1
|
Kimura A, Tsubaki M, Obana T, Matsuo T, Komori R, Nagai N, Yamamoto T, Nishida S. MDM2 inhibitors induce apoptosis by suppressing MDM2 and enhancing p53, Bax, Puma and Noxa expression levels in imatinib‑resistant chronic myeloid leukemia cells. Biomed Rep 2025; 22:65. [PMID: 39991005 PMCID: PMC11843195 DOI: 10.3892/br.2025.1943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
Activation of BCR::ABL1 tyrosine kinase is the main pathogenic mechanism underlying chronic myeloid leukemia (CML) in 90% of affected patients. The prognosis for individuals with CML who receive treatment with BCR::ABL1 tyrosine kinase inhibitors (TKIs) such as imatinib, is promising, with a 5-year survival rate of >90%. However, unfortunately, 20-30% of patients who are treated with imatinib may become resistant to the BCR::ABL1 TKIs. The objective of the present study was to determine whether inhibitors of E3 ubiquitin-protein ligase Mdm2 (MDM2), a regulator of p53 that promotes apoptosis and is highly expressed in CML, could induce cell death in imatinib-resistant CML cells. Apoptosis and cell viability were evaluated using Annexin-V-positive cell count and caspase-3 activity, as well as trypan blue dye exclusion assay. Expression levels of MDM2, p53, Bax, Puma, Noxa, p21, and cleaved caspase-3 were determined via western blotting. MDM2 levels in both the cytoplasm and nucleus were found to be ~3-fold higher in K562/IR cells compared with K562 cells, while the levels of p53 in both cell structures were markedly lower. In addition, an examination of a publicly accessible database revealed that the levels of MDM2 were evidently greater in patients who did not respond to imatinib compared with those who did respond to the drug. NSC-66811 and Nutlin-3, MDM2 inhibitors, increased the percentage of Annexin-positive cells in K562/IR cells by 43 and 62% at concentrations of 10 and 25 µM, respectively. Furthermore, the MDM2 inhibitors increased the levels of Bax, Puma, Noxa, and p21 by increasing the expression of p53 and decreasing the expression of MDM2 in K562/IR cells. Additionally, pifithrin-α, a p53 inhibitor, suppressed MDM2 inhibitor-induced cell death in K562/IR cells. Overall, the findings of the present study highlight the therapeutic potential of MDM2 inhibitors for imatinib-resistant CML.
Collapse
Affiliation(s)
- Akihiro Kimura
- Department of Pharmacy, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Masanobu Tsubaki
- Laboratory of Pharmacotherapy, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Teruki Obana
- Department of Pharmacy, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
- Department of Pharmacy, Kindai University Hospital, Osakasayama, Osaka 589-8511, Japan
| | - Taira Matsuo
- Laboratory of Pharmacotherapy, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Rie Komori
- Laboratory of Pharmacotherapy, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Noriaki Nagai
- Department of Pharmacy, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tetsushi Yamamoto
- Department of Pharmacy, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shozo Nishida
- Department of Pharmacy, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
2
|
Li F, Yu Y, Jiang M, Zhang H. Targets for improving prostate tumor response to radiotherapy. Eur J Pharmacol 2025; 986:177149. [PMID: 39577551 DOI: 10.1016/j.ejphar.2024.177149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Prostate cancer is a prevalent malignancy that is frequently managed with radiotherapy. However, resistance to radiotherapy remains a significant challenge in controlling this disease. Early radiotherapy is employed for locally confined prostate cancer (PCa), while recurrent disease post-surgery and metastatic castration-resistant prostate cancer (mCRPC) are treated with late-stage radiotherapy, including radium-223. Combination therapies to integrate radiotherapy and chemotherapy have demonstrated enhanced treatment efficacy. Nonetheless, both modalities can induce severe local and systemic toxicities. Consequently, selectively sensitizing prostate tumors to radiotherapy could improve therapeutic outcomes while minimizing systemic side effects. The mechanisms underlying radioresistance in prostate cancer are multifaceted, including DNA damage repair (DDR) pathways, hypoxia, angiogenesis, androgen receptor (AR) signaling, and immune evasion. The advent of 177Lu-PSMA-617, which was approved in 2022, has shown promise in targeting prostate-specific membrane antigen (PSMA) in advanced prostate cancer. Experimental and clinical studies have yielded promising results in suppressing prostate tumors by targeting these pathways. This paper reviews potential targets for sensitizing prostate tumors to radiotherapy. We discuss cellular and molecular mechanisms contributing to therapy resistance and examine findings from experimental and clinical trials on promising targets and drugs that can be used in combination with radiotherapy.
Collapse
Affiliation(s)
- Fengguang Li
- Department of Urology, Yantaishan Hospital, Shandong, 264000, China
| | - Yizhi Yu
- Department of Urology, Yantaishan Hospital, Shandong, 264000, China
| | - Maozhu Jiang
- Department of Radiotherapy, Yantaishan Hospital, Shandong, 264000, China
| | - Haiying Zhang
- Department of Urology, Yantaishan Hospital, Shandong, 264000, China.
| |
Collapse
|
3
|
Cancela MB, Winter U, Zugbi S, Dinardi M, Alves da Quinta D, Aschero R, Ganiewich D, Sampor C, Sgroi M, Lagomarsino E, Fandiño A, Llera AS, Chantada G, Carcaboso AM, Schaiquevich P. Mimicking Retinoblastoma Treatment With Repeated Topotecan or Melphalan Develops Cross-Resistance to Classic Agents But Not to Repurposed Drugs. Invest Ophthalmol Vis Sci 2024; 65:14. [PMID: 39636723 PMCID: PMC11622161 DOI: 10.1167/iovs.65.14.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Purpose Refractory or recurrent retinoblastoma results from acquired chemoresistance and the management of these eyes often requires surgical removal. Our objective was to develop retinoblastoma models resistant to chemotherapy by exposing cancer cells to repeated chemotherapy mimicking the clinical scenario. These newly resistant cells were used to evaluate potential novel therapies. Methods Chemoresistant cells were obtained by exposing two primary retinoblastoma cell cultures to three weekly doses of melphalan or topotecan. The sensitivity of these resistant cells to each chemotherapy was evaluated, and cross-resistance to topotecan, melphalan, and carboplatin was assessed. Genomic alterations and differential expression of efflux/influx transporters between chemoresistant and parental cells were analyzed. Subsequently, sensitivity of both resistant and parental cells to the repurposed agents digoxin, methylene blue, and gemcitabine was assessed. Results Four chemoresistant models were successfully established, showing significantly higher half-maximal inhibitory concentration (IC50) values for melphalan and topotecan compared to their corresponding parental cells (P < 0.05). Cross-resistance between melphalan and topotecan was demonstrated, with a 3-fold increase in the IC50. Chemoresistant cells also showed reduced sensitivity to carboplatin (P < 0.05) compared to parental cells, whereas sensitivity to the evaluated repurposed agents remained unchanged. Genomic analysis revealed no selective alterations in the resistant cells, although differential expression of influx/efflux transporters was observed across all chemoresistant models. Conclusions In vitro simulation of patient treatment was useful to establish chemoresistant retinoblastomas and to identify strategies to overcome resistance to topotecan or melphalan through drug repurposed. Our results warrant further investigation to support the clinical translation.
Collapse
Affiliation(s)
- María Belen Cancela
- Unit of Innovative Treatments, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Ursula Winter
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Santiago Zugbi
- Unit of Innovative Treatments, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Milagros Dinardi
- Unit of Innovative Treatments, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Daniela Alves da Quinta
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Rosario Aschero
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Daiana Ganiewich
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Claudia Sampor
- Hematology-Oncology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Mariana Sgroi
- Ophthalmology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Eduardo Lagomarsino
- Pharmacy Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Adriana Fandiño
- Ophthalmology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Andrea S. Llera
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Guillermo Chantada
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Angel M. Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Paula Schaiquevich
- Unit of Innovative Treatments, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Hoshida T, Tsubaki M, Takeda T, Asano R, Choi IH, Takimoto K, Inukai A, Imano M, Tanabe K, Nagai N, Nishida S. Oxaliplatin and 5-fluorouracil promote epithelial-mesenchymal transition via activation of KRAS/ERK/NF-κB pathway in KRAS-mutated colon cancer cells. Mol Cell Biochem 2024:10.1007/s11010-024-05157-z. [PMID: 39586908 DOI: 10.1007/s11010-024-05157-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024]
Abstract
Oxaliplatin (L-OHP) and 5-fluorouracil (5-FU) are used to treat colon cancer; however, resistance contributes to poor prognosis. Epithelial-mesenchymal transition (EMT) has been induced in tumor tissues after administration of anticancer drugs and may be involved in drug resistance. We investigated the mechanism of EMT induction in colon cancer cells treated with 5-FU and L-OHP. We found that L-OHP and 5-FU at clinical steady-state concentrations induced EMT in LoVo and DLD-1 cells (KRAS G13D-mutated), but not in HT-29 and Caco-2 cells (KRAS wild type). L-OHP and 5-FU elevated vimentin, N-cadherin, Twist, Slug, and Snail and decreased E-cadherin expressions. Moreover, 5-FU- and L-OHP -induced EMT cells showed increased cell migration and decreased sensitivity to 5-FU and L-OHP. L-OHP and 5-FU treatment promoted KRAS, ERK1/2, and NF-κB activation. Combined administration with KRAS siRNA, MEK1/2 inhibitor trametinib, and NF-κB inhibitor dimethyl fumarate (DMF), suppressed L-OHP- and 5-FU-induced EMT. These results suggest that KRAS/ERK/NF-κB pathway activation is important for EMT induction by L-OHP and 5-FU treatment. Thus, MEK1/2 and NF-κB inhibitors may facilitate the resistance acquisition to L-OHP and 5-FU therapy in KRAS G13D-mutated colon cancer.
Collapse
Affiliation(s)
- Tadafumi Hoshida
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
- Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Wakayama, Japan
| | - Masanobu Tsubaki
- Laboratory of Pharmacotherapy, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Tomoya Takeda
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Ryota Asano
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Ik-Hyun Choi
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Koudai Takimoto
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Ayano Inukai
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Motohiro Imano
- Department of Surgery, Kindai University School of Medicine, Osakasayama, Osaka, 589-8511, Japan
| | - Kazufumi Tanabe
- Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Wakayama, Japan
| | - Noriaki Nagai
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Shozo Nishida
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
5
|
Entezari M, Tayari A, Paskeh MDA, Kheirabad SK, Naeemi S, Taheriazam A, Dehghani H, Salimimoghadam S, Hashemi M, Mirzaei S, Samarghandian S. Curcumin in treatment of hematological cancers: Promises and challenges. J Tradit Complement Med 2024; 14:121-134. [PMID: 38481552 PMCID: PMC10927384 DOI: 10.1016/j.jtcme.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2024] Open
Abstract
Hematological cancers include leukemia, myeloma and lymphoma and up to 178.000 new cases are diagnosed with these tumors each year. Different kinds of treatment including radiotherapy, chemotherapy, immunotherapy and stem cell transplantation have been employed in the therapy of hematological cancers. However, they are still causing death among patients. On the other hand, curcumin as an anti-cancer agent for the suppression of human cancers has been introduced. The treatment of hematological cancers using curcumin has been followed. Curcumin diminishes viability and survival rate of leukemia, myeloma and lymphoma cells. Curcumin stimulates apoptosis and G2/M arrest to impair progression of tumor. Curcumin decreases levels of matrix metalloproteinases in suppressing cancer metastasis. A number of downstream targets including VEGF, Akt and STAT3 undergo suppression by curcumin in suppressing progression of hematological cancers. Curcumin stimulates DNA damage and reduces resistance of cancer cells to irradiation. Furthermore, curcumin causes drug sensitivity of hematological tumors, especially myeloma. For targeted delivery of curcumin and improving its pharmacokinetic and anti-cancer features, nanostructures containing curcumin and other anti-cancer agents have been developed.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Armita Tayari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Khorsand Kheirabad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Naeemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Dehghani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Medical Laboratory Sciences, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
6
|
Zhao Y, Xing C, Deng Y, Ye C, Peng H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis 2024; 11:234-251. [PMID: 37588219 PMCID: PMC10425810 DOI: 10.1016/j.gendis.2023.02.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/24/2022] [Accepted: 02/12/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic microenvironment is an essential characteristic of most malignant tumors. Notably, hypoxia-inducible factor-1 alpha (HIF-1α) is a key regulatory factor of cellular adaptation to hypoxia, and many critical pathways are correlated with the biological activity of organisms via HIF-1α. In the intra-tumoral hypoxic environment, HIF-1α is highly expressed and contributes to the malignant progression of tumors, which in turn results in a poor prognosis in patients. Recently, it has been indicated that HIF-1α involves in various critical processes of life events and tumor development via regulating the expression of HIF-1α target genes, such as cell proliferation and apoptosis, angiogenesis, glucose metabolism, immune response, therapeutic resistance, etc. Apart from solid tumors, accumulating evidence has revealed that HIF-1α is also closely associated with the development and progression of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma. Targeted inhibition of HIF-1α can facilitate an increased sensitivity of patients with malignancies to relevant therapeutic agents. In the review, we elaborated on the basic structure and biological functions of HIF-1α and summarized their current role in various malignancies. It is expected that they will have future potential for targeted therapy.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yating Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
7
|
Tsubaki M, Takeda T, Matsuda T, Kishimoto K, Tanaka R, Tsurushima K, Ishizaka T, Nishida S. Bim downregulation by activation of NF-κB p65, Akt, and ERK1/2 is associated with adriamycin and dexamethasone resistance in multiple myeloma cells. Clin Exp Med 2023; 23:1597-1607. [PMID: 36451049 DOI: 10.1007/s10238-022-00951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
Multiple myeloma (MM) frequently acquires multidrug resistance (MDR), which is due to poor prognosis. Our previous study indicated that high expression of Survivin and multidrug resistance protein 1 (MDR1) and decreased expression of Bim are associated with MDR in adriamycin- and dexamethasone-resistant cells. However, the fundamental mechanism of MDR in adriamycin- and dexamethasone-resistant MM cells is still unidentified. In this study, we examined the MDR mechanism in adriamycin- and dexamethasone-resistant cells. RPMI8226/ADM, ARH-77/ADM, RPMI8226/DEX, and ARH-77/DEX cells exhibited enhanced nuclear factor κB (NF-κB) p65, Akt, and extracellular signal-regulated kinase 1/2 (ERK1/2) activation. Combination treatment with NF-κB p65, phosphoinositide 3-kinase (PI3K), and mitogen-activated protein kinase 1/2 (MEK1/2) inhibitors resensitized to adriamycin and dexamethasone via increased Bim expression. Although treatment with MDR1 or Survivin siRNA did not overcome adriamycin and dexamethasone resistance in RPMI8226/ADM and RPMI8226/DEX cells, administration of Bim siRNA induced adriamycin and dexamethasone resistance in RPMI8226 cells. Moreover, low expression of Bim was related to poor prognosis in MM patients. These results indicate that activation of NF-κB p65, Akt, and ERK1/2 is associated with adriamycin and dexamethasone resistance via decreasing Bim expression, and these signal inhibitor combinations overcome drug resistance in MM. These findings suggest that combination treatment with these inhibitors and adriamycin or dexamethasone may be a promising therapy for adriamycin- and dexamethasone-resistant MM.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Takuya Matsuda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Kana Kishimoto
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Remi Tanaka
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Katsumasa Tsurushima
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
- Department of Pharmacy, Sakai City Medical Center, Sakai, 593-8304, Japan
| | - Toshihiko Ishizaka
- Department of Pharmacy, Sakai City Medical Center, Sakai, 593-8304, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
8
|
Qian X, Yang Y, Deng Y, Liu Y, Zhou Y, Han F, Xu Y, Yuan H. SETDB1 induces lenalidomide resistance in multiple myeloma cells via epithelial‑mesenchymal transition and PI3K/AKT pathway activation. Exp Ther Med 2023; 25:274. [PMID: 37206551 PMCID: PMC10189757 DOI: 10.3892/etm.2023.11973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) is a histone H3K9 methyltransferase that stimulates cell proliferation by methylating AKT, which contributes to drug resistance in multiple myeloma (MM). Lenalidomide is an immunomodulatory agent widely used in the treatment of MM. However, lenalidomide resistance occurs in patients with MM. Currently, the role of SETDB1 in lenalidomide resistance in MM remains unclear. Thus, the present study aimed to explore the functional association between SETDB1 and lenalidomide resistance in MM. The analysis of GEO datasets revealed that SETDB1 was upregulated in lenalidomide-resistant MM cells and that its expression was associated with poor prognosis of patients with MM. Apoptosis analysis revealed that overexpression of SETDB1 in MM cells significantly decreased apoptosis, while knockdown of SETDB1 increased apoptosis. Furthermore, the IC50 value of lenalidomide in MM cells increased following SETDB1 overexpression and decreased following SETDB1 silencing. Additionally, SETDB1 mediated epithelial-mesenchymal transition (EMT) and activated the PI3K/AKT pathway. Mechanistic analysis revealed that inhibition of PI3K/AKT signaling in MM cells increased apoptosis, sensitized the cells to lenalidomide and inhibited EMT, whereas SETDB1 overexpression inhibited the effects of PI3K/AKT cascade inhibition. In conclusion, the findings of the present study indicated that SETDB1 promoted lenalidomide resistance in MM cells by promoting EMT and the PI3K/AKT signaling pathway. Thus, SETDB1 may be a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Xiaoli Qian
- Department of Hematology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| | - Yang Yang
- Department of Gastroenterology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| | - Yingfen Deng
- Department of Hematology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| | - Yali Liu
- Department of Hematology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| | - Yuwen Zhou
- Department of Hematology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| | - Fang Han
- Department of Gastroenterology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| | - Yue Xu
- Department of Hematology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| | - Hongjian Yuan
- Department of Hematology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
- Correspondence to: Professor Hongjian Yuan, Department of Hematology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, 27 Jiankang Road, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| |
Collapse
|
9
|
Wang P, Zhang Y, Lin Q, Zhou J, Lv X, Song Y. Hsa_circ_0111738 Inhibits Tumor Progression and Angiogenesis in Multiple Myeloma by Sponging miR-1233-3p to Regulate HIF-1 Signaling Pathway. Arch Med Res 2023:S0188-4409(23)00063-2. [PMID: 37211508 DOI: 10.1016/j.arcmed.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Multiple myeloma (MM) presently remains largely incurable. The importance of circular RNAs (circRNAs) in various malignancies, including MM, has been demonstrated for decades. Our goal is to decipher the complex molecular mechanism of circ_0111738 in modulating MM progression. METHODS Circ_0111738 and miR-1233-3p expressions in the collected MM cells and bone marrow aspirates were examined by qRT-PCR. CCK-8, transwell migration and invasion, and tube formation assays were performed to evaluate MM cell proliferation, migration and invasion, and angiogenesis, respectively. A tumor xenograft experiment was performed to validate the biofunction of circ_0111738's in vivo. The predicted interaction of circ_0111738 and miR-1233-3p's was determined by RNA immunoprecipitation (RIP) and luciferase reporter assays. Apoptosis-associated proteins and the HIF-1 pathway were investigated by western blotting. RESULTS Circ_0111738 was poorly expressed in MM cells and patients. Overexpression of circ_0111738 reduced MM cell proliferation, migration, invasion, and angiogenesis while circ_0111738 led to opposite results. The anti-tumorigenic effect of circ_0111738 overexpression was also observed in vivo. RIP and luciferase experiments demonstrated that circ_0111738 interacted with miR-1233-3p in MM cells. The silencing of miR-1233-3p prevented the stimulation of malignant behaviors of MM cells induced by circ_0111738 silencing, including the expression of HIF-1α. CONCLUSION Our data suggest that circ_0111738 functioned as a competing endogenous RNA (ceRNA) and suppressed the oncogenic function of miR-1233-3p in MM by inactivating the HIF-1 pathway. Therefore, up-regulation of circ_0111738 may be a promising therapy against MM.
Collapse
Affiliation(s)
- Ping Wang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yanli Zhang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Quande Lin
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jian Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xiaodong Lv
- Central Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Cheng F, Wang Z, You G, Liu Y, He J, Yang J. Osteocyte-derived exosomes confer multiple myeloma resistance to chemotherapy through acquisition of cancer stem cell-like features. Leukemia 2023:10.1038/s41375-023-01896-y. [PMID: 37045984 DOI: 10.1038/s41375-023-01896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Feifei Cheng
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Zhiming Wang
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Gichun You
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Yuhong Liu
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Jin He
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Jing Yang
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
11
|
Tsubaki M, Takeda T, Matsuda T, Kimura A, Tanaka R, Nagayoshi S, Hoshida T, Tanabe K, Nishida S. Hypoxia-inducible factor 1α inhibitor induces cell death via suppression of BCR-ABL1 and Met expression in BCR-ABL1 tyrosine kinase inhibitor sensitive and resistant chronic myeloid leukemia cells. BMB Rep 2023; 56:78-83. [PMID: 36195570 PMCID: PMC9978365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Indexed: 02/24/2023] Open
Abstract
Chronic myeloid leukemia (CML) has a markedly improved prognosis with the use of breakpoint cluster region-abelson 1 (BCR-ABL1) tyrosine kinase inhibitors (BCR-ABL1 TKIs). However, approximately 40% of patients are resistant or intolerant to BCR-ABL1 TKIs. Hypoxia-inducible factor 1α (HIF-1α) is a hypoxia response factor that has been reported to be highly expressed in CML patients, making it a therapeutic target for BCR-ABL1 TKI-sensitive CML and BCR-ABL1 TKI-resistant CML. In this study, we examined whether HIF-1α inhibitors induce cell death in CML cells and BCR-ABL1 TKI-resistant CML cells. We found that echinomycin and PX-478 induced cell death in BCR-ABL1 TKIs sensitive and resistant CML cells at similar concentrations while the cell sensitivity was not affected with imatinib or dasatinib in BCR-ABL1 TKIs resistant CML cells. In addition, echinomycin and PX-478 inhibited the c-Jun N-terminal kinase (JNK), Akt, and extracellular-regulated protein kinase 1/2 (ERK1/2) activation via suppression of BCR-ABL1 and Met expression in BCR-ABL1 sensitive and resistant CML cells. Moreover, treatment with HIF-1α siRNA induced cell death by inhibiting BCR-ABL1 and Met expression and activation of JNK, Akt, and ERK1/2 in BCR-ABL1 TKIs sensitive and resistant CML cells. These results indicated that HIF-1α regulates BCR-ABL and Met expression and is involved in cell survival in CML cells, suggesting that HIF-1α inhibitors induce cell death in BCR-ABL1 TKIs sensitive and resistant CML cells and therefore HIF-1α inhibitors are potential candidates for CML treatment. [BMB Reports 2023; 56(2): 78-83].
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan
| | - Takuya Matsuda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan
| | - Akihiro Kimura
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan
| | - Remi Tanaka
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan
| | - Sakiko Nagayoshi
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan
| | - Tadafumi Hoshida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan,Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama 640-8558, Japan
| | - Kazufumi Tanabe
- Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama 640-8558, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan,Corresponding author. Tel: +81-6-6721-2332; Fax: +81-6-6730-1394; E-mail:
| |
Collapse
|
12
|
Tsubaki M, Takeda T, Koumoto Y, Usami T, Matsuda T, Seki S, Sakai K, Nishio K, Nishida S. Activation of ERK1/2 by MOS and TPL2 leads to dasatinib resistance in chronic myeloid leukaemia cells. Cell Prolif 2023:e13420. [PMID: 36847709 DOI: 10.1111/cpr.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
The development of BCR::ABL1 tyrosine kinase inhibitors (TKIs), such as dasatinib, has dramatically improved survival in cases of chronic myeloid leukaemia (CML). However, the development of resistance to BCR::ABL1 TKIs is a clinical problem. BCR::ABL1 TKI resistance is known to have BCR::ABL1-dependent or BCR::ABL1-independent mechanisms, but the mechanism of BCR::ABL1 independence is not well understood. In the present study, we investigated the mechanism of BCR::ABL1-independent dasatinib resistance. The expression and activation level of genes or proteins were evaluated using array CGH, real time PCR, or western blot analysis. Gene expression was modulated using siRNA-mediated knockdown. Cell survival was assessed by using trypan blue dye method. We found that dasatinib-resistant K562/DR and KU812/DR cells did not harbour a BCR::ABL1 mutation but had elevated expression and/or activation of MOS, TPL2 and ERK1/2. In addition, MOS siRNA, TPL2 siRNA and trametinib resensitized dasatinib-resistant cells to dasatinib. Moreover, expression levels of MOS in dasatinib non-responder patients with CML were higher than those in dasatinib responders, and the expression of TPL2 tended to increase in dasatinib non-responder patients compared with that in responder patients. Our results indicate that activation of ERK1/2 by elevated MOS and TPL2 expression is involved in dasatinib resistance, and inhibition of these proteins overcomes dasatinib resistance. Therefore, MOS, TPL2 and ERK1/2 inhibitors may be therapeutically useful for treating BCR::ABL1-independent dasatinib-resistant CML.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| | - Yuuichi Koumoto
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| | - Takehiro Usami
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| | - Takuya Matsuda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| | - Shiori Seki
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka, Japan
| |
Collapse
|
13
|
Tsubaki M, Takeda T, Matsuda T, Kimura A, Tanaka R, Nagayoshi S, Hoshida T, Tanabe K, Nishida S. Hypoxia-inducible factor 1α inhibitor induces cell death via suppression of BCR-ABL1 and Met expression in BCR-ABL1 tyrosine kinase inhibitor sensitive and resistant chronic myeloid leukemia cells. BMB Rep 2023; 56:78-83. [PMID: 36195570 PMCID: PMC9978365 DOI: 10.5483/bmbrep.2022-0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/21/2022] [Accepted: 09/16/2022] [Indexed: 08/18/2023] Open
Abstract
Chronic myeloid leukemia (CML) has a markedly improved prognosis with the use of breakpoint cluster region-abelson 1 (BCR-ABL1) tyrosine kinase inhibitors (BCR-ABL1 TKIs). However, approximately 40% of patients are resistant or intolerant to BCR-ABL1 TKIs. Hypoxia-inducible factor 1α (HIF-1α) is a hypoxia response factor that has been reported to be highly expressed in CML patients, making it a therapeutic target for BCR-ABL1 TKI-sensitive CML and BCR-ABL1 TKI-resistant CML. In this study, we examined whether HIF-1α inhibitors induce cell death in CML cells and BCR-ABL1 TKI-resistant CML cells. We found that echinomycin and PX-478 induced cell death in BCR-ABL1 TKIs sensitive and resistant CML cells at similar concentrations while the cell sensitivity was not affected with imatinib or dasatinib in BCR-ABL1 TKIs resistant CML cells. In addition, echinomycin and PX-478 inhibited the c-Jun N-terminal kinase (JNK), Akt, and extracellular-regulated protein kinase 1/2 (ERK1/2) activation via suppression of BCR-ABL1 and Met expression in BCR-ABL1 sensitive and resistant CML cells. Moreover, treatment with HIF-1α siRNA induced cell death by inhibiting BCR-ABL1 and Met expression and activation of JNK, Akt, and ERK1/2 in BCR-ABL1 TKIs sensitive and resistant CML cells. These results indicated that HIF-1α regulates BCR-ABL and Met expression and is involved in cell survival in CML cells, suggesting that HIF-1α inhibitors induce cell death in BCR-ABL1 TKIs sensitive and resistant CML cells and therefore HIF-1α inhibitors are potential candidates for CML treatment. [BMB Reports 2023; 56(2): 78-83].
Collapse
MESH Headings
- Humans
- Tyrosine Protein Kinase Inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Echinomycin/therapeutic use
- Proto-Oncogene Proteins c-akt
- Drug Resistance, Neoplasm
- Apoptosis
- Protein Kinase Inhibitors/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Cell Death
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan
| | - Takuya Matsuda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan
| | - Akihiro Kimura
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan
| | - Remi Tanaka
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan
| | - Sakiko Nagayoshi
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan
| | - Tadafumi Hoshida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan
- Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama 640-8558, Japan
| | - Kazufumi Tanabe
- Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama 640-8558, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae 577-8502, Higashi-Osaka, Wakayama 640-8558, Japan
| |
Collapse
|
14
|
Role of NF-κB Signaling in the Interplay between Multiple Myeloma and Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24031823. [PMID: 36768145 PMCID: PMC9916119 DOI: 10.3390/ijms24031823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Nuclear factor-κB (NF-κB) transcription factors play a key role in the pathogenesis of multiple myeloma (MM). The survival, proliferation and chemoresistance of malignant plasma cells largely rely on the activation of canonical and noncanonical NF-κB pathways. They are triggered by cancer-associated mutations or by the autocrine and paracrine production of cytokines and growth factors as well as direct interaction with cellular and noncellular components of bone marrow microenvironment (BM). In this context, NF-κB also significantly affects the activity of noncancerous cells, including mesenchymal stromal cells (MSCs), which have a critical role in disease progression. Indeed, NF-κB transcription factors are involved in inflammatory signaling that alters the functional properties of these cells to support cancer evolution. Moreover, they act as regulators and/or effectors of pathways involved in the interplay between MSCs and MM cells. The aim of this review is to analyze the role of NF-κB in this hematologic cancer, focusing on NF-κB-dependent mechanisms in tumor cells, MSCs and myeloma-mesenchymal stromal cell crosstalk.
Collapse
|
15
|
Harris B, Saleem S, Cook N, Searle E. Targeting hypoxia in solid and haematological malignancies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:318. [PMID: 36320041 PMCID: PMC9628170 DOI: 10.1186/s13046-022-02522-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia‐inducible glycolytic enzyme hexokinase‐2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date.
Collapse
Affiliation(s)
- Bill Harris
- grid.412917.80000 0004 0430 9259Experimental Cancer Medicine Team, Christie NHS Foundation Trust, Manchester, UK
| | - Sana Saleem
- grid.412917.80000 0004 0430 9259Haematology Department, Christie NHS Foundation Trust, Manchester, UK
| | - Natalie Cook
- grid.412917.80000 0004 0430 9259Experimental Cancer Medicine Team, Christie NHS Foundation Trust, Manchester, UK ,grid.5379.80000000121662407Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Emma Searle
- grid.412917.80000 0004 0430 9259Haematology Department, Christie NHS Foundation Trust, Manchester, UK ,grid.5379.80000000121662407Division of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Dimethyl Fumarate Induces Apoptosis via Inhibition of NF-κB and Enhances the Effect of Paclitaxel and Adriamycin in Human TNBC Cells. Int J Mol Sci 2022; 23:ijms23158681. [PMID: 35955813 PMCID: PMC9369077 DOI: 10.3390/ijms23158681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has the poorest prognosis of all breast cancer subtypes. Recently, the activation of NF-κB, which is involved in the growth and survival of malignant tumors, has been demonstrated in TNBC, suggesting that NF-κB may serve as a new therapeutic target. In the present study, we examined whether dimethyl fumarate (DMF), an NF-κB inhibitor, induces apoptosis in TNBC cells and enhances the apoptosis-inducing effect of paclitaxel and adriamycin. Cell survival was analyzed by the trypan blue assay and apoptosis assay. Protein detection was examined by immunoblotting. The activation of NF-κB p65 was correlated with poor prognosis in patients with TNBC. DMF induced apoptosis in MDA-MB-231 and BT-549 cells at concentrations that were non-cytotoxic to the normal mammary cell line MCF-10A. Furthermore, DMF inhibited NF-κB nuclear translocation and Survivin, XIAP, Bcl-xL, and Bcl-2 expression in MDA-MB-231 and BT-549 cells. Moreover, DMF enhanced the apoptosis-inducing effect of paclitaxel and adriamycin in MDA-MB-231 cells. These findings suggest that DMF may be an effective therapeutic agent for the treatment of TNBC, in which NF-κB is constitutively active. DMF may also be useful as an adjuvant therapy to conventional anticancer drugs.
Collapse
|
17
|
Matou-Nasri S, Najdi M, AlSaud NA, Alhaidan Y, Al-Eidi H, Alatar G, AlWadaani D, Trivilegio T, AlSubait A, AlTuwaijri A, Abudawood M, Almuzzaini B. Blockade of p38 MAPK overcomes AML stem cell line KG1a resistance to 5-Fluorouridine and the impact on miRNA profiling. PLoS One 2022; 17:e0267855. [PMID: 35511922 PMCID: PMC9071118 DOI: 10.1371/journal.pone.0267855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/16/2022] [Indexed: 11/19/2022] Open
Abstract
Most of the AML patients in remission develop multidrug resistance after the first-line therapy and relapse. AML stem cells have gained attention for their chemoresistance potentials. Chemoresistance is a multifactorial process resulting from altered survival signaling pathways and apoptosis regulators such as MAPK, NF-κB activation and ROS production. We targeted the survival pathway p38 MAPK, NF-κB and ROS generation in human chemoresistant AML stem cell line KG1a, susceptible to enhance cell sensitivity to the chemotherapy drug 5-Fluorouridine, compared to the chemosensitive AML cell line HL60. After confirming the phenotypic characterization of KG1a and HL60 cells using flow cytometry and transcriptomic array analyses, cell treatment with the NF-κB inhibitor IKKVII resulted in a complete induction of apoptosis, and a few p38 MAPK inhibitor SB202190-treated cells underwent apoptosis. No change in the apoptosis status was observed in the ROS scavenger N-acetylcysteine-treated cells. The p38 MAPK pathway blockade enhanced the KG1a cell sensitivity to 5-Fluorouridine, which was associated with the upregulation of microribonucleic acid-(miR-)328-3p, as determined by the microarray-based miRNA transcriptomic analysis. The downregulation of the miR-210-5p in SB202190-treated KG1a cells exposed to FUrd was monitored using RT-qPCR. The miR-328-3p is known for the enhancement of cancer cell chemosensitivity and apoptosis induction, and the downregulation of miR-210-5p is found in AML patients in complete remission. In conclusion, we highlighted the key role of the p38 MAPK survival pathway in the chemoresistance capacity of the AML stem cells and potentially involved miRNAs, which may pave the way for the development of a new therapeutic strategy targeting survival signaling proteins and reduce the rate of AML relapse.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- * E-mail: (SMN); (BA)
| | - Maria Najdi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- Postgraduate program, King Saud University, Riyadh, Saudi Arabia
| | - Nouran Abu AlSaud
- Department of Cellular Therapy and Cancer Research, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Yazeid Alhaidan
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Ghada Alatar
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Deemah AlWadaani
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Thadeo Trivilegio
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Arwa AlSubait
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Abeer AlTuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratory Sciences, Chair of Medical and Molecular Genetics Research, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- * E-mail: (SMN); (BA)
| |
Collapse
|
18
|
Shoeib AM, Yarbrough AL, Ford BM, Franks LN, Urbaniak A, Hensley LL, Benson LN, Mu S, Radominska-Pandya A, Prather PL. Characterization of cannabinoid receptors expressed in Ewing sarcoma TC-71 and A-673 cells as potential targets for anti-cancer drug development. Life Sci 2021; 285:119993. [PMID: 34592231 PMCID: PMC10395316 DOI: 10.1016/j.lfs.2021.119993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
AIMS Characterizing cannabinoid receptors (CBRs) expressed in Ewing sarcoma (EWS) cell lines as potential targets for anti-cancer drug development. MAIN METHODS CBR affinity and function were examined by competitive binding and G-protein activation, respectively. Cannabinoid-mediated cytotoxicity and cell viability were evaluated by LDH, and trypan blue assays, respectively. KEY FINDINGS qRT-PCR detected CB1 (CB1R) and CB2 receptor (CB2R) mRNA in TC-71 cells. However, binding screens revealed that CBRs expressed exhibit atypical properties relative to canonical receptors, because specific binding in TC-71 could only be demonstrated by the established non-selective CB1/CB2R radioligand [3H]WIN-55,212-2, but not CB1/CB2R radioligand [3H]CP-55,940. Homologous receptor binding demonstrated that [3H]WIN-55,212-2 binds to a single site with nanomolar affinity, expressed at high density. Further support for non-canonical CBRs expression is provided by subsequent binding screens, revealing that only 9 out of 28 well-characterized cannabinoids with high affinity for canonical CB1 and/or CB2Rs were able to displace [3H]WIN-55,212-2, whereas two ligands enhanced [3H]WIN-55,212-2 binding. Five cannabinoids producing the greatest [3H]WIN-55,212-2 displacement exhibited high nanomolar affinity (Ki) for expressed receptors. G-protein modulation and adenylyl cyclase assays further indicate that these CBRs exhibit distinct signaling/functional profiles compared to canonical CBRs. Importantly, cannabinoids with the highest affinity for non-canonical CBRs reduced TC-71 viability and induced cytotoxicity in a time-dependent manner. Studies in a second EWS cell line (A-673) showed similar atypical binding properties of expressed CBRs, and cannabinoid treatment produced cytotoxicity. SIGNIFICANCE Cannabinoids induce cytotoxicity in EWS cell lines via non-canonical CBRs, which might be a potential therapeutic target to treat EWS.
Collapse
Affiliation(s)
- Amal M Shoeib
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Azure L Yarbrough
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Benjamin M Ford
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lirit N Franks
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lori L Hensley
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States of America
| | - Lance N Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Paul L Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America.
| |
Collapse
|
19
|
Li R, Chen G, Dang Y, He R, Liu A, Ma J, Ling Z. Expression and Clinical Significance of BCL2 Interacting Protein 3 Like in Multiple Myeloma. Technol Cancer Res Treat 2021; 20:15330338211024551. [PMID: 34189969 PMCID: PMC8258758 DOI: 10.1177/15330338211024551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Multiple myeloma (MM) is one of the main blood disorders threatening human health today. This study aimed to examine the expression of BCL-2/adenovirus E1B 19 kDa-interacting protein 3-like (BNIP3L) in patients with MM and explore its mechanisms in silico. Bone marrow samples (n = 36 from patients with MM and n = 12 from healthy donors) were used to conduct BNIP3L expression analysis using immunohistochemistry. Microarray or RNA sequencing data from the Sequence Read Archive, Gene Expression Omnibus, and ArrayExpress databases were used to appraise BNIP3L expression and its prognostic role in patients with MM. The co-expressed genes of BNIP3L were identified for enrichment and protein-protein interaction (PPI) analyses to determine the associated signaling pathways. Immunohistochemistry indicated that BNIP3L expression in bone marrow of patients with MM was significantly lower than that in bone marrow of healthy donors. BNIP3L mRNA expression was also significantly lower in patients with MM than in healthy donors. The overall standard mean difference (SMD) for downregulation of BNIP3L was −0.62 [−1.17, −0.06], and the area under the curve was 0.81 [0.78, 0.85] based on a total of 694 MM cases. The overall survival analysis demonstrated that BNIP3L levels could act as an independent protective indicator of MM patient survival (HR = 0.79). Moreover, 261 co-expressed genes of BNIP3L were confirmed and found to be mainly involved in the adipocytokine signaling pathway. We preliminarily proved that downregulation of BNIP3L may play an important role in the occurrence and development of MM, and the promoting cancer capacity may be related to the pathway of adipocytokine signaling pathway.
Collapse
Affiliation(s)
- Ruolin Li
- Department of Scientific Research, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rongquan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Angui Liu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhian Ling
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
20
|
Xiong S, Chng WJ, Zhou J. Crosstalk between endoplasmic reticulum stress and oxidative stress: a dynamic duo in multiple myeloma. Cell Mol Life Sci 2021; 78:3883-3906. [PMID: 33599798 PMCID: PMC8106603 DOI: 10.1007/s00018-021-03756-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Under physiological and pathological conditions, cells activate the unfolded protein response (UPR) to deal with the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. Multiple myeloma (MM) is a hematological malignancy arising from immunoglobulin-secreting plasma cells. MM cells are subject to continual ER stress and highly dependent on the UPR signaling activation due to overproduction of paraproteins. Mounting evidence suggests the close linkage between ER stress and oxidative stress, demonstrated by overlapping signaling pathways and inter-organelle communication pivotal to cell fate decision. Imbalance of intracellular homeostasis can lead to deranged control of cellular functions and engage apoptosis due to mutual activation between ER stress and reactive oxygen species generation through a self-perpetuating cycle. Here, we present accumulating evidence showing the interactive roles of redox homeostasis and proteostasis in MM pathogenesis and drug resistance, which would be helpful in elucidating the still underdefined molecular pathways linking ER stress and oxidative stress in MM. Lastly, we highlight future research directions in the development of anti-myeloma therapy, focusing particularly on targeting redox signaling and ER stress responses.
Collapse
Affiliation(s)
- Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
| | - Wee-Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore.
| | - Jianbiao Zhou
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
21
|
Yan LH, Zhang D, Mo SS, Yuan H, Mo XW, Zhao JM. Anlotinib suppresses metastasis and multidrug resistance via dual blockade of MET/ABCB1 in colorectal carcinoma cells. J Cancer 2021; 12:2092-2104. [PMID: 33754008 PMCID: PMC7974540 DOI: 10.7150/jca.45618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Anlotinib, a highly selective multi-targeted tyrosine kinase inhibitor (TKI) has therapeutic effects on non-small-cell lung cancer (NSCLC). In this study, the anti-tumor activity and molecular mechanism of anlotinib in metastatic colorectal cancer (mCRC) was explored. The anti-angiogenesis, anti-metastasis, anti-proliferative, and anti-multidrug resistance efficacy of anlotinib were analyzed by using in vitro and in vivo models of human CRC cells. The results indicated that anlotinib boosted chemo-sensitivity of CRC cells, and restrained its proliferation. Besides the suppression of the MET signaling pathway, anlotinib also inhibited invasion and migration of CRC cells. Furthermore, anlotinib prevented VEGF-induced angiogenesis, N-cadherin (CDH2)-induced cell migration, and reversed ATP-binding cassette subfamily B member 1 (ABCB1) -mediated CRC multidrug resistance in CRC. The CRC liver metastasis and subcutaneously implanted xenograft model testified that anlotinib could inhibit proliferation and liver metastasis in CRC cells. Such an observation suggested that a combination of anlotinib with anti-cancer drugs could attenuate angiogenesis, metastasis, proliferative, and multidrug resistance, which constitutes a novel treatment strategy for CRC patients with metastasis.
Collapse
Affiliation(s)
- Lin-Hai Yan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China.,Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Di Zhang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Si Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hao Yuan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xian-Wei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jin-Min Zhao
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
22
|
Activation of Serum/Glucocorticoid Regulated Kinase 1/Nuclear Factor-κB Pathway Are Correlated with Low Sensitivity to Bortezomib and Ixazomib in Resistant Multiple Myeloma Cells. Biomedicines 2021; 9:biomedicines9010033. [PMID: 33406639 PMCID: PMC7823718 DOI: 10.3390/biomedicines9010033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is an incurable malignancy often associated with primary and acquired resistance to therapeutic agents, such as proteasome inhibitors. However, the mechanisms underlying the proteasome inhibitor resistance are poorly understood. Here, we elucidate the mechanism of primary resistance to bortezomib and ixazomib in the MM cell lines, KMS-20, KMS-26, and KMS-28BM. We find that low bortezomib and ixazomib concentrations induce cell death in KMS-26 and KMS-28BM cells. However, high bortezomib and ixazomib concentrations induce cell death only in KMS-20 cells. During Gene Expression Omnibus analysis, KMS-20 cells exhibit high levels of expression of various genes, including anti-phospho-fibroblast growth factor receptor 1 (FGFR1), chemokine receptor type (CCR2), and serum and glucocorticoid regulated kinase (SGK)1. The SGK1 inhibitor enhances the cytotoxic effects of bortezomib and ixazomib; however, FGFR1 and CCR2 inhibitors do not show such effect in KMS-20 cells. Moreover, SGK1 activation induces the phosphorylation of NF-κB p65, and an NF-κB inhibitor enhances the sensitivity of KMS-20 cells to bortezomib and ixazomib. Additionally, high levels of expression of SGK1 and NF-κB p65 is associated with a low sensitivity to bortezomib and a poor prognosis in MM patients. These results indicate that the activation of the SGK1/NF-κB pathway correlates with a low sensitivity to bortezomib and ixazomib, and a combination of bortezomib and ixazomib with an SGK1 or NF-κB inhibitor may be involved in the treatment of MM via activation of the SGK1/NF-κB pathway.
Collapse
|
23
|
Passos Gibson V, Derbali RM, Phan HT, Tahiri H, Allen C, Hardy P, Chain JL. Survivin silencing improved the cytotoxicity of carboplatin and melphalan in Y79 and primary retinoblastoma cells. Int J Pharm 2020; 589:119824. [PMID: 32861768 DOI: 10.1016/j.ijpharm.2020.119824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
Survivin stands out as one of the most specific cancer targets discovered to date. Although single inhibition, e.g. through small interfering RNA (siRNA), has shown modest results in clinical trials, its combination with drugs holds promise to sensitize cancer cells to chemotherapeutics. In this study, we propose a sequential treatment of siRNA survivin followed by chemotherapy. Firstly, we demonstrated that siRNA-loaded switchable lipid nanoparticles (siLNP) silence survivin in a panel of cancer cell lines. Subsequently, we selected retinoblastoma (RB) as our model to screen four chemotherapeutic agents: carboplatin, topotecan, melphalan or teniposide. The effect of drugs on survivin expression and caspase-3 was investigated by RT-qPCR. The best drug combination was selected measuring the viability, survivin expression and the selectivity of the treatment. Our stepwise method revealed that siRNA delivery by switchable LNP sensitized Y79, but not the healthy APRE-19 cell line, to carboplatin and melphalan cytotoxicity. This ability was validated on primary human RB cells. Finally, the distinct behavior of the drugs demonstrated that a diligent screening of drugs should be envisioned when looking for synergy with survivin. Our sequential approach highlighted carboplatin and melphalan as agents to be investigated in future survivin-associated in vivo testing to tackle RB.
Collapse
Affiliation(s)
- Victor Passos Gibson
- Gene Delivery Laboratory, Faculty of Pharmacy, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| | - Rabeb Mouna Derbali
- Gene Delivery Laboratory, Faculty of Pharmacy, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| | - Huu Trong Phan
- Gene Delivery Laboratory, Faculty of Pharmacy, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| | - Houda Tahiri
- Department of Pediatrics, Physiology and Pharmacology, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Pierre Hardy
- Department of Pediatrics, Physiology and Pharmacology, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| | - Jeanne Leblond Chain
- Gene Delivery Laboratory, Faculty of Pharmacy, Université de Montréal, H3C 3J7 Montréal, Québec, Canada; Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, F-33016 Bordeaux, France.
| |
Collapse
|
24
|
Gholamian Dehkordi N, Mirzaei SA, Elahian F. Pharmacodynamic mechanisms of anti-inflammatory drugs on the chemosensitization of multidrug-resistant cancers and the pharmacogenetics effectiveness. Inflammopharmacology 2020; 29:49-74. [PMID: 33070257 DOI: 10.1007/s10787-020-00765-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/27/2020] [Indexed: 01/07/2023]
Abstract
Drug resistance as a remarkable issue in cancer treatment is associated with inflammation which occurs through complex chemical reactions in the tumor microenvironment. Recent studies have implicated that glucocorticoids and NSAIDs are mainly useful combinations for inflammatory response modulation in chemotherapeutic protocols for cancer treatment. Immunosuppressive actions of glucocorticoids and NSAIDs are mainly mediated by the transrepression or activation regulation of inflammatory genes with different DNA-bound transcription factors including AP-1, NFAT, NF-κB, STAT and also, varying functions of COX enzymes in cancer cells. Interestingly, many investigations have proved the benefits of these anti-inflammatory agents in the quenching of multidrug resistance pathways. Numerous analyses on the ABC transporter promoters showed conserved nucleotide sequences with several DNA response elements that participate in transcriptional regulation. Furthermore, genetic variations in nucleotide sequences of membrane transporters were strongly associated with changes in these transporters' expression or function and a substantial impact on systemic drug exposure and toxicity. It appeared that several polymorphisms in MDR transporter genes especially MDR1 have influenced the regulatory mechanisms and explained differences in glucocorticoid responses.
Collapse
Affiliation(s)
- Neda Gholamian Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
25
|
Afshari AR, Mollazadeh H, Sahebkar A. Minocycline in Treating Glioblastoma Multiforme: Far beyond a Conventional Antibiotic. JOURNAL OF ONCOLOGY 2020; 2020:8659802. [PMID: 33014057 PMCID: PMC7519463 DOI: 10.1155/2020/8659802] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
One of the most lethal forms of CNS pathologies is glioblastoma multiforme (GBM) that represents high invasiveness, uncontrolled proliferation, and angiogenic features. Its invasiveness is responsible for the high recurrence even after maximal surgical interventions. Minocycline is a semisynthetic analog of tetracyclines with potential anti-inflammatory and anticancer effects, distinct from its antimicrobial activity. In this review, we highlight the importance and the cytotoxic mechanisms of minocycline on GBM pathophysiology. Considering the role of certain enzymes in autophagy, apoptosis, tumor cell invasion, and metastatic ability, the possible use of tetracyclines for cancer therapy should be investigated, especially GBM. The present study is, therefore, going to cover the main topics in minocycline pharmacology to date, encouraging its consideration as a new treatment approach for cancer and GBM.
Collapse
Affiliation(s)
- Amir R. Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Wang Y, Xian H, Qi J, Wei F, Cheng X, Li S, Wang Q, Liu Z, Yu Y, Zhou J, Sun X, Liu H, Wei Y. Inhibition of glycolysis ameliorate arthritis in adjuvant arthritis rats by inhibiting synoviocyte activation through AMPK/NF-кB pathway. Inflamm Res 2020; 69:569-578. [PMID: 32303781 DOI: 10.1007/s00011-020-01332-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate glycolysis inhibitor which can effectively ameliorate arthritis by inhibiting synoviocyte activation through AMPK/NF-кB pathway in AA rats. METHODS Adjuvant arthritis (AA) rats were treated with 2-deoxyglucose (2-DG), glycolysis inhibitor. HE staining and radiological Examination were used for histopathology analysis and evaluation of joint destruction. HKII expression was quantified by immunostaining. Proliferation and migration of synoviocytes were assessed by synovicyte scores of joint, CCK8 and transwell assay. Inflammatory factors and levels of AMPK, p65 and IκBα were quantified by ELISA analysis and WB. RESULTS We observed that HKII expression was positively correlated with synovial hyperplasia, inflammatory cell infiltration, and cartilage destruction, and glycolysis inhibitor reduces the joint swelling degree, alleviates bone destruction, inhibits the proliferation and migration of synoviocyte, and reduces secretory function of synoviocytes in AA rats. In addition, we investigated that glycolysis inhibitor may inhibit activation of the NF-κB signaling pathway by activating the AMPK pathway. CONCLUSION This study suggests the involvement of energy metabolism in the pathological inflammation process in RA joints. Glycolysis inhibitors might, therefore, provide an opportunity for therapeutic intervention.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, Anhui, China.,Anhui BBCA Pharmaceuticals Co., Ltd., No. 6288, Donghai Avenue, Bengbu, 233000, Anhui, China
| | - Hao Xian
- Anhui BBCA Pharmaceuticals Co., Ltd., No. 6288, Donghai Avenue, Bengbu, 233000, Anhui, China
| | - Jiajia Qi
- Anhui BBCA Pharmaceuticals Co., Ltd., No. 6288, Donghai Avenue, Bengbu, 233000, Anhui, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, Anhui, China.,Anhui BBCA Pharmaceuticals Co., Ltd., No. 6288, Donghai Avenue, Bengbu, 233000, Anhui, China
| | - Xiu Cheng
- Anhui BBCA Pharmaceuticals Co., Ltd., No. 6288, Donghai Avenue, Bengbu, 233000, Anhui, China
| | - Sha Li
- Anhui BBCA Pharmaceuticals Co., Ltd., No. 6288, Donghai Avenue, Bengbu, 233000, Anhui, China
| | - Qing Wang
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, Anhui, China.,Anhui BBCA Pharmaceuticals Co., Ltd., No. 6288, Donghai Avenue, Bengbu, 233000, Anhui, China
| | - Zhaoyang Liu
- Anhui BBCA Pharmaceuticals Co., Ltd., No. 6288, Donghai Avenue, Bengbu, 233000, Anhui, China
| | - Yun Yu
- Anhui BBCA Pharmaceuticals Co., Ltd., No. 6288, Donghai Avenue, Bengbu, 233000, Anhui, China
| | - Jing Zhou
- Anhui BBCA Pharmaceuticals Co., Ltd., No. 6288, Donghai Avenue, Bengbu, 233000, Anhui, China
| | - Xiaojin Sun
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, Anhui, China.,Anhui BBCA Pharmaceuticals Co., Ltd., No. 6288, Donghai Avenue, Bengbu, 233000, Anhui, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, Anhui, China.,Anhui BBCA Pharmaceuticals Co., Ltd., No. 6288, Donghai Avenue, Bengbu, 233000, Anhui, China
| | - Yingmei Wei
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, Anhui, China. .,Anhui BBCA Pharmaceuticals Co., Ltd., No. 6288, Donghai Avenue, Bengbu, 233000, Anhui, China.
| |
Collapse
|
27
|
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10:54. [PMID: 32266056 PMCID: PMC7110906 DOI: 10.1186/s13578-020-00416-0] [Citation(s) in RCA: 383] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The PI3 K/AKT/mTOR signalling pathway plays an important role in the regulation of signal transduction and biological processes such as cell proliferation, apoptosis, metabolism and angiogenesis. Compared with those of other signalling pathways, the components of the PI3K/AKT/mTOR signalling pathway are complicated. The regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway are important in many human diseases, including ischaemic brain injury, neurodegenerative diseases, and tumours. PI3K/AKT/mTOR signalling pathway inhibitors include single-component and dual inhibitors. Numerous PI3K inhibitors have exhibited good results in preclinical studies, and some have been clinically tested in haematologic malignancies and solid tumours. In this review, we briefly summarize the results of research on the PI3K/AKT/mTOR pathway and discuss the structural composition, activation, communication processes, regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway in the pathogenesis of neurodegenerative diseases and tumours.
Collapse
Affiliation(s)
- Fei Xu
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Rd, Shanghai, 201318 China
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Lixin Na
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Yanfei Li
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Linjun Chen
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| |
Collapse
|
28
|
Dasatinib reverses drug resistance by downregulating MDR1 and Survivin in Burkitt lymphoma cells. BMC Complement Med Ther 2020; 20:84. [PMID: 32171300 PMCID: PMC7076888 DOI: 10.1186/s12906-020-2879-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/04/2020] [Indexed: 12/17/2022] Open
Abstract
Background Current chemotherapies for Burkitt lymphoma (BL) have dramatically improved its clinical outcome. However, chemoresistance can lead to chemotherapy failure and very poor prognosis; thus, novel strategies are urgently required for patients with drug-resistant BL. To investigate the mechanisms underlying drug resistance in BL, we established drug-resistant BL cell lines: HS-Sultan/ADM (adriamycin-resistant), HS-Sultan/VCR (vincristine-resistant), HS-Sultan/DEX (dexamethasone-resistant), and HS-Sultan/L-PAM (melphalan-resistant). Methods Drug transporter and survival factor expression were investigated the using western blotting and real time polymerase chain reaction. Cell survival was analyzed by trypan blue dye exclusion method. Results The established cell lines acquired cross-resistance to adriamycin, vincristine, dexamethasone, and melphalan and exhibited 50% inhibitory concentration values 106-, 40-, 81-, and 45-fold higher than the parental cell lines, respectively. We found that protein and mRNA expression of MDR1 and Survivin were higher in drug-resistant BL cells than in the parent cells. Treatment with verapamil, an MDR1 inhibitor, or Survivin siRNA alongside each anti-cancer drug suppressed the proliferation of all drug-resistant BL cells. Src kinase activity was higher in all resistant cell lines than the parental cells; suppressing Src with dasatinib restored drug sensitivity by reducing MDR1 and Survivin expression. Conclusions MDR1 and Survivin upregulation are responsible for resistance to conventional drugs and dasatinib can restore drug sensitivity by reducing MDR1 and Survivin expression in drug-resistant BL cells. Src inhibitors could therefore be a novel treatment strategy for patients with drug resistant BL.
Collapse
|
29
|
Tabata M, Tsubaki M, Takeda T, Tateishi K, Maekawa S, Tsurushima K, Imano M, Satou T, Ishizaka T, Nishida S. Inhibition of HSP90 overcomes melphalan resistance through downregulation of Src in multiple myeloma cells. Clin Exp Med 2020; 20:63-71. [PMID: 31650359 DOI: 10.1007/s10238-019-00587-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy. In spite of the development of new therapeutic agents, MM remains incurable due to multidrug resistance (MDR) and the 5-year survival rate is approximately 50%. Thus, further study is needed to investigate the mechanism of MDR and improve MM prognosis. Heat shock protein 90 (HSP90) is a molecular chaperone that is responsible for the stability of a number of client proteins, most of which are involved in tumor progression. Therefore, HSP90 inhibitors represent potential new therapeutic agents for cancer. Furthermore, inhibition of HSP90 leads to degradation of client proteins, overcoming acquired anti-cancer drug resistance. In this study, we assessed the role of HSP90 in MDR using established melphalan-resistant MM cells. We found that expression of HSP90 was higher in melphalan-resistant MM cells than in parent cells and that HSP90 inhibitors KW-2478 and NUV-AUY922 restored drug sensitivity to the level observed in parent cells. Activation of the unfolded protein response is a hallmark of MM, and expression of endoplasmic reticulum stress signaling molecules is reduced in melphalan-resistant cells; however, KW-2478 did not affect endoplasmic reticulum stress signaling. We demonstrated that treatment with KW-2478 decreased expression of Src, a client of HSP90, and suppressed the activity of ERK, Akt, and NF-κB. Our findings indicate that inhibition of HSP90 results in suppression of Src and its downstream effectors, including ERK, Akt, and NF-κB, and therefore that HSP90 inhibitors could be useful for treatment of MDR MM.
Collapse
Affiliation(s)
- Mitsuki Tabata
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashiōsaka, 577-8502, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashiōsaka, 577-8502, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashiōsaka, 577-8502, Japan
| | - Keisuke Tateishi
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashiōsaka, 577-8502, Japan
| | - Saho Maekawa
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashiōsaka, 577-8502, Japan
| | - Katsumasa Tsurushima
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashiōsaka, 577-8502, Japan
- Department of Pharmacy, Sakai City Medical Center, Sakai, Japan
| | - Motohiro Imano
- Department of Surgery, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Takao Satou
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | | | - Shozo Nishida
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashiōsaka, 577-8502, Japan.
| |
Collapse
|
30
|
Tsubaki M, Takeda T, Noguchi M, Jinushi M, Seki S, Morii Y, Shimomura K, Imano M, Satou T, Nishida S. Overactivation of Akt Contributes to MEK Inhibitor Primary and Acquired Resistance in Colorectal Cancer Cells. Cancers (Basel) 2019; 11:cancers11121866. [PMID: 31769426 PMCID: PMC6966459 DOI: 10.3390/cancers11121866] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
RAS and BRAF-mutated colorectal cancers are associated with resistance to chemotherapy and poor prognosis, highlighting the need for new therapeutic strategies. Although these cancers sometimes respond to mitogen activated protein kinase kinase (MEK) inhibitor treatment, they often acquire resistance via mechanisms, which are poorly understood. Here, we investigated the mechanism of MEK inhibitor resistance in primary- and acquired-resistant cells. Cell viability was examined using the trypan blue dye exclusion assay. Protein expression was analyzed by western blotting. Somatic mutations in colorectal cancer cells were investigated using the polymerase chain reaction array. PD0325901 and trametinib induced cell death in LoVo and Colo-205 cells but not in DLD-1 and HT-29 cells, which have a PIK3CA mutation constitutively activating Akt and NF-κB. Treatment with PD0325901 and trametinib suppressed ERK1/2 activation in all four cell lines but only induced Akt and NF-κB activation in DLD-1 and HT-29 cells. Inhibition of Akt but not NF-κB, overcame MEK inhibitor resistance in DLD-1 and HT-29 cells. Acquired-resistant LoVo/PR, Colo-205/PR and LoVo/TR cells have constitutively active Akt due to a M1043V mutation in the kinase activation loop of PIK3CA and Akt inhibitor resensitized these cells to MEK inhibitor. These results demonstrate that the overactivation of Akt plays a critical role in MEK inhibitor primary and acquired resistance and implicate combined Akt/MEK inhibition as a potentially useful treatment for RAS/BRAF-mutated colorectal cancer.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Masaki Noguchi
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Minami Jinushi
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Shiori Seki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Yuusuke Morii
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
- Department of Phamacy, Municipal Ikeda Hospital, Ikeda, Osaka 563-8510, Japan;
| | - Kazunori Shimomura
- Department of Phamacy, Municipal Ikeda Hospital, Ikeda, Osaka 563-8510, Japan;
| | - Motohiro Imano
- Department of Surgery, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-0014, Japan;
| | - Takao Satou
- Department of Pathology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-0014, Japan.;
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
- Correspondence:
| |
Collapse
|
31
|
Formononetin Regulates Multiple Oncogenic Signaling Cascades and Enhances Sensitivity to Bortezomib in a Multiple Myeloma Mouse Model. Biomolecules 2019; 9:biom9070262. [PMID: 31284669 PMCID: PMC6681380 DOI: 10.3390/biom9070262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
Here, we determined the anti-neoplastic actions of formononetin (FT) against multiple myeloma (MM) and elucidated its possible mode of action. It was observed that FT enhanced the apoptosis caused by bortezomib (Bor) and mitigated proliferation in MM cells, and these events are regulated by nuclear factor-κB (NF-κB), phosphatidylinositol 3-kinase (PI3K)/AKT, and activator protein-1 (AP-1) activation. We further noted that FT treatment reduced the levels of diverse tumorigenic proteins involved in myeloma progression and survival. Interestingly, we observed that FT also blocked persistent NF-κB, PI3K/AKT, and AP-1 activation in myeloma cells. FT suppressed the activation of these oncogenic cascades by affecting a number of signaling molecules involved in their cellular regulation. In addition, FT augmented tumor growth-inhibitory potential of Bor in MM preclinical mouse model. Thus, FT can be employed with proteasomal inhibitors for myeloma therapy by regulating the activation of diverse oncogenic transcription factors involved in myeloma growth.
Collapse
|
32
|
Tsubaki M, Takeda T, Obata N, Kawashima K, Tabata M, Imano M, Satou T, Nishida S. Combination therapy with dacarbazine and statins improved the survival rate in mice with metastatic melanoma. J Cell Physiol 2019; 234:17975-17989. [PMID: 30834527 DOI: 10.1002/jcp.28430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Malignant melanoma is a highly aggressive skin cancer, and the overall median survival in patients with metastatic melanoma is only 6-9 months. Although molecular targeted therapies have recently been developed and have improved the overall survival, melanoma patients may show no response and acquisition of resistance to these drugs. Thus, other molecular approaches are essential for the treatment of metastatic melanoma. In the present study, we investigated the effect of cotreatment with dacarbazine and statins on tumor growth, metastasis, and survival rate in mice with metastatic melanomas. We found that cotreatment with dacarbazine and statins significantly inhibited tumor growth and metastasis via suppression of the RhoA/RhoC/LIM domain kinase/serum response factor/c-Fos pathway and enhanced p53, p21, p27, cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase 1 expression in vivo. Moreover, the cotreatment significantly improved the survival rate in metastasis-bearing mice. Importantly, treatment with dacarbazine plus 100 mg/kg simvastatin or fluvastatin prevented metastasis-associated death in 4/20 mice that received dacarbazine + simvastatin and in 8/20 mice that received dacarbazine + fluvastatin (survival rates, 20% and 40%, respectively). These results suggested that cotreatment with dacarbazine and statins may thus serve as a new therapeutic approach to control tumor growth and metastasis in melanoma patients.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Naoya Obata
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Keishi Kawashima
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Mitsuki Tabata
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Motohiro Imano
- Department of Surgery, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Takao Satou
- Department of Pathology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| |
Collapse
|