1
|
Li A, Ruan M, Fei X, Xu H, Deng S, Bi R, Yang W, Dong L. Altered cytokeratin 5 expression in breast lobular myoepithelial cells. J Clin Pathol 2024; 77:536-543. [PMID: 37116947 DOI: 10.1136/jcp-2023-208835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/11/2023] [Indexed: 04/30/2023]
Abstract
AIMS Cytokeratin 5 (CK5) is a surrogate maker of progenitor cells and early glandular and myoepithelial cells (MECs) in the breast, and CK5 expression in breast MECs varies from ducts to lobules, and from normal to diseased tissue. However, the mechanisms underlying immunophenotypic alterations of CK5 expression in MECs remain unclear. METHODS CK5 expression in MECs of 20 normal breast samples, 58 ductal carcinoma in situ (DCIS; including 21 DCIS with extensive lobular involvement), 11 atypical ductal hyperplasia (ADH), 18 non-invasive lobular neoplasia consisting of 11 atypical lobular hyperplasia (ALH) and 7 lobular carcinoma in situ (LCIS), 20 cystic lobules and 10 usual ductal hyperplasia (UDH) involving lobules were observed to evaluate the effects of contact with benign hyperplastic or cancerous luminal cells and pressure of dilated glands on CK5 expression. RESULTS CK5 expression in normal ductal MECs was exclusively positive, whereas most normal lobular MECs were negative. In DCIS, cancerous ducts were primarily surrounded by CK5-positive MECs (91.0%), as were lobular acini involved by DCIS (89.2%), while the remaining normal acini maintained CK5-negative. CK5-positive MECs were found in 57.5% of acini in ALH and were more prevalent in LCIS (70.7%). CK5 expression was occasionally positive in both cystic lobules (16.7%) and lobules involved by UDH (14.3%), while an increase of CK5-positive MECs was found in ADH (38.2%). CONCLUSIONS These results suggest that CK5 expression in lobular MECs may be altered by contact with cancerous luminal cells rather than benign hyperplastic luminal cells or pressure from dilated glands.
Collapse
Affiliation(s)
- Anqi Li
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Miao Ruan
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Xiaochun Fei
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Shijie Deng
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Rui Bi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wentao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei Dong
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|
2
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
3
|
Babaei K, Aziminezhad M, Norollahi SE, Vahidi S, Samadani AA. Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods. Front Med 2022; 16:827-858. [PMID: 36562947 DOI: 10.1007/s11684-022-0948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Infertility is experienced by 8%-12% of adults in their reproductive period globally and has become a prevalent concern. Besides routine therapeutic methods, stem cells are rapidly being examined as viable alternative therapies in regenerative medicine and translational investigation. Remarkable progress has been made in understanding the biology and purpose of stem cells. The affected pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are further studied for their possible use in reproductive medicine, particularly for infertility induced by premature ovarian insufficiency and azoospermia. Accordingly, this study discusses current developments in the use of some kinds of MSCs such as adipose-derived stem cells, bone marrow stromal cells, umbilical cord MSCs, and menstrual blood MSCs. These methods have been used to manage ovarian and uterine disorders, and each technique presents a novel method for the therapy of infertility.
Collapse
Affiliation(s)
- Kosar Babaei
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
4
|
Sigurdardottir AK, Jonasdottir AS, Asbjarnarson A, Helgudottir HR, Gudjonsson T, Traustadottir GA. Peroxidasin Enhances Basal Phenotype and Inhibits Branching Morphogenesis in Breast Epithelial Progenitor Cell Line D492. J Mammary Gland Biol Neoplasia 2021; 26:321-338. [PMID: 34964086 PMCID: PMC8858314 DOI: 10.1007/s10911-021-09507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
The human breast is composed of terminal duct lobular units (TDLUs) that are surrounded by stroma. In the TDLUs, basement membrane separates the stroma from the epithelial compartment, which is divided into an inner layer of luminal epithelial cells and an outer layer of myoepithelial cells. Stem cells and progenitor cells also reside within the epithelium and drive a continuous cycle of gland remodelling that occurs throughout the reproductive period. D492 is an epithelial cell line originally isolated from the stem cell population of the breast and generates both luminal and myoepithelial cells in culture. When D492 cells are embedded into 3D reconstituted basement membrane matrix (3D-rBM) they form branching colonies mimicking the TDLUs of the breast, thereby providing a well-suited in vitro model for studies on branching morphogenesis and breast development. Peroxidasin (PXDN) is a heme-containing peroxidase that crosslinks collagen IV with the formation of sulfilimine bonds. Previous studies indicate that PXDN plays an integral role in basement membrane stabilisation by crosslinking collagen IV and as such contributes to epithelial integrity. Although PXDN has been linked to fibrosis and cancer in some organs there is limited information on its role in development, including in the breast. In this study, we demonstrate expression of PXDN in breast epithelium and stroma and apply the D492 cell line to investigate the role of PXDN in cell differentiation and branching morphogenesis in the human breast. Overexpression of PXDN induced basal phenotype in D492 cells, loss of plasticity and inhibition of epithelial-to-mesenchymal transition as is displayed by complete inhibition of branching morphogenesis in 3D culture. This is supported by results from RNA-sequencing which show significant enrichment in genes involved in epithelial differentiation along with significant negative enrichment of EMT factors. Taken together, we provide evidence for a novel role of PXDN in breast epithelial differentiation and mammary gland development.
Collapse
Affiliation(s)
- Anna Karen Sigurdardottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Arna Steinunn Jonasdottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Arni Asbjarnarson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Hildur Run Helgudottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Haematology, Landspitali - University Hospital, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
5
|
Co-expression of transcription factor AP-2beta (TFAP2B) and GATA3 in human mammary epithelial cells with intense, apicobasal immunoreactivity for CK8/18. J Mol Histol 2021; 52:1257-1264. [PMID: 34117603 PMCID: PMC8616868 DOI: 10.1007/s10735-021-09980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/18/2021] [Indexed: 11/06/2022]
Abstract
AP-2β is a new mammary epithelial differentiation marker and its expression is preferentially retained and enhanced in lobular carcinoma in situ and invasive lobular breast cancer. In normal breast epithelium AP-2β is expressed in a scattered subpopulation of luminal cells. So far, these cells have not been further characterized. Co-expression of AP-2β protein and luminal epithelium markers (GATA3, CK8/18), hormone receptors [estrogen receptor (ER), androgen receptor (AR)] and candidate stem cells markers (CK5/14, CD44) were assessed by double-immunofluorescence staining in normal mammary gland epithelium. The subpopulation of AP-2β-positive mammary epithelial cells showed an almost complete, superimposable co-expression with GATA3 and a peculiar intense, ring-like appearing immunoreactivity for CK8/18. Confocal immunofluorescence microscopy revealed an apicobasal staining for CK8/18 in AP-2β-positive cells, which was not seen in in AP-2β-negative cells. Furthermore, AP-2β-positive displayed a partial co-expression with ER and AR, but lacked expression of candidate stem cell markers CK5/14 and CD44. In summary, AP-2β is a new luminal mammary epithelial differentiation marker, which is expressed in the GATA3-positive subpopulation of luminal epithelial cells. These AP-2β-positive/GATA3-positive cells also show a peculiar CK8/18-expression which may indicate a previously unknown functionally specialized mammary epithelial cell population.
Collapse
|
6
|
Catanzariti F, Avendano D, Cicero G, Garza-Montemayor M, Sofia C, Venanzi Rullo E, Ascenti G, Pinker-Domenig K, Marino MA. High-risk lesions of the breast: concurrent diagnostic tools and management recommendations. Insights Imaging 2021; 12:63. [PMID: 34037876 PMCID: PMC8155169 DOI: 10.1186/s13244-021-01005-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Breast lesions with uncertain malignant behavior, also known as high-risk or B3 lesions, are composed of a variety of pathologies with differing risks of associated malignancy. While open excision was previously preferred to manage all high-risk lesions, tailored management has been increasingly favored to reduce overtreatment and spare patients from unnecessary anxiety or high healthcare costs associated with surgical excision. The purpose of this work is to provide the reader with an accurate overview focused on the main high-risk lesions of the breast: atypical intraductal epithelial proliferation (atypical ductal hyperplasia), lobular neoplasia (including the subcategories lobular carcinoma in situ and atypical lobular hyperplasia), flat epithelial atypia, radial scar and papillary lesions, and phyllodes tumor. Beyond merely presenting the radiological aspects of these lesions and the recent literature, information about their potential upgrade rates is discussed in order to provide a useful guide for appropriate clinical management while avoiding the risks of unnecessary surgical intervention (overtreatment).
Collapse
Affiliation(s)
- Francesca Catanzariti
- Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Messina, Italy
| | - Daly Avendano
- Department of Breast Imaging, Breast Cancer Center TecSalud, ITESM Monterrey, Nuevo Leon, Mexico
| | - Giuseppe Cicero
- Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Messina, Italy
| | | | - Carmelo Sofia
- Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Messina, Italy
| | - Emmanuele Venanzi Rullo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124, Messina, Italy
| | - Giorgio Ascenti
- Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Messina, Italy
| | - Katja Pinker-Domenig
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, Suite 705, 300 E 66th Street, New York, NY, 10065, USA. .,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
| | - Maria Adele Marino
- Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Deckwirth V, Rajakylä EK, Cattavarayane S, Acheva A, Schaible N, Krishnan R, Valle-Delgado JJ, Österberg M, Björkenheim P, Sukura A, Tojkander S. Cytokeratin 5 determines maturation of the mammary myoepithelium. iScience 2021; 24:102413. [PMID: 34007958 PMCID: PMC8111680 DOI: 10.1016/j.isci.2021.102413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 12/06/2020] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
At invasion, transformed mammary epithelial cells expand into the stroma through a disrupted myoepithelial (ME) cell layer and basement membrane (BM). The intact ME cell layer has thus been suggested to act as a barrier against invasion. Here, we investigate the mechanisms behind the disruption of ME cell layer. We show that the expression of basal/ME proteins CK5, CK14, and α-SMA altered along increasing grade of malignancy, and their loss affected the maintenance of organotypic 3D mammary architecture. Furthermore, our data suggests that loss of CK5 prior to invasive stage causes decreased levels of Zinc finger protein SNAI2 (SLUG), a key regulator of the mammary epithelial cell lineage determination. Consequently, a differentiation bias toward luminal epithelial cell type was detected with loss of mature, α-SMA-expressing ME cells and reduced deposition of basement membrane protein laminin-5. Therefore, our data discloses the central role of CK5 in mammary epithelial differentiation and maintenance of normal ME layer.
Collapse
Affiliation(s)
- Vivi Deckwirth
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Eeva Kaisa Rajakylä
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Sandhanakrishnan Cattavarayane
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Anna Acheva
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Niccole Schaible
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Pia Björkenheim
- Veterinary Teaching Hospital, University of Helsinki, Helsinki 00014, Finland
| | - Antti Sukura
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| |
Collapse
|
8
|
Regan JL, Smalley MJ. Integrating single-cell RNA-sequencing and functional assays to decipher mammary cell states and lineage hierarchies. NPJ Breast Cancer 2020; 6:32. [PMID: 32793804 PMCID: PMC7391676 DOI: 10.1038/s41523-020-00175-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
The identification and molecular characterization of cellular hierarchies in complex tissues is key to understanding both normal cellular homeostasis and tumorigenesis. The mammary epithelium is a heterogeneous tissue consisting of two main cellular compartments, an outer basal layer containing myoepithelial cells and an inner luminal layer consisting of estrogen receptor-negative (ER−) ductal cells and secretory alveolar cells (in the fully functional differentiated tissue) and hormone-responsive estrogen receptor-positive (ER+) cells. Recent publications have used single-cell RNA-sequencing (scRNA-seq) analysis to decipher epithelial cell differentiation hierarchies in human and murine mammary glands, and reported the identification of new cell types and states based on the expression of the luminal progenitor cell marker KIT (c-Kit). These studies allow for comprehensive and unbiased analysis of the different cell types that constitute a heterogeneous tissue. Here we discuss scRNA-seq studies in the context of previous research in which mammary epithelial cell populations were molecularly and functionally characterized, and identified c-Kit+ progenitors and cell states analogous to those reported in the recent scRNA-seq studies.
Collapse
Affiliation(s)
- Joseph L Regan
- Charité Comprehensive Cancer Centre, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Wales, CF24 4HQ UK
| |
Collapse
|
9
|
Kim WG, Cummings MC, Lakhani SR. Pitfalls and controversies in pathology impacting breast cancer management. Expert Rev Anticancer Ther 2020; 20:205-219. [PMID: 32174198 DOI: 10.1080/14737140.2020.1738222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Breast cancer is a heterogeneous disease, at morphological, molecular, and clinical levels and this has significant implications for the diagnosis and management of the disease. The introduction of breast screening, and the use of small tissue sampling for diagnosis, the recognition of new morphological and molecular subtypes, and the increasing use of neoadjuvant therapies have created challenges in pathological diagnosis and classification.Areas covered: Areas of potential difficulty include columnar cell lesions, particularly flat epithelial atypia, atypical ductal hyperplasia, lobular neoplasia and its variants, and a range of papillary lesions. Fibroepithelial, sclerosing, mucinous, and apocrine lesions are also considered. Established and newer prognostic and predictive markers, such as immune infiltrates, PD-1 and PD-L1 and gene expression assays are evaluated. The unique challenges of pathology assessment post-neoadjuvant systemic therapy are also explored.Expert opinion: Controversies in clinical management arise due to incomplete and sometimes conflicting data on clinicopathological associations, prognosis, and outcome. The review will address some of these challenges.
Collapse
Affiliation(s)
- Woo Gyeong Kim
- Department of Pathology, University of Inje College of Medicine, Busan, Korea.,University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Margaret C Cummings
- University of Queensland Centre for Clinical Research, Brisbane, Australia.,Department of Anatomical Pathology, Pathology Queensland, Brisbane, Australia
| | - Sunil R Lakhani
- University of Queensland Centre for Clinical Research, Brisbane, Australia.,Department of Anatomical Pathology, Pathology Queensland, Brisbane, Australia
| |
Collapse
|
10
|
Werner S, Keller L, Pantel K. Epithelial keratins: Biology and implications as diagnostic markers for liquid biopsies. Mol Aspects Med 2019; 72:100817. [PMID: 31563278 DOI: 10.1016/j.mam.2019.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023]
Abstract
Keratins are essential elements of the cytoskeleton of normal and malignant epithelial cells. Because carcinomas commonly maintain their specific keratin expression pattern during malignant transformation, keratins are extensively used as tumor markers in cancer diagnosis including the detection of circulating tumor cells in blood of carcinoma patients. Interestingly, recent biological insights demonstrate that epithelial keratins should not only be considered as mere tumor markers. Emerging evidence suggests an active biological role of keratins in tumor cell dissemination and metastasis. In this review, we illustrate the family of keratin proteins, summarize the latest biological insights into keratin function related to cancer metastasis and discuss the current use of keratins for detection of CTCs and other blood biomarkers used in oncology.
Collapse
Affiliation(s)
- Stefan Werner
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Keller
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
11
|
Fu NY, Nolan E, Lindeman GJ, Visvader JE. Stem Cells and the Differentiation Hierarchy in Mammary Gland Development. Physiol Rev 2019; 100:489-523. [PMID: 31539305 DOI: 10.1152/physrev.00040.2018] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammary gland is a highly dynamic organ that undergoes profound changes within its epithelium during puberty and the reproductive cycle. These changes are fueled by dedicated stem and progenitor cells. Both short- and long-lived lineage-restricted progenitors have been identified in adult tissue as well as a small pool of multipotent mammary stem cells (MaSCs), reflecting intrinsic complexity within the epithelial hierarchy. While unipotent progenitor cells predominantly execute day-to-day homeostasis and postnatal morphogenesis during puberty and pregnancy, multipotent MaSCs have been implicated in coordinating alveologenesis and long-term ductal maintenance. Nonetheless, the multipotency of stem cells in the adult remains controversial. The advent of large-scale single-cell molecular profiling has revealed striking changes in the gene expression landscape through ontogeny and the presence of transient intermediate populations. An increasing number of lineage cell-fate determination factors and potential niche regulators have now been mapped along the hierarchy, with many implicated in breast carcinogenesis. The emerging diversity among stem and progenitor populations of the mammary epithelium is likely to underpin the heterogeneity that characterizes breast cancer.
Collapse
Affiliation(s)
- Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Emma Nolan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Lindeman
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Visvader
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|