1
|
Mochizuki M, Shibuya‐Takahashi R, Kanno S, Adachi S, Fujimori H, Nakazato A, Fujii K, Morita S, Saijoh S, Yamazaki T, Imai T, Asada Y, Yamaguchi K, Yasuda J, Shindo N, Sugamura K, Tamai K. CD271 mRNA/hnRNPA2B1 complex promotes proliferation and stemness in oral and head and neck squamous cell carcinoma. Cancer Sci 2024; 115:2346-2359. [PMID: 38710200 PMCID: PMC11247604 DOI: 10.1111/cas.16187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
RNAs, such as noncoding RNA, microRNA, and recently mRNA, have been recognized as signal transduction molecules. CD271, also known as nerve growth factor receptor, has a critical role in cancer, although the precise mechanism is still unclear. Here, we show that CD271 mRNA, but not CD271 protein, facilitates spheroid cell proliferation. We established CD271-/- cells lacking both mRNA and protein of CD271, as well as CD271 protein knockout cells lacking only CD271 protein, from hypopharyngeal and oral squamous cell carcinoma lines. Sphere formation was reduced in CD271-/- cells but not in CD271 protein knockout cells. Mutated CD271 mRNA, which is not translated to a protein, promoted sphere formation. CD271 mRNA bound to hnRNPA2B1 protein at the 3'-UTR region, and the inhibition of this interaction reduced sphere formation. In surgical specimens, the CD271 mRNA/protein expression ratio was higher in the cancerous area than in the noncancerous area. These data suggest CD271 mRNA has dual functions, encompassing protein-coding and noncoding roles, with its noncoding RNA function being predominant in oral and head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Mai Mochizuki
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | | | - Shin‐Ichiro Kanno
- IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
- Department of ProteomicsNational Cancer Center Research InstituteTokyoJapan
| | - Haruna Fujimori
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Akira Nakazato
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Keitaro Fujii
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Shinkichi Morita
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
- Department of Head and Neck SurgeryMiyagi Cancer CenterNatoriJapan
| | - Satoshi Saijoh
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Tomoko Yamazaki
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Takayuki Imai
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
- Department of Head and Neck SurgeryMiyagi Cancer CenterNatoriJapan
| | - Yukinori Asada
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
- Department of Head and Neck SurgeryMiyagi Cancer CenterNatoriJapan
| | - Kazunori Yamaguchi
- Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Jun Yasuda
- Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Norihisa Shindo
- Cancer Chromosome Biology UnitMiyagi Cancer Center Research InstituteNatoriJapan
| | - Kazuo Sugamura
- Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Keiichi Tamai
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| |
Collapse
|
2
|
Myoen S, Mochizuki M, Shibuya-Takahashi R, Fujimori H, Shindo N, Yamaguchi K, Yasuda J, Abe J, Imai T, Sato I, Adachi H, Kawamura S, Ito A, Tamai K. CD271 promotes proliferation and migration in bladder cancer. Genes Cells 2024; 29:73-85. [PMID: 38016691 DOI: 10.1111/gtc.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Bladder cancer is a urothelial cancer and effective therapeutic strategies for its advanced stages are limited. Here, we report that CD271, a neurotrophin receptor, promotes the proliferation and migration of bladder cancer cells. CD271 knockdown decreased proliferation in both adherent and spheroid cultures, and vice versa when CD271 was overexpressed in bladder cancer cell lines. CD271 depletion impaired tumorigenicity in vivo. Migration activity was reduced by CD271 knockdown and TAT-Pep5, a known CD271-Rho GDI-binding inhibitor. Apoptosis was induced by CD271 knockdown. Comprehensive gene expression analysis revealed alterations in E2F- and Myc-related pathways upon CD271 expression. In clinical cases, patients with high CD271 expression showed significantly shortened overall survival. In surgically resected specimens, pERK, a known player in proliferation signaling, colocalizes with CD271. These data indicate that CD271 is involved in bladder cancer malignancy by promoting cell proliferation and migration, resulting in poor prognosis.
Collapse
Affiliation(s)
- Shingo Myoen
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
- Division of Urology, Miyagi Cancer Center, Natori, Miyagi, Japan
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Rie Shibuya-Takahashi
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Haruna Fujimori
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Norihisa Shindo
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Jiro Abe
- Division of Thoracic Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Takayuki Imai
- Division of Head and Neck Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Ikuro Sato
- Division of Pathology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Hisanobu Adachi
- Division of Urology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | | | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| |
Collapse
|
3
|
Fujii K, Morita S, Mochizuki M, Shibuya-Takahashi R, Fujimori H, Yamaguchi K, Abe J, Yamazaki T, Imai T, Sugamura K, Yasuda J, Satoh K, Sato I, Saito-Koyama R, Fujishima F, Sasano H, Kato Y, Matsuura K, Asada Y, Tamai K. Establishment of a monoclonal antibody against glycosylated CD271 specific for cancer cells in immunohistochemistry. Cancer Sci 2022; 113:2878-2887. [PMID: 35343032 PMCID: PMC9357664 DOI: 10.1111/cas.15340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Various proteins are highly expressed in cancer (e.g., epidermal growth factor receptor); however, the majority are also expressed in normal cells, although they may differ in expression intensity. Recently, we reported that CD271 (nerve growth factor receptor), a glycosylated protein, increases malignant behavior of cancer, particularly stemlike phenotypes in squamous cell carcinoma (SCC). CD271 is expressed in SCC and in normal epithelial basal cells. Glycosylation alterations generally occur in cancer cells; therefore, we attempted to establish a cancer‐specific anti‐glycosylated CD271 antibody. We purified recombinant glycosylated CD271 protein, immunized mice with the protein, and screened hybridomas using an ELISA assay with cancer cell lines. We established a clone G4B1 against CD271 which is glycosylated with O‐glycan and sialic acid. The G4B1 antibody reacted with the CD271 protein expressed in esophageal cancer, but not in normal esophageal basal cells. This specificity was confirmed in hypopharyngeal and cervical cancers. G4B1 antibody recognized the fetal esophageal epithelium and Barrett's esophagus, which possess stem cell–like characteristics. In conclusion, G4B1 antibody could be useful for precise identification of dysplasia and cancer cells in SCC.
Collapse
Affiliation(s)
- Keitaro Fujii
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan.,Department of Head and Neck Surgery, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Shinkichi Morita
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan.,Department of Head and Neck Surgery, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Rie Shibuya-Takahashi
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Haruna Fujimori
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Jiro Abe
- Department of Thoracic Surgery, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Tomoko Yamazaki
- Department of Head and Neck Medical Oncology, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Takayuki Imai
- Department of Head and Neck Surgery, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Kazuo Sugamura
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Kennichi Satoh
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyaginoku, Sendai, Miyagi, 983-8536, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Ryoko Saito-Koyama
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazuto Matsuura
- Department of Head and Neck Surgery, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan.,Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Yukinori Asada
- Department of Head and Neck Surgery, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| |
Collapse
|
4
|
Wang K, Zhang M, Wang J, Sun P, Luo J, Jin H, Li R, Pan C, Lu L. A Systematic Analysis Identifies Key Regulators Involved in Cell Proliferation and Potential Drugs for the Treatment of Human Lung Adenocarcinoma. Front Oncol 2021; 11:737152. [PMID: 34650921 PMCID: PMC8505978 DOI: 10.3389/fonc.2021.737152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common and malignant cancer types. Abnormal cell proliferation, exemplified by cell cycle and cell division dysregulation, is one of the most prominent hallmarks of cancer and is responsible for recurrence, metastasis, and resistance to cancer therapy. However, LUAD-specific gene regulation and clinical significance remain obscure. Here, by using both tissues and cells from LUAD and normal lung samples, 434 increased and 828 decreased genes of biological significance were detected, including 127 cell cycle-associated genes (95 increased and 32 decreased), 66 cell division-associated genes (56 increased and 10 decreased), and 81 cell proliferation-associated genes (34 increased and 47 decreased). Among them, 12 increased genes (TPX2, CENPF, BUB1, PLK1, KIF2C, AURKB, CDKN3, BUB1B, HMGA2, CDK1, ASPM, and CKS1B) and 2 decreased genes (TACC1 and MYH10) were associated with all the three above processes. Importantly, 2 (CDKN3 and CKS1B) out of the 11 increased genes (except HMGA2) are previously uncharacterized ones in LUAD and can potentially be prognostic markers. Moreover, PLK1 could be a promising therapeutic target for LUAD. Besides, protein–protein interaction network analysis showed that CDK1 and CDC20 were the hub genes, which might play crucial roles in cell proliferation of LUAD. Furthermore, transcriptional regulatory network analysis suggested that the transcription factor E2F1 could be a key regulator in controlling cell proliferation of LUAD via expression modulation of most cell cycle-, cell division-, and cell proliferation-related DEGs. Finally, trichostatin A, hycanthone, vorinostat, and mebeverine were identified as four potential therapeutic agents for LUAD. This work revealed key regulators contributing to cell proliferation in human LUAD and identified four potential therapeutic agents for treatment strategy.
Collapse
Affiliation(s)
- Kai Wang
- Clinical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Man Zhang
- Department of Radiology, Xiangyang Hospital of Traditional Chinese Medicine, Hubei University of Traditional Chinese Medicine, Xiangyang, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Pan Sun
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jizhuang Luo
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haizhen Jin
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Li
- Clinical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Changqing Pan
- General Surgery Department, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liming Lu
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Fukushi D, Shibuya-Takahashi R, Mochizuki M, Fujimori H, Kogure T, Sugai T, Iwai W, Wakui Y, Abue M, Murakami K, Nakamura Y, Yasuda J, Yamaguchi K, Sugamura K, Shibata C, Katayose Y, Satoh K, Tamai K. BEX2 is required for maintaining dormant cancer stem cell in hepatocellular carcinoma. Cancer Sci 2021; 112:4580-4592. [PMID: 34424582 PMCID: PMC8586677 DOI: 10.1111/cas.15115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are responsible for therapy resistance and share several properties with normal stem cells. Here, we show that brain‐expressed X‐linked gene 2 (BEX2), which is essential for dormant CSCs in cholangiocarcinoma, is highly expressed in human hepatocellular carcinoma (HCC) lesions compared with the adjacent normal lesions and that in 41 HCC cases the BEX2high expression group is correlated with a poor prognosis. BEX2 localizes to Ki67‐negative (nonproliferative) cancer cells in HCC tissues and is highly expressed in the dormant fraction of HCC cell lines. Knockdown of BEX2 attenuates CSC phenotypes, including sphere formation ability and aldefluor activity, and BEX2 overexpression enhances these phenotypes. Moreover, BEX2 knockdown increases cisplatin sensitivity, and BEX2 expression is induced by cisplatin treatment. Taken together, these data suggest that BEX2 induces dormant CSC properties and affects the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Daisuke Fukushi
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan.,Division of Cancer Stem Cell, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Gastroenterology, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Rie Shibuya-Takahashi
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Haruna Fujimori
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Takayuki Kogure
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Takahiro Sugai
- Department of Gastroenterology, Miyagi Cancer Center, Natori, Japan
| | - Wataru Iwai
- Department of Gastroenterology, Miyagi Cancer Center, Natori, Japan
| | - Yuta Wakui
- Department of Gastroenterology, Miyagi Cancer Center, Natori, Japan
| | - Makoto Abue
- Department of Gastroenterology, Miyagi Cancer Center, Natori, Japan
| | - Kazuhiro Murakami
- Division of Pathology, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kazuo Sugamura
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Chikashi Shibata
- Gastroenterologic and Hepato-Biliary-Pancreatic Surgery, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Yu Katayose
- Gastroenterologic and Hepato-Biliary-Pancreatic Surgery, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Kennichi Satoh
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan.,Division of Cancer Stem Cell, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Discovery of a chemical compound that suppresses expression of BEX2, a dormant cancer stem cell-related protein. Biochem Biophys Res Commun 2021; 537:132-139. [PMID: 33412384 DOI: 10.1016/j.bbrc.2020.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) are believed to cause cancer metastasis and recurrence. BEX2 (brain expressed X-linked gene 2) is a CSC-related gene that is expressed in dormant CSCs in cholangiocarcinoma and induces resistance against chemotherapy. The aim of the present study was to identify small compounds that have activity to inhibit BEX2 expression and result in the attenuation of CSC-related phenotypes. We screened 9600 small chemical compounds in high-throughput screening using cholangiocarcinoma cell line HuCCT1 expressing BEX2 protein fused with NanoLuc, and identified a compound, BMPP (1, 3-Benzenediol, [4-(4-methoxyphenyl)-1H-pyrazol-3-yl]). BMPP was found to exert decreasing effects on BEX2 protein expression and G0 phase population of the tumor cells, and increasing effects on ATP levels and chemotherapeutic sensitivity of the cells. These findings indicate that BMPP is a valuable chemical compound for reducing dormant CSC-related phenotypes. Thus, the identification of BMPP as a potential CSC suppressor provides scope for the development of novel therapeutic modalities for the treatment of cancers with BEX2 overexpressing CSCs.
Collapse
|
7
|
Vidal A, Redmer T. Decoding the Role of CD271 in Melanoma. Cancers (Basel) 2020; 12:cancers12092460. [PMID: 32878000 PMCID: PMC7564075 DOI: 10.3390/cancers12092460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022] Open
Abstract
The evolution of melanoma, the most aggressive type of skin cancer, is triggered by driver mutations that are acquired in the coding regions of particularly BRAF (rat fibrosarcoma serine/threonine kinase, isoform B) or NRAS (neuroblastoma-type ras sarcoma virus) in melanocytes. Although driver mutations strongly determine tumor progression, additional factors are likely required and prerequisite for melanoma formation. Melanocytes are formed during vertebrate development in a well-controlled differentiation process of multipotent neural crest stem cells (NCSCs). However, mechanisms determining the properties of melanocytes and melanoma cells are still not well understood. The nerve growth factor receptor CD271 is likewise expressed in melanocytes, melanoma cells and NCSCs and programs the maintenance of a stem-like and migratory phenotype via a comprehensive network of associated genes. Moreover, CD271 regulates phenotype switching, a process that enables the rapid and reversible conversion of proliferative into invasive or non-stem-like states into stem-like states by yet largely unknown mechanisms. Here, we summarize current findings about CD271-associated mechanisms in melanoma cells and illustrate the role of CD271 for melanoma cell migration and metastasis, phenotype-switching, resistance to therapeutic interventions, and the maintenance of an NCSC-like state.
Collapse
|
8
|
Zhang J, Luo L, Dong J, Liu M, Zhai D, Huang D, Ling L, Jia X, Luo K, Zheng G. A prognostic 11-DNA methylation signature for lung squamous cell carcinoma. J Thorac Dis 2020; 12:2569-2582. [PMID: 32642165 PMCID: PMC7330303 DOI: 10.21037/jtd.2020.03.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Lung squamous cell carcinoma (LUSC), as the second frequent subtype of lung cancer, causes lots of mortalities primarily due to a lack of precise prognostic markers and timely treatment intervention. Previous studies have constructed several risk prognostic models based on DNA methylation sites in multiple tumors, whereas, DNA methylation signature of LUSC remains to be built, and its predictive value need to be evaluated. Methods The genome-wide DNA methylation data of LUSC samples was obtained from The Cancer Genome Atlas dataset. Univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) were implemented to identify DNA methylation sites related to overall survival of LUSC patients. Thus, we performed multivariate Cox regression to establish a DNA methylation signature. The Kaplan-Meier (K-M) survival curves and time-dependent receiver operating characteristic (ROC) curves were plotted to estimate the prognostic power of the signature. Comparison with other known prognostic biomarkers, our DNA methylation signature showed higher predictive specificity and sensitivity. In addition, multivariate Cox regression screened out independent prognostic factors and constructed a nomogram. Results Several statistical methods were performed to construct an 11-DNA methylation signature. LUSC patients were divided into low- and high-risk group based on risk score, and high-risk group had a shorter survival time. According to the results of K-M and ROC analyses, the 11-DNA methylation signature showed significant sensitivity and specificity in predicting the LUSC patients’ overall survival. Finally, we integrated some independent prognostic factors (risk score, metastasis stage, and tobacco smoking history) to construct a nomogram, which has excellent prognostic power and may provide guidance for the therapeutic strategies. Conclusions We constructed the first risk prognosis model based on DNA methylation site in LUSC, which showed better predictive ability. In addition, a nomogram integrating the DNA methylation signature, metastasis stage, and tobacco smoking history was developed.
Collapse
Affiliation(s)
- Jianlei Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Liyun Luo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Jing Dong
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Meijun Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Dongfeng Zhai
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Danqing Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Li Ling
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Xiaoting Jia
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Kai Luo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Guopei Zheng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| |
Collapse
|
9
|
Morita S, Mochizuki M, Shibuya-Takahashi R, Nakamura-Shima M, Yamazaki T, Imai T, Asada Y, Matsuura K, Kawamura S, Yamaguchi K, Yasuda J, Sugamura K, Katori Y, Satoh K, Tamai K. Establishment of a Monoclonal Antibody That Recognizes Cysteine-Rich Domain 1 of Human CD271. Monoclon Antib Immunodiagn Immunother 2020; 39:6-11. [PMID: 32069133 DOI: 10.1089/mab.2019.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CD271 is a common receptor for all neurotrophins that is localized to neurons, endothelial cells, and the basal layer of the epithelium in normal tissue. Recently, we and others reported that CD271 plays essential roles in the development of squamous cell carcinoma, especially in tumor-initiating cells. Since little is known about how CD271 regulates cancer cell initiation and proliferation, antibodies that recognize different domains of CD271 are needed to enable investigation. Therefore, this study aimed to develop an antihuman CD271 antibody by immunizing mice with a CD271 antigen produced by a baculovirus. The antibody was named hCD271mAb#13, and it recognized cysteine-rich domain 1 with a higher affinity than the commercially available antibody ME20.4. We determined that hCD271mAb#13 is suitable for flow cytometry, Western blotting, immunocytochemistry, and immunohistochemistry of formalin-fixed paraffin-embedded tissue. Use of hCD271mAb#13 for CD271 labeling could enable detailed analyses of cancer cell regulation and other biological processes.
Collapse
Affiliation(s)
- Shinkichi Morita
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Rie Shibuya-Takahashi
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mao Nakamura-Shima
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Tomoko Yamazaki
- Department of Head and Neck Medical Oncology, Miyagi Cancer Center, Natori, Japan
| | - Takayuki Imai
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Japan
| | - Yukinori Asada
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Japan
| | - Kazuto Matsuura
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Japan
| | | | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kazuo Sugamura
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kennichi Satoh
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan.,Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| |
Collapse
|
10
|
Fang X, Liu X, Weng C, Wu Y, Li B, Mao H, Guan M, Lu L, Liu G. Construction and Validation of a Protein Prognostic Model for Lung Squamous Cell Carcinoma. Int J Med Sci 2020; 17:2718-2727. [PMID: 33162799 PMCID: PMC7645351 DOI: 10.7150/ijms.47224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Lung squamous cell carcinoma (LUSCC), as the major type of lung cancer, has high morbidity and mortality rates. The prognostic markers for LUSCC are much fewer than lung adenocarcinoma. Besides, protein biomarkers have advantages of economy, accuracy and stability. The aim of this study was to construct a protein prognostic model for LUSCC. The protein expression data of LUSCC were downloaded from The Cancer Protein Atlas (TCPA) database. Clinical data of LUSCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 237 proteins were identified from 325 cases of LUSCC patients based on the TCPA and TCGA database. According to Kaplan-Meier survival analysis, univariate and multivariate Cox analysis, a prognostic prediction model was established which was consisted of 6 proteins (CHK1_pS345, CHK2, IRS1, PAXILLIN, BRCA2 and BRAF_pS445). After calculating the risk values of each patient according to the coefficient of each protein in the risk model, the LUSCC patients were divided into high risk group and low risk group. The survival analysis demonstrated that there was significant difference between these two groups (p= 4.877e-05). The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was 0.699, which suggesting that the prognostic risk model could effectively predict the survival of LUSCC patients. Univariate and multivariate analysis indicated that this prognostic model could be used as independent prognosis factors for LUSCC patients. Proteins co-expression analysis showed that there were 21 proteins co-expressed with the proteins in the risk model. In conclusion, our study constructed a protein prognostic model, which could effectively predict the prognosis of LUSCC patients.
Collapse
Affiliation(s)
- Xisheng Fang
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Chengyin Weng
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Yong Wu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Baoxiu Li
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Haibo Mao
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Mingmei Guan
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Lin Lu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Guolong Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| |
Collapse
|
11
|
Morita S, Mochizuki M, Wada K, Shibuya R, Nakamura M, Yamaguchi K, Yamazaki T, Imai T, Asada Y, Matsuura K, Sugamura K, Katori Y, Satoh K, Tamai K. Humanized anti-CD271 monoclonal antibody exerts an anti-tumor effect by depleting cancer stem cells. Cancer Lett 2019; 461:144-152. [DOI: 10.1016/j.canlet.2019.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022]
|