Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, Brazil
| | - André Cabral Sardim
- Research Group on Musculoskeletal Rehabilitation, São Francisco University, Bragança Paulista, Brazil
| | - Valter Ferreira Ruiz
- Research Group on Musculoskeletal Rehabilitation, São Francisco University, Bragança Paulista, Brazil
| | - Ivan Gustavo Masseli Dos Reis
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, Brazil
| | - Andreia M Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, Brazil
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, Brazil
| |
Collapse
|
4
|
Stanek E, Czamara K. Imaging of perivascular adipose tissue in cardiometabolic diseases by Raman spectroscopy: Towards single-cell analysis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159484. [PMID: 38521491 DOI: 10.1016/j.bbalip.2024.159484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/01/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Perivascular adipose tissue (PVAT) has emerged as a dynamic organ influencing vascular function and cardiovascular health. In this brief review, an overview of the recent research in the investigation of PVAT is presented, ranging from in vivo studies to single-cell methodologies, in particular those based on Raman spectroscopy. The strengths and limitations of each, emphasizing their contributions to the current understanding of PVAT biology were discussed. Ultimately, the integration of these diverse methodologies promises to uncover new therapeutic targets and diagnostic biomarkers, including those emerging from simple Raman spectroscopy-based measurements of alterations in lipid unsaturation degree, invariably associated with PVAT dysfunction.
Collapse
Affiliation(s)
- Ewa Stanek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, 11 Lojasiewicza Str., 30-348 Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| |
Collapse
|
5
|
Iacobini C, Vitale M, Haxhi J, Menini S, Pugliese G. Impaired Remodeling of White Adipose Tissue in Obesity and Aging: From Defective Adipogenesis to Adipose Organ Dysfunction. Cells 2024; 13:763. [PMID: 38727299 PMCID: PMC11083890 DOI: 10.3390/cells13090763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.
Collapse
|
6
|
Pang SJ, Liu TT, Pan JC, Man QQ, Song S, Zhang J. The Association between the Plasma Phospholipid Profile and Insulin Resistance: A Population-Based Cross-Section Study from the China Adult Chronic Disease and Nutrition Surveillance. Nutrients 2024; 16:1205. [PMID: 38674894 PMCID: PMC11054597 DOI: 10.3390/nu16081205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The dysfunction of phospholipid metabolism enzymes and the change in membrane phospholipid composition are associated with insulin resistance, indicating that phospholipids play an important role in the regulation of insulin sensitivity. The reflection of phospholipid changes in blood might provide clues for both mechanism understanding and intervention. Using a targeted phospholipidomic approach, 199 phospholipid molecular species were identified and quantified in the plasma of 1053 middle-aged participants from a national investigation. The associations of the phospholipid matrix, clusters, and molecular species with insulin resistance were investigated. A significant association was confirmed between the phospholipid matrix and the homeostatic-model assessment of insulin resistance (HOMA-IR) by a distance-based linear model. Furthermore, three clustered phospholipid modules and 32 phospholipid molecular species were associated with HOMA-IR with the strict control of demographic and lifestyle parameters, family history of diabetes, BMI, WC, and blood lipid parameters. The overall decline in lysophosphatidylcholines (LPCs), the decrease in saturated lysophosphatidylethanolamines (LPEs), the decrease in polyunsaturated/plasmenyl phosphatidylcholines (PCs), and the increase in polyunsaturated phatidylethanolamines (PEs) were the prominent characters of plasma phospholipid perturbation associated with insulin resistance. This suggested that PC- and PE-related metabolic pathways were widely involved in the process of insulin resistance, especially the disorder of LPC acylation to diacyl-PC.
Collapse
Affiliation(s)
- Shao-Jie Pang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People’s Republic of China, Beijing 100050, China
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Beijing 100015, China;
| | - Ting-Ting Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
| | - Jian-Cun Pan
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Beijing 100015, China;
| | - Qing-Qing Man
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
| | - Shuang Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
| | - Jian Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People’s Republic of China, Beijing 100050, China
| |
Collapse
|
7
|
Zhu Y, Cheng P, Peng J, Liu S, Xiang J, Xu D, Chen Y, Chen Z, Wang X, Luo C, Xu P, Sheng J. Cadmium exposure causes transcriptomic dysregulation in adipose tissue and associated shifts in serum metabolites. ENVIRONMENT INTERNATIONAL 2024; 185:108513. [PMID: 38382403 DOI: 10.1016/j.envint.2024.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal found in natural and industrial environments. Exposure to Cd can lead to various metabolic disturbances, notably disrupting glucose and lipid homeostasis. Despite this recognition, the direct impact of Cd exposure on lipid metabolism within adipose tissue, and the mechanisms underlying these effects, have not been fully elucidated. In this study, we found that Cd accumulates in adipose tissues of mice subjected to Cd exposure. Intriguingly, Cd exposure in itself did not induce significant alterations in the adipose tissue under normal conditions. However, when subjected to cold stimulation, several notable changes were observed in the mice exposed to Cd, including a reduction in the drop of body temperature, a decrease in the size of inguinal white adipose tissue (WAT), and an increase in the expression of thermogenic genes UCP1 and PRDM16. These results indicate that Cd exposure might enhance the responsiveness of adipose tissue to external stimuli and increase the energy expenditure of the tissue. RNA-seq analysis further revealed that Cd exposure altered gene expression profiles, particularly affecting peroxisome proliferator-activated receptor (PPAR)-mediated metabolic pathways, promoting metabolic remodeling in adipose tissue and resulting in the depletion of lipids stored in adipose tissue for energy. Non-targeted metabolomic analysis of mouse serum showed that Cd exposure significantly disrupted metabolites and significantly increased serum fatty acid and triglyceride levels. Correspondingly, population-level data confirmed an association between Cd exposure and elevated levels of serum total cholesterol, total triglycerides, and low-density lipoprotein cholesterol. In summary, we provide substantial evidence of the molecular events induced by Cd that are relevant to the regulation of lipid metabolism in adipose tissue. Our findings suggest that the toxic effects of Cd can impact adipocyte functionality, positioning adipose tissue as a critical target for metabolic diseases resulting from Cd exposure.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ping Cheng
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Junxuan Peng
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sishuo Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jie Xiang
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Dandan Xu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yuan Chen
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zhijian Chen
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xiaofeng Wang
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Chi Luo
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Peiwei Xu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Jinghao Sheng
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Shao Y, Xiong M, Liu J, Gu Z, Wu Z, Cao L. LOC646762 Is Involved in Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells. ACS OMEGA 2024; 9:8464-8470. [PMID: 38405496 PMCID: PMC10882647 DOI: 10.1021/acsomega.3c09684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
Long noncoding RNA (lncRNA) has been shown to participate in adipogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). In this study, we aimed to investigate the role of lncRNA-LOC646762 in adipogenic differentiation of BMSCs. Transcriptome sequencing revealed a positive correlation between LOC646762 transcription and expression of adipogenic marker genes in adipogenic differentiation. Moreover, LOC646762 overexpression did not negatively impact the cell proliferation of BMSCs. Besides, LOC646762 plays a crucial role in adipogenic differentiation, as evidenced by its positive correlation with adipogenic marker gene expression. Its possible interaction with its proposed target C/EBPβ suggests its involvement in essential pathways governing adipogenesis. Collectively, our study outcomes provide valuable insights into the molecular mechanisms underlying the adipogenic differentiation of BMSCs and lay a strong foundation for further research in regenerative medicine.
Collapse
Affiliation(s)
- Yifan Shao
- Jiujiang
City Key Laboratory of Cell Therapy, The
First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Minqi Xiong
- The
Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jianyun Liu
- Key
Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang 332000, China
| | - Zhiping Gu
- Jiujiang
City Key Laboratory of Cell Therapy, The
First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Zhaoping Wu
- Jiujiang
City Key Laboratory of Cell Therapy, The
First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Lingling Cao
- Jiujiang
City Key Laboratory of Cell Therapy, The
First Hospital of Jiujiang City, Jiujiang 332000, China
| |
Collapse
|
9
|
Gao P, Rinott E, Dong D, Mei Z, Wang F, Liu Y, Kamer O, Yaskolka Meir A, Tuohy KM, Blüher M, Stumvoll M, Stampfer MJ, Shai I, Wang DD. Gut microbial metabolism of bile acids modifies the effect of Mediterranean diet interventions on cardiometabolic risk in a randomized controlled trial. Gut Microbes 2024; 16:2426610. [PMID: 39535126 PMCID: PMC11567240 DOI: 10.1080/19490976.2024.2426610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/20/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Bile acids (BAs) undergo extensive microbial metabolism in the gut and exert hormone-like functions on physiological processes underlying metabolic risk. However, the extent to which gut BA profiles predict cardiometabolic risk and explain individual responses to dietary interventions in humans is still unclear. In the DIRECT-PLUS Trial, we conducted a multi-omics analysis of 284 participants randomized into three groups: healthy dietary guidelines and two Mediterranean diet (MedDiet) groups. We longitudinally measured 44 fecal BAs using liquid chromatography-mass spectrometry, the gut microbiome through shotgun metagenomic sequencing, and body adiposity and serum lipids at baseline, 6, and 18 months. Fecal levels of 14 BAs, such as lithocholic acid and ursodeoxycholic acid, were prospectively associated with body mass index (BMI) and serum lipid profiles (false discovery rate [q]<0.05). Baseline fecal BA levels significantly modified the beneficial effects of the MedDiet; for example, BMI reduction induced by MedDiet interventions was more pronounced in individuals with lower 12-dehydrocholic acid levels (q-interaction <0.001). We confirmed that the gut microbiome is a major modifier of the secondary BA pool in humans. Furthermore, the association of fecal BAs with body adiposity and serum lipids varied significantly in individuals with different abundances of gut microbes carrying BA metabolism enzymes, e.g. several Ruminococcus spp. In summary, our study identifies novel predictive biomarkers for cardiometabolic risk and offers new mechanistic insights to guide personalized dietary interventions.
Collapse
Affiliation(s)
- Peipei Gao
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Ehud Rinott
- Faculty of Health Sciences, The Health & Nutrition Innovative International Research Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Danyue Dong
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhendong Mei
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fenglei Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yuxi Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Omer Kamer
- Faculty of Health Sciences, The Health & Nutrition Innovative International Research Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Anat Yaskolka Meir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kieran M. Tuohy
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Meir J. Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Iris Shai
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Faculty of Health Sciences, The Health & Nutrition Innovative International Research Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Dong D. Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|