1
|
Hauptman M, Nascarella M, Silvester J, Kellogg M, Shah SH, Acosta K, Yousuf A, Woolf AD. Lead Toxicity From Imported Jewelry. Pediatrics 2024; 154:e2024067808J. [PMID: 39352039 PMCID: PMC11460313 DOI: 10.1542/peds.2024-067808j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/10/2024] Open
Abstract
We summarize here the presentation and course of lead poisoning in a 1-year-old who ingested a lead-containing metallic medallion from India. We analyzed the medallion to determine its composition, using x-ray fluorescence spectroscopy and field emission scanning electron microscopy. A simple extraction test was used to estimate oral bioavailability. We used the US Environmental Protection Agency Integrated Exposure Uptake Biokinetic model to compare actual versus predicted blood lead levels. X-ray fluorescence analysis revealed the composition of the medallion to be: Lead 155 000 ppm (15%), copper 530 000 ppm (53%), nickel 49 000 ppm (4.9%), arsenic 22 000 ppm (2.2%), antimony 12 000 ppm (1.2%), tin 3000 ppm (0.3%), and silver 1300 ppm (0.13%). With a fixed ingestion of 7786 µg/d (estimated by simulated gastric extraction analysis) and assuming 50% bioavailability, Integrated Exposure Uptake Biokinetic modeling predicted the geometric mean blood lead level would increase from 2.05 µg/dL to 173.9 µg/dL. This patient had potentially life-threatening lead poisoning from an ingested piece of jewelry. The medallion contained 550 times the allowable content of lead in children's metallic jewelry sold in the United States. This case highlights the ubiquitous nature of lead in our global environment and the risk of exposure to novel sources, especially for children.
Collapse
Affiliation(s)
- Marissa Hauptman
- Departments of Pediatrics
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Region 1 New England Pediatric Environmental Health Specialty Unit, Boston, Massachusetts
| | - Marc Nascarella
- Massachusetts College of Pharmacy and Health Sciences University, Boston, Massachusetts
| | - Jocelyn Silvester
- Departments of Pediatrics
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Mark Kellogg
- Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Shalini H Shah
- Departments of Pediatrics
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Region 1 New England Pediatric Environmental Health Specialty Unit, Boston, Massachusetts
| | - Keith Acosta
- Departments of Pediatrics
- Region 1 New England Pediatric Environmental Health Specialty Unit, Boston, Massachusetts
| | | | - Alan D Woolf
- Departments of Pediatrics
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Region 1 New England Pediatric Environmental Health Specialty Unit, Boston, Massachusetts
| |
Collapse
|
2
|
Ramírez DM, Sachs AL, Ekenga CC. Qualitative and mixed methods: informing and enhancing exposure science. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00707-5. [PMID: 39179753 DOI: 10.1038/s41370-024-00707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/26/2024]
Abstract
Addressing complex environmental health challenges necessitates the integration of multiple research methodologies to fully understand the social, economic, and health impacts of exposure to environmental hazards. Qualitative and mixed methods (QMM) are vital in uncovering the sociocultural dynamics that influence people's interactions with their environment and subsequent health-related outcomes. QMM has the potential to reveal insights that quantitative methods might overlook. However, QMM approaches have been underutilized in exposure science, with less than 1% of the studies published in the Journal of Exposure Science and Environmental Epidemiology (JESEE) from 2003 to 2023 employing these methods. JESEE studies that utilized QMM have enhanced exposure assessment, explored risk perceptions, and evaluated the impact of interventions, particularly among historically marginalized populations. QMM approaches have addressed gaps in traditional exposure assessment by allowing researchers to capture nuanced perspectives often missed by quantitative analyses, especially in understanding the lived experiences of affected communities. Exposure scientists are encouraged to adopt QMM to advance more comprehensive and inclusive approaches to studying and mitigating environmental risks. Fostering interdisciplinary collaborations that integrate the social sciences can enhance the development of robust, context-sensitive solutions to environmental health challenges.
Collapse
Affiliation(s)
- Denise Moreno Ramírez
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Ashby Lavelle Sachs
- Barcelona Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Christine C Ekenga
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Helmbrecht L, van Dongen SW, van der Weijden A, van Campenhout CT, Noorduin WL. Direct Environmental Lead Detection by Photoluminescent Perovskite Formation with Nanogram Sensitivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20494-20500. [PMID: 38008908 PMCID: PMC10720378 DOI: 10.1021/acs.est.3c06058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023]
Abstract
Although the global ban on leaded gasoline has markedly reduced lead poisoning, many other environmental sources of lead exposure, such as paint, pipes, mines, and recycling sites remain. Existing methods to identify these sources are either costly or unreliable. We report here a new, sensitive, and inexpensive lead detection method that relies on the formation of a perovskite semiconductor. The method only requires spraying the material of interest with methylammonium bromide and observing whether photoluminesence occurs under UV light to indicate the presence of lead. The method detects as little as 1.0 ng/mm2 of lead by the naked eye and 50 pg/mm2 using a digital photo camera. We exposed more than 50 different materials to our reagent and found no false negatives or false positives. The method readily detects lead in soil, paint, glazing, cables, glass, plastics, and dust and could be widely used for testing the environment and preventing lead poisoning.
Collapse
Affiliation(s)
- Lukas Helmbrecht
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
- Lumetallix
B.V, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | | | | - Willem L. Noorduin
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1090 GD, The Netherlands
- Lumetallix
B.V, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
4
|
Jurowski K. The toxicological assessment of hazardous elements (Pb, Cd and Hg) in low-cost jewelry for adults from Chinese E-commerce platforms: In situ analysis by portable X-ray fluorescence measurement. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132167. [PMID: 37619281 DOI: 10.1016/j.jhazmat.2023.132167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
This article focusses on the environmental implications of low-cost jewelry for adults from Chinese e-commerce platforms ((n = 8) with heavy metal impurities (Pb, Cd and Hg) and their potential impact on human health and the environment. The study highlights the advantages of using portable X-ray fluorescence (pXRF) analysis for rapid, non-destructive, and in situ analysis of heavy metals in jewelry. The results reveal that all products (n = 106) contained heavy metals at varying levels, Hg being the most commonly detected heavy metal. The fact that 71% of the samples exceeded the EU limit for Pb and 51% exceeded the EU limit for Cd is alarming and highlights the need for stricter regulations and monitoring of the jewelry industry to mitigate the risks posed by heavy metals in the environment. The study emphasizes the importance of using pXRF analysis to identify heavy metals in jewelry and address the literature gap in environmental risk assessments of Pb, Cd, and Hg in low-cost jewelry for adults from China. In general, the findings call for urgent action to ensure the safety of consumers and prevent environmental pollution by strengthening regulations and monitoring the jewelry industry.
Collapse
Affiliation(s)
- Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland; Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland.
| |
Collapse
|
5
|
Vorobyova M, Biffoli F, Giurlani W, Martinuzzi SM, Linser M, Caneschi A, Innocenti M. PVD for Decorative Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4919. [PMID: 37512195 PMCID: PMC10381906 DOI: 10.3390/ma16144919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Physical Vapor Deposition (PVD) is a widely utilized process in various industrial applications, serving as a protective and hard coating. However, its presence in fields like fashion has only recently emerged, as electroplating processes had previously dominated this reality. The future looks toward the replacement of the most hazardous and toxic electrochemical processes, especially those involving Cr(VI) and cyanide galvanic baths, which have been restricted by the European Union. Unfortunately, a complete substitution with PVD coatings is not feasible. Currently, the combination of both techniques is employed to achieve new aesthetic features, including a broader color range and diverse textures, rendering de facto PVD of primary interest for the decorative field and the fashion industry. This review aims to outline the guidelines for decorative industries regarding PVD processes and emphasize the recent advancements, quality control procedures, and limitations.
Collapse
Affiliation(s)
- Mariya Vorobyova
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Fabio Biffoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Walter Giurlani
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Stefano Mauro Martinuzzi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | | | - Andrea Caneschi
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
- Department of Industrial Engineering (DIEF), University of Florence, Via Santa Marta 3, 50139 Firenze, Italy
| | - Massimo Innocenti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
- CNR-ICOMM, Insititute of Chemistry of Organometallic Compounds, National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- CSGI (Center for Colloid and Surface Science), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Gul A, Gul DES, Mohiuddin S. Metals as toxicants in event-based expedited production of children's jewelry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27620-y. [PMID: 37202632 DOI: 10.1007/s11356-023-27620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Globally, the hazardous substance in children's goods is of great concern. Toxic chemicals are potentially harmful to the health and growth of infants and children. Lead (Pb) and cadmium (Cd)-contaminated children's jewelry is widely encountered in many countries. This study aims to determine the concentration of metal toxicants (Pb, Cd, Ni, Cu, Zn, Co, and Fe) in event-based (Independence Day festival) children's jewelry, considering time-limited and fast production products that may compromise the quality and safety parameters during manufacturing. The determinations are for the time-constraint industrial production of children's jewelry in the context of the toxic substances in a variety of base materials used. This is the first time event-based children's jewelry has been monitored and critically assessed for metal contamination. Forty-two samples, including metallic, wooden, textile, rubber, plastic, and paint-coated plastic children's jewelry, were tested. Seventy-four percent of samples detected Pb and Cd in quantifiable amounts. Ni in 71%, Cu in 67%, Co in 43%, and Zn and Fe were detected in 100% samples with quantifiable amounts. Twenty-two ID-CJ samples exceeded the US regulatory limit for Pb and four samples for Cd. However, twenty-nine samples for Pb, eleven for Cd, five for Co, and one for Cu exceeded the EU regulatory limit. The highest concentration of Pb was found in paint-coated plastic jewelry, and the highest Cd was found in metallic jewelry. These results suggest that the potential hazards of event-based children's jewelry deserve the attention of government agencies seeking to limit children's exposure to toxic chemicals. Intergovernmental organizations and individual countries regulate chemicals in consumer products, but a coordinated international approach is lacking. Some continents and countries still lack in regulations for children's products, especially jewelry, and toys.
Collapse
Affiliation(s)
- Anam Gul
- Department of Chemistry, Faculty of Science, University of Karachi, Karachi, 75270, Pakistan
| | - Dur-E-Shahwar Gul
- Department of Chemistry, Faculty of Science, University of Karachi, Karachi, 75270, Pakistan.
| | - Shaikh Mohiuddin
- Department of Chemistry, Faculty of Science, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
7
|
Negev M, Barnett-Itzhaki Z, Berman T, Reicher S, Cohen N, Ardi R, Shammai Y, Zohar T, Diamond ML. Hazardous chemicals in outdoor and indoor surfaces: artificial turf and laminate flooring. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:392-399. [PMID: 34697408 DOI: 10.1038/s41370-021-00396-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Synthetic materials, increasingly used for indoor and outdoor surfaces including homes and playgrounds, may contain toxic chemicals. Infants have a higher potential of exposure to chemicals in these materials, which may pose a risk to their health. OBJECTIVE To understand potential risks related to outdoor surface coverings, based on a review of the literature and regulations, and to assess levels of hazardous chemicals in surface coverings in Israel. METHODS We reviewed the literature and regulations on artificial turf. We tested 46 samples of surfaces for trace metals in synthetic playground surfaces; trace metals, phthalates, and di(2-ethylhexyl) terephthalate (DEHT) in synthetic grass, and phthalates, DEHT and formaldehyde in laminate flooring. RESULTS Twelve studies reporting high levels of polycyclic aromatic hydrocarbons (PAH), and varying levels of trace metals in synthetic playground surfaces were identified, as well as five international regulations on lead with maximum acceptable concentrations in the range 40-500 mg/kg. Surface tests showed that 20 out of 30 samples of synthetic playground surfaces exceeded relevant standards for trace metals, of which five had cadmium levels ≥30 mg/kg and four had chromium levels ≥510 mg/kg. In synthetic grass, three out of eight samples exceeded relevant standards, with lead levels ≥1200 mg/kg. In Laminate flooring (n = 8) formaldehyde levels were in the range of 0.7-1.2 mg/m2 formaldehyde, and five samples contained ~5% DEHT. SIGNIFICANCE The literature on chemicals in surfaces is limited, but indicates some exceedance of regulatory limits. Trace metals in synthetic playground surfaces and synthetic grass, not regulated in Israel, exceeded relevant international standards in 72% of samples. Laminate flooring, regulated for formaldehyde, did not exceed the 3.5 mg/m2 standard, but contained DEHT, a replacement for ortho-substituted phthalates. The results of this preliminary study show that flooring surfaces may be a source of children's exposure to toxic chemicals. IMPACT STATEMENT Synthetic surfaces are increasingly being used in, for example, children's playgrounds and sports fields. Exceedances of regulatory limits from other jurisdictions, of heavy metal levels in most outdoor surfaces sampled in Israel indicates the potential for children's exposure. Domestic regulations should be implemented to reduce the risk to children from exposure to these surfaces.
Collapse
Affiliation(s)
- Maya Negev
- School of Public Health, University of Haifa, Mt. Carmel, Haifa, 3498838, Israel.
| | - Zohar Barnett-Itzhaki
- Ministry of Health, Jeremiya Street 39, Jerusalem, 9446724, Israel
- School of Engineering, Research Center for Health Informatics, Ruppin Academic Center, Emek Hefer, 4025000, Israel
| | - Tamar Berman
- Ministry of Health, Jeremiya Street 39, Jerusalem, 9446724, Israel
| | - Shay Reicher
- Ministry of Health, Jeremiya Street 39, Jerusalem, 9446724, Israel
| | - Naor Cohen
- The Standards Institution of Israel, 42 Chaim Levanon Street, Tel Aviv, 6997701, Israel
| | - Ruti Ardi
- The Standards Institution of Israel, 42 Chaim Levanon Street, Tel Aviv, 6997701, Israel
| | - Yaniv Shammai
- The Standards Institution of Israel, 42 Chaim Levanon Street, Tel Aviv, 6997701, Israel
| | - Tamar Zohar
- School of Public Health, University of Haifa, Mt. Carmel, Haifa, 3498838, Israel
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, M5S 3B1, ON, Canada
| |
Collapse
|