1
|
Mielecki D, Godlewski J, Salinska E. Hyperbaric oxygen therapy for the treatment of hypoxic/ischemic injury upon perinatal asphyxia-are we there yet? Front Neurol 2024; 15:1386695. [PMID: 38685945 PMCID: PMC11057380 DOI: 10.3389/fneur.2024.1386695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Birth asphyxia and its main sequel, hypoxic-ischemic encephalopathy, are one of the leading causes of children's deaths worldwide and can potentially worsen the quality of life in subsequent years. Despite extensive research efforts, efficient therapy against the consequences of hypoxia-ischemia occurring in the perinatal period of life is still lacking. The use of hyperbaric oxygen, improving such vital consequences of birth asphyxia as lowered partial oxygen pressure in tissue, apoptosis of neuronal cells, and impaired angiogenesis, is a promising approach. This review focused on the selected aspects of mainly experimental hyperbaric oxygen therapy. The therapeutic window for the treatment of perinatal asphyxia is very narrow, but administering hyperbaric oxygen within those days improves outcomes. Several miRNAs (e.g., mir-107) mediate the therapeutic effect of hyperbaric oxygen by modulating the Wnt pathway, inhibiting apoptosis, increasing angiogenesis, or inducing neural stem cells. Combining hyperbaric oxygen therapy with drugs, such as memantine or ephedrine, produced promising results. A separate aspect is the use of preconditioning with hyperbaric oxygen. Overall, preliminary clinical trials with hyperbaric oxygen therapy used in perinatal asphyxia give auspicious results.
Collapse
Affiliation(s)
- Damian Mielecki
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Godlewski
- NeuroOncology Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Salinska
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Törn AE, Hesselman S, Johansen K, Ågren J, Wikström AK, Jonsson M. Outcomes in children after mild neonatal hypoxic ischaemic encephalopathy: A population-based cohort study. BJOG 2023; 130:1602-1609. [PMID: 37199188 DOI: 10.1111/1471-0528.17533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE To investigate whether mild neonatal hypoxic ischaemic encephalopathy (HIE) in term born infants is associated with cerebral palsy, epilepsy, mental retardation and death up to 6 years of age. DESIGN Population-based cohort study. SETTING Sweden, 2009-2015. POPULATION Live term born infants without congenital malformations or chromosomal abnormalities (n = 505 075). METHODS Birth and health data were retrieved from Swedish national health and quality registers. Mild HIE was identified by diagnosis in either the Swedish Medical Birth Register or the Swedish Neonatal Quality Register. Cox proportional hazards regression was used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs). MAIN OUTCOME MEASURES A composite of the outcomes cerebral palsy, epilepsy, mental retardation and death up to 6 years of age. RESULTS Median follow-up time was 3.3 years after birth. Of 414 infants diagnosed with mild HIE, 17 were classified according to the composite outcome and incidence rates were 12.6 and 2.9 per 1000 child-years in infants with and without HIE respectively. Infants with mild HIE was four times as likely to be diagnosed with the composite outcome (HR 4.42, 95% CI 2.75-7.12) compared with infants without HIE. When analysed separately, associations were found with cerebral palsy (HR 21.50, 95% CI 9.59-48.19) and death (HR 19.10, 95% CI 7.90-46.21). HRs remained essentially unchanged after adjustment for covariates. CONCLUSIONS Mild neonatal HIE was associated with neurological morbidity and mortality in childhood. Challenges include identifying infants who may develop morbidity and how to prevent adverse outcomes.
Collapse
Affiliation(s)
- Anna E Törn
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Susanne Hesselman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Uppsala University, Falun, Sweden
| | - Kine Johansen
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Johan Ågren
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anna-Karin Wikström
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Maria Jonsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Wassink G, Harrison S, Dhillon S, Bennet L, Gunn AJ. Prognostic neurobiomarkers in neonatal encephalopathy. Dev Neurosci 2022; 44:331-343. [PMID: 35168240 DOI: 10.1159/000522617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/09/2022] [Indexed: 11/19/2022] Open
Abstract
Therapeutic hypothermia is now standard-care for infants with moderate-severe neonatal encephalopathy (NE), and improves brain damage on neuroimaging, and neurodevelopmental outcomes. Critically, for effective neuroprotection, hypothermia should be started within 6 h from birth. There is compelling evidence to suggest that a proportion of infants with mild NE have material risk of developing brain damage and poor outcomes. This cohort is increasingly being offered therapeutic hypothermia, despite lack of trial evidence for its benefit. In current practice, infants need to be diagnosed within 6 h of birth for therapeutic treatment, compared to retrospective NE grading in the pre-hypothermia era. This presents challenges as NE is a dynamic brain disorder that can worsen or resolve over time. Neurological symptoms of NE can be difficult to discern in the first few hours after birth, and confounded by analgesics and anesthetic treatment. Using current enrolment criteria, a significant number of infants with NE that would benefit from hypothermia are not treated, and vice versa, infants are receiving mild hypothermia when its benefit will be limited. Better biomarkers are needed to further improve management and treatment of these neonates. In the present review, we examine the latest research, and highlight a central limitation of most current biomarkers: that their predictive value is consistently greatest after most neuroprotective therapies are no longer effective.
Collapse
Affiliation(s)
- Guido Wassink
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Steven Harrison
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Simerdeep Dhillon
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair Jan Gunn
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Rao R, Mietzsch U, DiGeronimo R, Hamrick SE, Dizon MLV, Lee KS, Natarajan G, Yanowitz TD, Peeples ES, Flibotte J, Wu TW, Zaniletti I, Mathur AM, Massaro A. Utilization of Therapeutic Hypothermia and Neurological Injury in Neonates with Mild Hypoxic-Ischemic Encephalopathy: A Report from Children's Hospital Neonatal Consortium. Am J Perinatol 2022; 39:319-328. [PMID: 32892328 DOI: 10.1055/s-0040-1716341] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study was aimed to describe utilization of therapeutic hypothermia (TH) in neonates presenting with mild hypoxic-ischemic encephalopathy (HIE) and associated neurological injury on magnetic resonance imaging (MRI) scans in these infants. STUDY DESIGN Neonates ≥ 36 weeks' gestation with mild HIE and available MRI scans were identified. Mild HIE status was assigned to hyper alert infants with an exaggerated response to arousal and mild HIE as the highest grade of encephalopathy recorded. MRI scans were dichotomized as "injury" versus "no injury." RESULTS A total of 94.5% (257/272) neonates with mild HIE, referred for evaluation, received TH. MRI injury occurred in 38.2% (104/272) neonates and affected predominantly the white matter (49.0%, n = 51). Injury to the deep nuclear gray matter was identified in (10.1%) 20 infants, and to the cortex in 13.4% (n = 14 infants). In regression analyses (odds ratio [OR]; 95% confidence interval [CI]), history of fetal distress (OR = 0.52; 95% CI: 0.28-0.99) and delivery by caesarian section (OR = 0.54; 95% CI: 0.31-0.92) were associated with lower odds, whereas medical comorbidities during and after cooling were associated with higher odds of brain injury (OR = 2.31; 95% CI: 1.37-3.89). CONCLUSION Majority of neonates with mild HIE referred for evaluation are being treated with TH. Odds of neurological injury are over two-fold higher in those with comorbidities during and after cooling. Brain injury predominantly involved the white matter. KEY POINTS · Increasingly, neonates with mild HIE are being referred for consideration for hypothermia therapy.. · Drift in clinical practice shows growing number of neonates treated with hypothermia as having mild HIE.. · MRI data show that 38% of neonates with mild HIE have brain injury, predominantly in the white matter..
Collapse
Affiliation(s)
- Rakesh Rao
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Ulrike Mietzsch
- Department of Pediatrics, Seattle Children's Hospital/University of Washington, Seattle, Washington
| | - Robert DiGeronimo
- Department of Pediatrics, Seattle Children's Hospital/University of Washington, Seattle, Washington
| | | | - Maria L V Dizon
- Department of Pediatrics, Northwestern University, Chicago, Illinois
| | - Kyong-Soon Lee
- Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Girija Natarajan
- Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan
| | - Toby D Yanowitz
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska
| | - John Flibotte
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tai-Wei Wu
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Isabella Zaniletti
- Department of Pediatrics, Children's Hospitals Association, Kansas City, Kansas
| | - Amit M Mathur
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, Missouri
| | - An Massaro
- Department of Pediatrics, Children's National Health Systems, Washington, Dist. of Columbia
| |
Collapse
|
5
|
McDouall A, Wassink G, Bennet L, Gunn AJ, Davidson JO. Challenges in developing therapeutic strategies for mild neonatal encephalopathy. Neural Regen Res 2022; 17:277-282. [PMID: 34269188 PMCID: PMC8464003 DOI: 10.4103/1673-5374.317963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
There is increasing evidence that infants with mild neonatal encephalopathy (NE) have significant risks of mortality, brain injury and adverse neurodevelopmental outcomes. In the era of therapeutic hypothermia, infants need to be diagnosed within 6 hours of birth, corresponding with the window of opportunity for treatment of moderate to severe NE, compared to the retrospective grading over 2 to 3 days, typically with imaging and formal electroencephalographic assessment in the pre-hypothermia era. This shift in diagnosis may have increased the apparent prevalence of brain damage and poor neurological outcomes seen in infants with mild NE in the era of hypothermia. Abnormal short term outcomes observed in infants with mild NE include seizures, abnormal neurologic examination at discharge, abnormal brain magnetic resonance imaging and difficulty feeding. At 2 to 3 years of age, mild NE has been associated with an increased risk of autism, language and cognitive deficits. There are no approved treatment strategies for these infants as they were not included in the initial randomized controlled trials for therapeutic hypothermia. However, there is already therapeutic creep, with many centers treating infants with mild NE despite the limited evidence for its safety and efficacy. The optimal duration of treatment and therapeutic window of opportunity for effective treatment need to be specifically established for mild NE as the evolution of injury is likely to be slower, based on preclinical data. Randomized controlled trials of therapeutic hypothermia for infants with mild NE are urgently required to establish the safety and efficacy of treatment. This review will examine the evidence for adverse outcomes after mild NE and dissect some of the challenges in developing therapeutic strategies for mild NE, before analyzing the evidence for therapeutic hypothermia and other strategies for treatment of these infants.
Collapse
Affiliation(s)
- Alice McDouall
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Pan S, Wu A, Weiner M, M Grinspan Z. Development and Evaluation of Computable Phenotypes in Pediatric Epilepsy:3 Cases. J Child Neurol 2021; 36:990-997. [PMID: 34315300 DOI: 10.1177/08830738211019578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Computable phenotypes allow identification of well-defined patient cohorts from electronic health record data. Little is known about the accuracy of diagnostic codes for important clinical concepts in pediatric epilepsy, such as (1) risk factors like neonatal hypoxic-ischemic encephalopathy; (2) clinical concepts like treatment resistance; (3) and syndromes like juvenile myoclonic epilepsy. We developed and evaluated the performance of computable phenotypes for these examples using electronic health record data at one center. METHODS We identified gold standard cohorts for neonatal hypoxic-ischemic encephalopathy, pediatric treatment-resistant epilepsy, and juvenile myoclonic epilepsy via existing registries and review of clinical notes. From the electronic health record, we extracted diagnostic and procedure codes for all children with a diagnosis of epilepsy and seizures. We used these codes to develop computable phenotypes and evaluated by sensitivity, positive predictive value, and the F-measure. RESULTS For neonatal hypoxic-ischemic encephalopathy, the best-performing computable phenotype (HIE ICD-9/10 and [brain magnetic resonance imaging (MRI) or electroencephalography (EEG) within 120 days of life] and absence of commonly miscoded conditions) had high sensitivity (95.7%, 95% confidence interval [CI] 85-99), positive predictive value (100%, 95% CI 95-100), and F measure (0.98). For treatment-resistant epilepsy, the best-performing computable phenotype (3 or more antiseizure medicines in the last 2 years or treatment-resistant ICD-10) had a sensitivity of 86.9% (95% CI 79-93), positive predictive value of 69.6% (95% CI 60-79), and F-measure of 0.77. For juvenile myoclonic epilepsy, the best performing computable phenotype (JME ICD-10) had poor sensitivity (52%, 95% CI 43-60) but high positive predictive value (90.4%, 95% CI 81-96); the F measure was 0.66. CONCLUSION The variable accuracy of our computable phenotypes (hypoxic-ischemic encephalopathy high, treatment resistance medium, and juvenile myoclonic epilepsy low) demonstrates the heterogeneity of success using administrative data to identify cohorts important for pediatric epilepsy research.
Collapse
Affiliation(s)
- Sabrina Pan
- Department of Population Health Sciences, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY, USA
| | - Alan Wu
- Department of Population Health Sciences, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY, USA
| | - Mark Weiner
- Department of Population Health Sciences, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY, USA
| | - Zachary M Grinspan
- Department of Population Health Sciences, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY, USA.,Department of Pediatrics, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
7
|
Kumar V, Singla M, Thayyil S. Cooling in mild encephalopathy: Costs and perils of therapeutic creep. Semin Fetal Neonatal Med 2021; 26:101244. [PMID: 33849797 DOI: 10.1016/j.siny.2021.101244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Increasing confidence in therapeutic hypothermia and ambiguity of cooling guidelines has led to many clinicians extending its use to untested populations like mild encephalopathy, or even no encephalopathy. Poor quality clinical neurological examination for encephalopathy staging coupled with a fear of litigation if a baby with mild encephalopathy progress to moderate or severe encephalopathy appears to be the primary driver for this therapeutic creep. Recent data suggesting increased apoptosis with cooling uninjured brains, and lack of hypothermic neuroprotection in partial prolonged hypoxia, implies that such therapeutic creeps may cause more harm than benefit. Currently available preclinical and clinical data do not support the clinical use of therapeutic hypothermia for mild encephalopathy, although phase II clinical trials are ongoing. We recommend that until further evidence from adequately powered randomised controlled trials are available, cooling in mild encephalopathy need to be considered experimental and parental consent should be obtained before providing this therapy.
Collapse
Affiliation(s)
- Vijay Kumar
- Centre of Perinatal Neuroscience, Department of Brain Sciences, Imperial College, London, UK
| | - Mani Singla
- Newborn Care Centre, Royal Hospital for Women, Barker Street, Randwick, 2031, NSW, Australia
| | - Sudhin Thayyil
- Centre of Perinatal Neuroscience, Department of Brain Sciences, Imperial College, London, UK.
| |
Collapse
|