1
|
Ferreira GS, Frota ML, Gonzaga MJD, Vattimo MDFF, Lima C. The Role of Biomarkers in Diagnosis of Sepsis and Acute Kidney Injury. Biomedicines 2024; 12:931. [PMID: 38790893 PMCID: PMC11118225 DOI: 10.3390/biomedicines12050931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 05/26/2024] Open
Abstract
Sepsis and acute kidney injury (AKI) are two major public health concerns that contribute significantly to illness and death worldwide. Early diagnosis and prompt treatment are essential for achieving the best possible outcomes. To date, there are no specific clinical, imaging, or biochemical indicators available to diagnose sepsis, and diagnosis of AKI based on the KDIGO criterion has limitations. To improve the diagnostic process for sepsis and AKI, it is essential to continually evolve our understanding of these conditions. Delays in diagnosis and appropriate treatment can have serious consequences. Sepsis and AKI often occur together, and patients with kidney dysfunction are more prone to developing sepsis. Therefore, identifying potential biomarkers for both conditions is crucial. In this review, we talk about the main biomarkers that evolve the diagnostic of sepsis and AKI, namely neutrophil gelatinase-associated lipocalin (NGAL), proenkephalin (PENK), and cell-free DNA.
Collapse
Affiliation(s)
| | | | | | | | - Camila Lima
- Department of Medical-Surgical Nursing, School of Nursing, University of São Paulo, São Paulo 05403-000, Brazil; (G.S.F.); (M.L.F.); (M.J.D.G.); (M.d.F.F.V.)
| |
Collapse
|
2
|
Basic Science with Preclinical Models to Investigate and Develop Liquid Biopsy: What Are the Available Data and Is It a Fruitful Approach? Int J Mol Sci 2022; 23:ijms23105343. [PMID: 35628154 PMCID: PMC9141279 DOI: 10.3390/ijms23105343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
The molecular analysis of circulating analytes (circulating tumor-DNA (ctDNA), -cells (CTCs) and -RNA (ctRNA)/exosomes) deriving from solid tumors and detected in the bloodstream—referred as liquid biopsy—has emerged as one of the most promising concepts in cancer management. Compelling data have evidenced its pivotal contribution and unique polyvalence through multiple applications. These data essentially derived from translational research. Therewith, data on liquid biopsy in basic research with preclinical models are scarce, a concerning lack that has been widely acknowledged in the field. This report aimed to comprehensively review the available data on the topic, for each analyte. Only 17, 17 and 2 studies in basic research investigated ctDNA, CTCs and ctRNA/exosomes, respectively. Albeit rare, these studies displayed noteworthy relevance, demonstrating the capacity to investigate questions related to the biology underlying analytes release that could not be explored via translational research with human samples. Translational, clinical and technological sectors of liquid biopsy may benefit from basic research and should take note of some important findings generated by these studies. Overall, results underscored the need to intensify the efforts to conduct future studies on liquid biopsy in basic research with new preclinical models.
Collapse
|
3
|
Burgoyne RA, Fisher AJ, Borthwick LA. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells 2021; 10:cells10102763. [PMID: 34685744 PMCID: PMC8534416 DOI: 10.3390/cells10102763] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.
Collapse
Affiliation(s)
- Rachel Ann Burgoyne
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Andrew John Fisher
- Regenerative Medicine, Stem Cells and Transplantation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Lee Anthony Borthwick
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: ; Tel.: +44-191-208-3112
| |
Collapse
|
4
|
Labgaa I, von Felden J, Craig AJ, Martins-Filho SN, Villacorta-Martin C, Demartines N, Dormond O, D'Avola D, Villanueva A. Experimental Models of Liquid Biopsy in Hepatocellular Carcinoma Reveal Clone-Dependent Release of Circulating Tumor DNA. Hepatol Commun 2021; 5:1095-1105. [PMID: 34141992 PMCID: PMC8183169 DOI: 10.1002/hep4.1692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 01/24/2021] [Indexed: 01/12/2023] Open
Abstract
Liquid biopsy, the molecular analysis of tumor components released into the bloodstream, has emerged as a noninvasive and resourceful means to access genomic information from cancers. Most data derived from translational studies showcase its numerous potential clinical applications. However, data from experimental models are scarce, and little is known about the underlying mechanisms and factors controlling the release of circulating tumor DNA (ctDNA) and cells (CTCs). This study aimed to model liquid biopsy in hepatocellular carcinoma xenografts and to study the dynamics of release of ctDNA and CTCs; this included models of intratumoral heterogeneity (ITH) and metastatic disease. We quantified ctDNA by quantitative polymerase chain reaction (PCR) targeting human long interspersed nuclear element group 1; targeted mutation analysis was performed with digital droplet PCR. CTCs were traced by flow cytometry. Results demonstrated the feasibility of detecting ctDNA, including clone-specific mutations, as well as CTCs in blood samples of mice. In addition, the concentration of ctDNA and presence of tumor-specific mutations reflected tumor progression, and detection of CTCs was associated with metastases. Our ITH model suggested differences in the release of DNA fragments impacted by the cell-clone origin and the treatment. Conclusion: These data present new models to study liquid biopsy and its underlying mechanisms and highlighted a clone-dependent release of ctDNA into the bloodstream.
Collapse
Affiliation(s)
- Ismail Labgaa
- Division of Liver DiseasesLiver Cancer ProgramTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA.,Department of Visceral SurgeryLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Johann von Felden
- Division of Liver DiseasesLiver Cancer ProgramTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA.,1. Department of Internal MedicineUniversity Medical Center Hamburg EppendorfHamburgGermany
| | - Amanda J Craig
- Division of Liver DiseasesLiver Cancer ProgramTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA.,Liver Cancer ProgramCenter for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Sebastiao N Martins-Filho
- Division of Liver DiseasesLiver Cancer ProgramTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA.,Department of Pathology and Laboratory MedicineUniversity Health NetworkUniversity of TorontoTorontoONCanada.,Departamento de PatologiaFaculdade de Medicina da Universidade de São PauloUniversidade de São PauloSão PauloBrazil
| | - Carlos Villacorta-Martin
- Division of Liver DiseasesLiver Cancer ProgramTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA.,Center for Regenerative MedicineBoston University and Boston Medical CenterBostonMAUSA
| | - Nicolas Demartines
- Department of Visceral SurgeryLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Olivier Dormond
- Department of Visceral SurgeryLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Delia D'Avola
- Division of Liver DiseasesLiver Cancer ProgramTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA.,Liver UnitClinica Universidad de NavarraPamplonaSpain.,Liver UnitClinica Universidad de NavarraMadridSpain.,Centro de Investigacion Biomédica en Red de Enfermedades Hepáticas y DigestivasPamplonaSpain
| | - Augusto Villanueva
- Division of Liver DiseasesLiver Cancer ProgramTisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA.,Division of Hematology/OncologyDepartment of MedicineIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
5
|
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules which foment inflammation and are associated with disorders in sepsis and cancer. Thus, therapeutically targeting DAMPs has potential to provide novel and effective treatments. When establishing anti-DAMP strategies, it is important not only to focus on the DAMPs as inflammatory mediators but also to take into account the underlying mechanisms of their release from cells and tissues. DAMPs can be released passively by membrane rupture due to necrosis/necroptosis, although the mechanisms of release appear to differ between the DAMPs. Other types of cell death, such as apoptosis, pyroptosis, ferroptosis and NETosis, can also contribute to DAMP release. In addition, some DAMPs can be exported actively from live cells by exocytosis of secretory lysosomes or exosomes, ectosomes, and activation of cell membrane channel pores. Here we review the shared and DAMP-specific mechanisms reported in the literature for high mobility group box 1, ATP, extracellular cold-inducible RNA-binding protein, histones, heat shock proteins, extracellular RNAs and cell-free DNA.
Collapse
Affiliation(s)
- Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Haichao Wang
- Center for Biomedical Science, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA. .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA. .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA. .,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| |
Collapse
|
6
|
Induction of apoptosis increases sensitivity to detect cancer mutations in plasma. Eur J Cancer 2020; 127:130-138. [PMID: 32007713 DOI: 10.1016/j.ejca.2019.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND The study of cell-free DNA (cfDNA), namely the fraction derived from tumors (ctDNA), is a clinically relevant noninvasive biomarker for cancer management. However, the intrinsic low abundance of ctDNA in plasma limits its implementation in the clinic. AIM OF THE STUDY In this study, the objective was to demonstrate that induction of apoptosis-the major source of ctDNA-increases ctDNA concentration, thereby increasing the sensitivity to detect clinically relevant mutations in plasma. METHODS In vitro models were used to test the effect of docetaxel on the release levels of DNA from lung cancer cells. In vivo, Rag2-/-IL2rg-/- immunodeficient C57BL/6 xenografted mice were treated with docetaxel for 24 h or 48 h. Tumor tissue and blood were collected to evaluate the levels of apoptosis DNA release levels, respectively. RESULTS We observed increased levels of apoptosis in H1975 cells and a consequent increase in cfDNA released into the culture medium after docetaxel treatment. In vivo, the results show increased cfDNA concentration in plasma of xenografted mice after apoptosis stimulation. Importantly, treatment increased the sensitivity of detection of relevant cancer mutations, namely 24 h after treatment. CONCLUSION This study provides new insights regarding the importance of timing for blood collection. In our experimental model, we demonstrate that blood collection should be performed 24 h after treatment (apoptosis induction), for optimal ctDNA analysis. Translating these results into the clinical setting is likely to increase sensitivity to detect tumor-derived mutations in plasma, might help guide the therapeutic decision, and optimize current liquid biopsy procedures for situations where tissue analysis is not possible.
Collapse
|
7
|
Ding S, Song X, Geng X, Liu L, Ma H, Wang X, Wei L, Xie L, Song X. Saliva-derived cfDNA is applicable for EGFR mutation detection but not for quantitation analysis in non-small cell lung cancer. Thorac Cancer 2019; 10:1973-1983. [PMID: 31441578 PMCID: PMC6775000 DOI: 10.1111/1759-7714.13178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Background Both quantitative and qualitative aspects of plasma cell‐free DNA (plasma cfDNA, pcfDNA) have been well‐studied as potential biomarkers in non‐small cell lung cancer (NSCLC). Accumulating evidence has proven that saliva also has the potential for the detection and analysis of circulating free DNA (saliva cfDNA, scfDNA). Methods In the current study, we aimed to explore the potential application of scfDNA in NSCLC diagnostics and consistency of epidermal growth factor receptor (EGFR) mutation detection in paired pcfDNA and scfDNA using droplet digital PCR (ddPCR) and analyze the relationship between EGFR mutations and clinical treatment response. Results In the quantitative cohort study, scfDNA concentration in NSCLC patients was no different from that in healthy donors, or in benign patients. ScfDNA concentration was significantly lower than pcfDNA concentration, yet they were not statistically significant in relevance (Spearman's rank correlation r = −0.123, P = 0.269). In the qualitative cohort study, the overall concordance rate of EGFR mutations between pcfDNA and scfDNA was 83.78% (31 of 37; k = 0.602; P < 0.001). EGFR mutation detection in paired pcfDNA and scfDNA was significantly correlated with the clinical treatment response (Spearman's rank correlation r = 0.664, P = 0.002). Conclusions Our results demonstrated that saliva might not be the idea material for a cfDNA quantitative test, and scfDNA concentration is not applicable for NSCLC diagnostics. Conversely, scfDNA was capable of acting as the supplement for EGFR mutations due to the coincidence rate of EGFR mutation detection between scfDNA and pcfDNA.
Collapse
Affiliation(s)
- Shanshan Ding
- Department of Clinical Laboratory, Shandong Cancer Hospital affiliated to Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xingguo Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xinran Geng
- Department of Clinical Laboratory, Maternity & Child Care Center of Dezhou, Dezhou, China
| | - Lele Liu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medicine Science, Jinan, China
| | - Hongxin Ma
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiujuan Wang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|