1
|
Hui J, Yang L, Xu H, Zhu Y, Zhou L, Ye L. The relationship between MUC5AC levels in lung and asthma: a meta-analysis based on animal experiments. J Asthma 2025:1-13. [PMID: 39754519 DOI: 10.1080/02770903.2024.2449248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/01/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
INTRODUCTION Asthma is one of the severe respiratory diseases and affects the health of people globally. Animal studies have found that the mucin 5ac (Muc5ac) levels in the lung are associated with asthma. This paper aimed to systematically evaluate the relationship between Muc5ac levels in lung and asthma by extracting relevant data from animal experiments. METHODS Literatures published before September 2022 in PubMed, Web of Science, Embase and Cochrane databases were collected. Literatures screening and data extraction were performed according to the criteria and the risks of bias were assessed for the included literatures according to the SYRCLE tool. Type 2 inflammatory asthma model was applied in this paper. Meta-analysis was performed using Stata 16.0 software. RESULTS A total of 40 publications containing 347 control mice and 337 mice with asthma were included in this study. Meta-analysis results showed the levels of Muc5ac in BALF of mice in asthma group were significantly higher than that in control group [SMD = 3.50, 95%CI(1.45, 5.54)], and the heterogeneity test results showed I2 = 93.0%, p < 0.05. The mRNA expression levels of Muc5ac in lung tissue of mice in asthma group showed a higher level than that in control group [SMD = 4.46, 95%CI (3.38, 5.55)], and the heterogeneity test results showed I2 = 84.3%, p < 0.01. The protein expression levels of Muc5ac in lung tissue of mice in asthma group were significantly higher than those in control group [SMD = 5.70, 95%CI (4.09,7.31)], and the heterogeneity test results showed I2 = 89.7%, p < 0.01. CONCLUSION The meta-analysis clarified the positive relationship between Muc5ac in lung and asthma.
Collapse
Affiliation(s)
- Ju Hui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Hang Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
2
|
Sarioglu N, Solmaz Avcikurt A, Hismiogullari AA, Erel F. The role of periostin, eosinophil cationic protein (ECP), nesfatin-1, and NUCB2 in asthma and obesity. J Asthma 2024:1-7. [PMID: 39665477 DOI: 10.1080/02770903.2024.2441885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Obesity has a significant impact on asthma incidence and control. Nesfatin-1, encoded by the nucleobindin-2 (NUCB2) gene, regulates energy balance. This study aimed to evaluate NUCB2 gene polymorphism (rs757081 C > G) and its association with serum levels of nesfatin-1 and inflammatory cytokines in obese and non-obese patients with asthma. METHODS Obese (n = 43) and non-obese (n = 44) patients diagnosed with asthma and 45 control subjects were included. Nesfatin-1, eosinophil cationic protein (ECP), and periostin were studied in serum samples using the ELISA method. NUCB2 polymorphism was studied by PCR method. RESULTS No difference was found between groups regarding NUCB2 polymorphism (CC, CG, GG) (p = 0.497). Nesfatin-1 levels were higher in the obese asthmatics than in the control (median 1.69 ng/ml vs 1.36 ng/ml, p = 0.004). ECP levels were higher in the obese asthmatics (median 7.67 ng/ml) compared to non-obese asthmatic (median 1.98 ng/ml) and control (median 1.45 ng/ml) (p < 0.001, p < 0.001 respectively). Periostin was found to be lower in both obese (median 0.34 ng/ml) and non-obese asthmatics (median 0.35 ng/ml) compared to control (median 1.2 ng/ml) (p = 0.001, p < 0.001, respectively). There was a positive correlation between BMI and nesfatin-1 (r = 0.33, p < 0.001) and ECP (r = 0.58, p < 0.001). In regression analysis, ECP (95% CI: 0.19 to 0.75, p = 0.005) and periostin (95% CI: 4.5 to 375.1, p = 0.003) were independent predictors for asthma. CONCLUSION Nesfatin-1 and ECP have been shown to be increased in obese asthmatics. ECP and periostin have been identified as a predictor of asthma independent of obesity.
Collapse
Affiliation(s)
- Nurhan Sarioglu
- Pulmonary Diseases, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | | | | | - Fuat Erel
- Pulmonary Diseases, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| |
Collapse
|
3
|
Guo L, Huang E, Wang T, Ling Y, Li Z. Exploring the molecular mechanisms of asthma across multiple datasets. Ann Med 2024; 56:2258926. [PMID: 38489401 PMCID: PMC10946276 DOI: 10.1080/07853890.2023.2258926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/09/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Asthma, a prevalent chronic respiratory disorder, remains enigmatic, notwithstanding considerable advancements in our comprehension. Continuous efforts are crucial for discovering novel molecular targets and gaining a comprehensive understanding of its pathogenesis. MATERIALS AND METHODS In this study, we analyzed gene expression data from 212 individuals, including asthma patients and healthy controls, to identify 267 differentially expressed genes, among which C1orf64 and C7orf26 emerged as potential key genes in asthma pathogenesis. Various bioinformatics tools, including differential gene expression analysis, pathway enrichment, drug target prediction, and single-cell analysis, were employed to explore the potential roles of the genes. RESULTS Quantitative PCR demonstrated differential expression of C1orf64 and C7orf26 in the asthmatic airway epithelial tissue, implying their potential involvement in asthma pathogenesis. GSEA enrichment analysis revealed significant enrichment of these genes in signaling pathways associated with asthma progression, such as ABC transporters, cell cycle, CAMs, DNA replication, and the Notch signaling pathway. Drug target prediction, based on upregulated and downregulated differential expression, highlighted potential asthma treatments, including Tyrphostin-AG-126, Cephalin, Verrucarin-a, and Emetine. The selection of these drugs was based on their significance in the analysis and their established anti-inflammatory and antiviral invasion properties. Utilizing Seurat and Celldex packages for single-cell sequencing analysis unveiled disease-specific gene expression patterns and cell types. Expression of C1orf64 and C7orf26 in T cells, NK cells, and B cells, instrumental in promoting hallmark features of asthma, was observed, suggesting their potential influence on asthma development and progression. CONCLUSION This study uncovers novel genetic aspects of asthma, highlighting potential therapeutic pathways. It exemplifies the power of integrative bioinformatics in decoding complex disease patterns. However, these findings require further validation, and the precise roles of C1orf64 and C7orf26 in asthma warrant additional investigation to validate their therapeutic potential.
Collapse
Affiliation(s)
- Lianshan Guo
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Enhao Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tongting Wang
- Department of Nursing, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Ling
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengzhao Li
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Wang S, Zhao J, Xie J. Targeting Lipid Metabolism in Obese Asthma: Perspectives and Therapeutic Opportunities. Int Arch Allergy Immunol 2024:1-15. [PMID: 39427653 DOI: 10.1159/000540405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/15/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Obese asthma represents a unique phenotype of asthma characterized by severe symptoms, poor medication controls, increased frequency of exacerbations, and an overall diminished quality of life. Numerous factors, including the complex interactions between environment, mechanical processes, inflammatory responses, and metabolites disturbance, contribute to the onset of obese asthma. SUMMARY Notably, multiple metabolomics studies in the last several years have revealed the significant abnormalities in lipid metabolism among obese asthmatic patients. Several bioactive lipid messengers participate in the development of obese asthma has also been observed. Here, we present and discuss the latest advances regarding how bioactive lipid molecules contribute to the pathogenic process and mechanisms underlying obese asthma. The key roles of potentially significant effector cells and the pathways by which they respond to diverse lipid metabolites are also described. We finally summarize current lipid-related therapeutic options for the treatment of obese asthma and discuss their application prospects. KEY MESSAGES This review underscores the impacts of abnormal lipid metabolism in the etiopathogenesis of obese asthma and asks for further investigation to elucidate the intricate correlations among lipids, obesity, and asthma.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Tong Y, Wang L, Wang L, Song J, Fan J, Lai C, Bao J, Weng C, Wang Y, Shuai J, Zhang H, Zhang W. Allergen immunotherapy combined with Notch pathway inhibitors improves HDM-induced allergic airway inflammation and inhibits ILC2 activation. Front Immunol 2024; 14:1264071. [PMID: 38371944 PMCID: PMC10869474 DOI: 10.3389/fimmu.2023.1264071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024] Open
Abstract
Introduction Group 2 innate lymphoid cells (ILC2s) play a crucial role in house dust mite (HDM)-induced allergic inflammation, and allergen immunotherapy (AIT) holds promise for treating the disease by reducing the frequency of ILC2s. Despite significant progress in AIT for allergic diseases, there remains a need to improve the control of allergic symptoms. Methods We investigated the synergistic effect of the Notch signaling pathway and subcutaneous immunotherapy (SCIT) in treating allergic airway inflammation in mice and their impact on the ratio of ILC2s in lung tissues. This was achieved by establishing the HDM-induced airway allergic disorders (HAAD) model and SCIT model. Additionally, we conducted in vitro investigations into the effect of the Notch signaling pathway on the secretory function of activated ILC2s using fluorescence-activated cell sorting. Furthermore, we explored the coactivation of the Notch signaling pathway with SCIT in vitro by sorting ILC2s from the lung tissues of mice after SCIT modeling. Results Previously, our group demonstrated that Notch signaling pathway inhibitors can reduce allergic airway inflammation in mice. Notch signaling induces lineage plasticity of mature ILC2s. In this study, we showed that AIT alleviates allergic airway inflammation and suppresses the frequency of ILC2s induced by HDM. Interestingly, AIT combined with a γ-secretase inhibitor (GSI), an inhibitor of the Notch signaling pathway, significantly inhibited the frequency of ILC2s, reduced airway inflammation, and suppressed Th2-type responses in a mouse model. Furthermore, lung ILC2s from HDM-challenged mice with or without AIT were treated with GSI in vitro, and we found that GSI dramatically reduced the secretion of type 2 inflammatory factors in ILC2s. Discussion These findings suggest that Notch signaling pathway inhibitors can be used as adjuvant therapy for AIT and may hold potential treatment value in the cooperative control of allergic airway inflammation during early AIT.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hui Zhang
- Department of Pediatric Allergy and Immunology, The Second Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Pathak MP, Patowary P, Chattopadhyay P, Barbhuiyan PA, Islam J, Gogoi J, Wankhar W. Obesity-associated Airway Hyperresponsiveness: Mechanisms Underlying Inflammatory Markers and Possible Pharmacological Interventions. Endocr Metab Immune Disord Drug Targets 2024; 24:1053-1068. [PMID: 37957906 DOI: 10.2174/0118715303256440231028072049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/15/2023]
Abstract
Obesity is rapidly becoming a global health problem affecting about 13% of the world's population affecting women and children the most. Recent studies have stated that obese asthmatic subjects suffer from an increased risk of asthma, encounter severe symptoms, respond poorly to anti-asthmatic drugs, and ultimately their quality-of-life decreases. Although, the association between airway hyperresponsiveness (AHR) and obesity is a growing concern among the public due to lifestyle and environmental etiologies, however, the precise mechanism underlying this association is yet to establish. Apart from aiming at the conventional antiasthmatic targets, treatment should be directed towards ameliorating obesity pathogenesis too. Understanding the pathogenesis underlying the association between obesity and AHR is limited, however, a plethora of obesity pathologies have been reported viz., increased pro-inflammatory and decreased anti-inflammatory adipokines, depletion of ROS controller Nrf2/HO-1 axis, NLRP3 associated macrophage polarization, hypertrophy of WAT, and down-regulation of UCP1 in BAT following down-regulated AMPKα and melanocortin pathway that may be correlated with AHR. Increased waist circumference (WC) or central obesity was thought to be related to severe AHR, however, some recent reports suggest body mass index (BMI), not WC tends to exaggerate airway closure in AHR due to some unknown mechanisms. This review aims to co-relate the above-mentioned mechanisms that may explain the copious relation underlying obesity and AHR with the help of published reports. A proper understanding of these mechanisms discussed in this review will ensure an appropriate treatment plan for patients through advanced pharmacological interventions.
Collapse
Affiliation(s)
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | | | | | - Johirul Islam
- Department of Pharmaceutical Sciences, School of Health Sciences, Assam Kaziranga University, Jorhat, India
| | - Jyotchna Gogoi
- Department of Biochemistry, Faculty of Science, Assam Down Town University, Guwahati, India
| | - Wankupar Wankhar
- Department of Dialysis, Faculty of Paramedical Science, Assam Down Town University, Guwahati, India
| |
Collapse
|
7
|
Wu JR, He Z, Bao HR, Zeng XL, Liu XJ. Study on the mechanism of PM2.5 affecting Th1/Th2 immune imbalance through the notch signaling pathway in asthmatic mice. Toxicol Res (Camb) 2023; 12:675-684. [PMID: 37663808 PMCID: PMC10470343 DOI: 10.1093/toxres/tfad044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 09/05/2023] Open
Abstract
Some research has shown that PM2.5 causes Th1/Th2 immune imbalance and aggravates asthma. However, the exact mechanism of PM2.5 causing aggravation of asthma remains unclear. The purpose of this study was to investigate whether exposure to PM2.5 exacerbates Th1/Th2 immune imbalance through the Notch signaling pathway. Eight-week-old SPF female BALF/c mice were sensitized by ovalbumin to establish an asthma mouse model. PM2.5 exposure was carried out by aerosol inhalation of PM2.5 (510 μg/m3) after each provocation. The lung function of mice was measured and Splenic T lymphocyte subsets were detected. Notch signaling pathway was tested. The levels of interferon (IFN)-γ and interleukin (IL)-4 in serum and bronchoalveolar lavage fluid were determined. The results showed that the expression of the mRNA and protein of Notch1 and Hes1 in the asthma group were significantly higher than those in healthy controls. The levels of IL-4 were also remarkably high; while the levels of IFN-γ were remarkably low in serum and BALF, the Th1% and Th1/Th2 ratios were significantly lower, and Th2% was significantly higher in the asthma group than in the healthy controls. PM2.5 promoted further activation of the Notch signaling pathway and aggravated Th1/Th2 immune imbalance in asthmatic mice. γ-secretase inhibitor can partially inhibit the activation of the Notch signaling pathway and alleviate aggravation of immune imbalance. In conclusion, the asthmatic mice had a Th1/Th2 immune imbalance and an overactivated Notch signaling pathway. PM2.5 further aggravated Th1/Th2 immune imbalance by activating the Notch signaling pathway.
Collapse
Affiliation(s)
- Ji-rong Wu
- Department of Grontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Zheng He
- Department of Grontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Hai-rong Bao
- Department of Grontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiao-li Zeng
- Department of Grontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiao-ju Liu
- Department of Grontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Das A, Pathak MP, Pathak K, Saikia R, Gogoi U. Herbal medicine for the treatment of obesity-associated asthma: a comprehensive review. Front Pharmacol 2023; 14:1186060. [PMID: 37251328 PMCID: PMC10213975 DOI: 10.3389/fphar.2023.1186060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity is fast growing as a global pandemic and is associated with numerous comorbidities like cardiovascular disease, hypertension, diabetes, gastroesophageal reflux disease, sleep disorders, nephropathy, neuropathy, as well as asthma. Studies stated that obese asthmatic subjects suffer from an increased risk of asthma, and encounter severe symptoms due to a number of pathophysiology. It is very vital to understand the copious relationship between obesity and asthma, however, a clear and pinpoint pathogenesis underlying the association between obesity and asthma is scarce. There is a plethora of obesity-asthma etiologies reported viz., increased circulating pro-inflammatory adipokines like leptin, resistin, and decreased anti-inflammatory adipokines like adiponectin, depletion of ROS controller Nrf2/HO-1 axis, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) associated macrophage polarization, hypertrophy of WAT, activation of Notch signaling pathway, and dysregulated melanocortin pathway reported, however, there is a very limited number of reports that interrelates these pathophysiologies. Due to the underlying complex pathophysiologies exaggerated by obese conditions, obese asthmatics respond poorly to anti-asthmatic drugs. The poor response towards anti-asthmatic drugs may be due to the anti-asthmatics approach only that ignores the anti-obesity target. So, aiming only at the conventional anti-asthmatic targets in obese-asthmatics may prove to be futile until and unless treatment is directed towards ameliorating obesity pathogenesis for a holistic approach towards amelioration of obesity-associated asthma. Herbal medicines for obesity as well as obesity-associated comorbidities are fast becoming safer and more effective alternatives to conventional drugs due to their multitargeted approach with fewer adverse effects. Although, herbal medicines are widely used for obesity-associated comorbidities, however, a limited number of herbal medicines have been scientifically validated and reported against obesity-associated asthma. Notable among them are quercetin, curcumin, geraniol, resveratrol, β-Caryophyllene, celastrol, tomatidine to name a few. In view of this, there is a dire need for a comprehensive review that may summarize the role of bioactive phytoconstituents from different sources like plants, marine as well as essential oils in terms of their therapeutic mechanisms. So, this review aims to critically discuss the therapeutic role of herbal medicine in the form of bioactive phytoconstituents against obesity-associated asthma available in the scientific literature to date.
Collapse
Affiliation(s)
- Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
9
|
Notch Signaling Pathway Promotes Th17 Cell Differentiation and Participates in Thyroid Autoimmune Injury in Experimental Autoimmune Thyroiditis Mice. Mediators Inflamm 2023; 2023:1195149. [PMID: 36643586 PMCID: PMC9839414 DOI: 10.1155/2023/1195149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 08/17/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
Purpose To investigate whether the Notch signaling pathway participates in the occurrence and development of experimental autoimmune thyroiditis (EAT) by affecting the differentiation and function of Th17 cells. Materials and Methods Experimental mice were randomly divided into a control group, an EAT-A group (porcine thyroid immunoglobulin- (pTg-) treated mice) and an EAT-B group (treated with the DAPT γ-secretase inhibitor before pTg). HE staining, IHC staining, flow cytometry, RT-qPCR, and ELISA were used to evaluate the degrees of thyroiditis, detect the percentage of Th17 cells and measure the expression of retinoic acid-related orphan receptor gamma t (RORγt), interleukin-17A (IL-17A), and the main components of the Notch signaling pathway. Results The degrees of thyroiditis, the proportions of Th17 cells, and the expression of RORγt and IL-17A were significantly decreased in the EAT-B group after blocking the Notch signaling pathway by DAPT, and these parameters were significantly increased in the EAT-A group compared to the control group (all P < 0.05). Additionally, the Th17 cell percentages and IL-17A concentrations in spleen mononuclear cells (SMCs) from EAT-A mice decreased in a dose-dependent manner after DAPT treatment in vitro (all P < 0.01). Correlation analyses revealed that the Th17 cell percentages were positively correlated with the serum TgAb titers, Notch pathway-related mRNA expression levels, and IL-17A concentrations in EAT mice (all P < 0.05). Conclusions The expression of Notch signaling pathway components was upregulated in EAT mice, but blockade of the Notch signaling pathway alleviated the degree of thyroiditis, decreased the Th17 cell proportions, and downregulated the IL-17A effector cytokine both in vivo and in vitro. These findings suggested that the Notch signaling pathway may be involved in the pathogenesis of thyroid autoimmune injury in EAT mice by promoting the differentiation of Th17 cells.
Collapse
|
10
|
Zhong Y, Liu W, Xiong Y, Li Y, Wan Q, Zhou W, Zhao H, Xiao Q, Liu D. Astragaloside Ⅳ alleviates ulcerative colitis by regulating the balance of Th17/Treg cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154287. [PMID: 35752072 DOI: 10.1016/j.phymed.2022.154287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Restoring immune homeostasis by targeting the Th17/Treg response is a potentially valuable therapeutic strategy for ulcerative colitis (UC). Astragaloside IV (AS-Ⅳ) is a phytochemical naturally occurring in Astragalus membranaceus that has good anti-inflammatory, anti-oxidant and anti-stress properties. However, the effects of AS-IV on the homeostasis of Th17/Treg cells in colitis mice remains unknown. PURPOSE To investigate the protective effects and potential immunomodulatory mechanisms of AS-IV on UC. METHODS This study was constructed for DSS-induced acute colitis and recurrent colitis, with AS-IV administered prophylactically and therapeutically, respectively. The balance of Th17/Treg cells was analyzed by flow cytometry, their specific nuclear transcription factors were detected by RT-PCR as well as their secreted inflammatory cytokines were detected by ELISA and RT-PCR. Notch signaling-related proteins were detected by RT-PCR and Western blotting. Oxidative stress indicators were measured by biochemical technology. RESULTS In this study, AS-IV treatment not only effectively prevented and alleviated the clinical symptoms of DSS-induced colitis mice, including weight loss, DAI soaring, colon length shortening and colon weight gain, but also significantly improved ulcer formation, inflammatory cell infiltration and index, and regulated the expression of inflammatory cytokines in colon tissues. Importantly, the efficacy of high-dose AS-IV (100 mg/kg/day) in mice with recurrent colitis in this study was comparable to that of 5-ASA. AS-IV early administration was able to reshape the homeostasis of Th17/Treg cells in mice with acute colitis; meanwhile, AS-IV inhibited Th17 cell responses and promoted Treg cell responses in mice with recurrent colitis. Moreover, AS-IV not only inhibited the activation of Notch signaling pathway in colitis mice, but also prevented and ameliorated DSS-induced oxidative stress injury. CONCLUSION In conclusion, AS-IV effectively prevented and alleviated UC by reshaping Th17/Treg cell homeostasis and anti-oxidative stress.
Collapse
Affiliation(s)
- Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Jiangxi 330004, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Wenjun Liu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China
| | - Yanxia Xiong
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China
| | - Yingmeng Li
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China
| | - Qi Wan
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Wen Zhou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China; Nanchang Medical college, Nanchang, Jiangxi 330004, China
| | - Haimei Zhao
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Jiangxi 330004, China
| | - Qiuping Xiao
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China.
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Jiangxi 330004, China.
| |
Collapse
|
11
|
Kong J, Yang F, Bai M, Zong Y, Li Z, Meng X, Zhao X, Wang J. Airway immune response in the mouse models of obesity-related asthma. Front Physiol 2022; 13:909209. [PMID: 36051916 PMCID: PMC9424553 DOI: 10.3389/fphys.2022.909209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
The prevalence rates of obesity and its complications have increased dramatically worldwide. Obesity can lead to low-grade chronic systemic inflammation, which predisposes individuals to an increased risk of morbidity and mortality. Although obesity has received considerable interest in recent years, the essential role of obesity in asthma development has not been explored. Asthma is a common chronic inflammatory airway disease caused by various environmental allergens. Obesity is a critical risk factor for asthma exacerbation due to systemic inflammation, and obesity-related asthma is listed as an asthma phenotype. A suitable model can contribute to the understanding of the in-depth mechanisms of obese asthma. However, stable models for simulating clinical phenotypes and the impact of modeling on immune response vary across studies. Given that inflammation is one of the central mechanisms in asthma pathogenesis, this review will discuss immune responses in the airways of obese asthmatic mice on the basis of diverse modeling protocols.
Collapse
Affiliation(s)
- Jingwei Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Minghua Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuqing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xianghe Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Xiaoshan Zhao, ; Ji Wang,
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiaoshan Zhao, ; Ji Wang,
| |
Collapse
|
12
|
Li H, Yang T, Chen T, Liu Y, Pang Y, Yang L. BRD7 restrains TNF-α-induced proliferation and migration of airway smooth muscle cells by inhibiting notch signaling. Exp Lung Res 2022; 48:199-212. [PMID: 35943053 DOI: 10.1080/01902148.2022.2107730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objective: Bromodomain-containing protein 7 (BRD7) is a key component of the switch/sucrose non-fermentable complex that participates in chromatin remodeling and transcriptional regulation. Although the emerging role of BRD7 in the pathophysiology of various diseases has been observed, its role in asthma remains unknown. Here, we assessed the function of BRD7 as a mediator of airway remodeling in asthma using an in vitro model. Methods: Airway smooth muscle cells (ASMCs) were challenged with tumor necrosis factor-α (TNF-α) to establish an in vitro airway remodeling model. Protein levels were examined using western blotting. Cell proliferation was measured using the cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays. Cell migration was assessed using a transwell migration assay. Results: Exposure to TNF-α dramatically decreased BRD7 levels in ASMCs. BRD7 remarkably decreased TNF-α-induced proliferation and migration of ASMCs. In contrast, ASMCs with BRD7 deficiency were more sensitive to TNF-α-induced pro-proliferative and pro-migratory effects. Mechanistically, BRD7 could repress the expression of Notch1 and block the Notch pathway in TNF-α-challenged cells. Notably, reactivation of Notch signaling substantially reversed the BRD7 overexpression-mediated effects, whereas restraining Notch signaling abolished BRD7-depletion-mediated effects on TNF-α-challenged cells. Conclusions: BRD7 inhibits the proliferation and migration of ASMCs elicited by TNF-α by downregulating the Notch pathway. This study indicates that BRD7 may exert a suppressive effect on airway remodeling during asthma.
Collapse
Affiliation(s)
- Hong Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Tian Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Tianjun Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Ya Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Yamei Pang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Lan Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
13
|
Zhu T, Brown AP, Cai LP, Quon G, Ji H. Single-Cell RNA-Seq Analysis Reveals Lung Epithelial Cell Type-Specific Responses to HDM and Regulation by Tet1. Genes (Basel) 2022; 13:genes13050880. [PMID: 35627266 PMCID: PMC9140484 DOI: 10.3390/genes13050880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Tet1 protects against house dust mite (HDM)-induced lung inflammation in mice and alters the lung methylome and transcriptome. In order to explore the role of Tet1 in individual lung epithelial cell types in HDM-induced inflammation, we established a model of HDM-induced lung inflammation in Tet1 knockout and littermate wild-type mice, then studied EpCAM+ lung epithelial cells using single-cell RNA-seq analysis. We identified eight EpCAM+ lung epithelial cell types, among which AT2 cells were the most abundant. HDM challenge altered the relative abundance of epithelial cell types and resulted in cell type-specific transcriptomic changes. Bulk and cell type-specific analysis also showed that loss of Tet1 led to the altered expression of genes linked to augmented HDM-induced lung inflammation, including alarms, detoxification enzymes, oxidative stress response genes, and tissue repair genes. The transcriptomic regulation was accompanied by alterations in TF activities. Trajectory analysis supports that HDM may enhance the differentiation of AP and BAS cells into AT2 cells, independent of Tet1. Collectively, our data showed that lung epithelial cells had common and unique transcriptomic signatures of allergic lung inflammation. Tet1 deletion altered transcriptomic networks in various lung epithelial cells, which may promote allergen-induced lung inflammation.
Collapse
Affiliation(s)
- Tao Zhu
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (T.Z.); (A.P.B.); (L.P.C.)
| | - Anthony P. Brown
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (T.Z.); (A.P.B.); (L.P.C.)
| | - Lucy P. Cai
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (T.Z.); (A.P.B.); (L.P.C.)
| | - Gerald Quon
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis, CA 95616, USA;
| | - Hong Ji
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (T.Z.); (A.P.B.); (L.P.C.)
- Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Correspondence: ; Tel.: +1-530-754-0679
| |
Collapse
|
14
|
Song M, Wang Y, Zhou P, Wang J, Xu H, Zheng J. MicroRNA-361-5p Aggravates Acute Pancreatitis by Promoting Interleukin-17A Secretion via Impairment of Nuclear Factor IA-Dependent Hes1 Downregulation. J Med Chem 2021; 64:16541-16552. [PMID: 34738458 DOI: 10.1021/acs.jmedchem.1c01110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study set out to explore the potential role of microRNA-361-5p (miR-361-5p) in acute pancreatitis through regulation of interleukin-17A (IL-17A). We first identified the expression of miR-361-5p, IL-17A, nuclear factor IA (NFIA), and hes family bHLH transcription factor 1 (Hes1) in serum samples collected from patients with acute pancreatitis, caerulein-induced mice, and a Th17 cell model. The predicted binding of miR-361-5p to NFIA was confirmed in vitro. Gain- and loss-of-function assays of miR-361-5p and NFIA were employed to elucidate their effects on acute pancreatitis. miR-361-5p promoted Th17 cells to secrete IL-17A and then aggravated acute pancreatitis. miR-361-5p directly targeted NFIA by binding to its promoter region, leading to its downregulation. Overexpression of NFIA reduced Hes1 expression and rescued the promoting effect of miR-361-5p on IL-17A secretion. In summary, miR-361-5p enhances IL-17A secretion from Th17 cells and thus aggravates acute pancreatitis by targeting NFIA and upregulating Hes1.
Collapse
Affiliation(s)
- Menglong Song
- Emergency Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China
| | - Yifan Wang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China.,Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Ping Zhou
- Emergency Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China
| | - Jiandong Wang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China.,Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Haidong Xu
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China.,Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Jun Zheng
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China.,Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| |
Collapse
|
15
|
Ananth S, Navarra A, Vancheeswaran R. Obese, non-eosinophilic asthma: frequent exacerbators in a real-world setting. J Asthma 2021; 59:2267-2275. [PMID: 34669527 DOI: 10.1080/02770903.2021.1996598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE In the UK, asthma deaths are at their highest level this century. Increased recognition of at-risk patients is needed. This study phenotyped frequent asthma exacerbators and used machine learning to predict frequent exacerbators. METHODS Patients admitted to a district general hospital with an asthma exacerbation between 1st March 2018 and 1st March 2020 were included. Patients were organized into two groups: "Infrequent Exacerbators" (1 admission in the previous 12 months) and "Frequent Exacerbators" (≥2 admissions in the previous 12 months). Patient data were retrospectively collected from hospital and primary care records. Machine learning models were used to predict frequent exacerbators. RESULTS 200 patients admitted for asthma exacerbations were randomly selected (73% female; mean age 47.8 years). Peripheral eosinophilia was uncommon in either group (21% vs 19%). More frequent exacerbators were being treated with high-dose ICS than infrequent exacerbators (46.5% vs 23.2%; P < 0.001), and frequent exacerbators used more SABA inhalers (10.9 vs 7.40; P = 0.01) in the year preceding the current admission. BMI was raised in both groups (34.2 vs 30.9). Logistic regression was the most accurate machine learning model for predicting frequent exacerbators (AUC = 0.80). CONCLUSIONS Patients admitted for asthma are predominately female, obese and non-eosinophilic. Patients who require multiple admissions per year have poorer asthma control at baseline. Machine learning algorithms can predict frequent exacerbators using clinical data available in primary care. Instead of simply increasing the dose of corticosteroids, multidisciplinary management targeting Th2-low inflammation should be considered for these patients.
Collapse
Affiliation(s)
- Sachin Ananth
- West Hertfordshire Hospitals NHS Trust, Watford, Hertfordshire, UK
| | - Alessio Navarra
- West Hertfordshire Hospitals NHS Trust, Watford, Hertfordshire, UK
| | | |
Collapse
|
16
|
Chen X, Yue R, Li X, Ye W, Gu W, Guo X. Surfactant protein A modulates the activities of the JAK/STAT pathway in suppressing Th1 and Th17 polarization in murine OVA-induced allergic asthma. J Transl Med 2021; 101:1176-1185. [PMID: 34108631 DOI: 10.1038/s41374-021-00618-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Asthma is an allergic inflammatory lung disease affecting nearly 300 million people worldwide. To better understand asthma, new regulators must be identified. We conducted a study to investigate the effect and mechanisms of action of surfactant protein A (SPA) in OVA-induced asthmatic mice. Treatment with SPA delayed the onset of asthma, decreased its severity, as well as notably suppressed pro-inflammatory cytokine production. Furthermore, SPA-treated mice possessed more leukocytes; more CD4+ T cells infiltrated the spleen in the SPA-treated mice than in the control mice, and there were decreased percentages of Th1 and Th17 cells in vivo. In addition, expression levels of the T-bet (Th1 transcription factor) and RORγt (Th17 transcription factor) genes were significantly downregulated by SPA treatment. Moreover, SPA reduced the production and mRNA expression of pro-inflammatory cytokine mRNAs in activated T cells in vivo. Mechanistically, SPA could inhibit STAT1/4 and STAT3 phosphorylation, resulting in the differentiation of Th1 and suppression of Th17 cells, respectively. In the presence of CD3/CD28 expression, STAT1/4 and STAT3 were activated but suppressed by SPA, which was responsible for the augmentation of Th1 and Th17 differentiation. This result showed that SPA can effectively modulate the JAK/STAT pathway by suppressing Th1 and Th17 differentiation, thus preventing asthma. The present study reveals the novel immunomodulatory activity of SPA and highlights the importance of further investigating the effects of SPA on asthma.
Collapse
Affiliation(s)
- Xi Chen
- Department of Respirology Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Rongcai Yue
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xiaoming Li
- Department of Respirology Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Wenjing Ye
- Department of Respirology Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Wen Gu
- Department of Respirology Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
| | - Xuejun Guo
- Department of Respirology Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
| |
Collapse
|
17
|
Kwon Y, Kim M, Kim Y, Jeong MS, Jung HS, Jeoung D. EGR3-HDAC6-IL-27 Axis Mediates Allergic Inflammation and Is Necessary for Tumorigenic Potential of Cancer Cells Enhanced by Allergic Inflammation-Promoted Cellular Interactions. Front Immunol 2021; 12:680441. [PMID: 34234781 PMCID: PMC8257050 DOI: 10.3389/fimmu.2021.680441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to investigate mechanisms of allergic inflammation both in vitro and in vivo in details. For this, RNA sequencing was performed. Early growth response 3 gene (Egr3) was one of the most highly upregulated genes in rat basophilic leukemia (RBL2H3) cells stimulated by antigen. The role of Egr3 in allergic inflammation has not been studied extensively. Egr3 was necessary for passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA). Egr3 promoter sequences contained potential binding site for NF-κB p65. NF-κB p65 directly regulated Egr3 expression and mediated allergic inflammation in vitro. Histone deacetylases (HDACs) is known to be involved in allergic airway inflammation. HDAC6 promoter sequences contained potential binding site for EGR3. EGR3 showed binding to promoter sequences of HDAC6. EGR3 was necessary for increased expression of histone deacetylase 6 (HDAC6) in antigen-stimulated RBL2H3 cells. HDAC6 mediated allergic inflammation in vitro and PSA. TargetScan analysis predicted that miR-182-5p was a negative regulator of EGR3. Luciferase activity assay confirmed that miR-182-5p was a direct regulator of EGR3. MiR-182-5p mimic inhibited allergic inflammation both in vitro and in vivo. Cytokine array showed that HDAC6 was necessary for increased interleukin-27 (IL-27) expression in BALB/C mouse model of PSA. Antigen stimulation did not affect expression of EBI3, another subunit of IL-27 in RBL2H3 cells or BALB/C mouse model of PCA or PSA. IL-27 receptor alpha was shown to be able to bind to HDAC6. IL-27 p28 mediated allergic inflammation in vitro, PCA, and PSA. Mouse recombinant IL-27 protein promoted features of allergic inflammation in an antigen-independent manner. HDAC6 was necessary for tumorigenic and metastatic potential enhanced by PSA. PSA enhanced the metastatic potential of mouse melanoma B16F1 cells in an IL-27-dependent manner. Experiments employing culture medium and mouse recombinant IL-27 protein showed that IL-27 mediated and promoted cellular interactions involving B16F1 cells, lung macrophages, and mast cells during allergic inflammation. IL-27 was present in exosomes of antigen-stimulated RBL2H3 cells. Exosomes from antigen-stimulated RBL2H3 cells enhanced invasion of B16F1 melanoma cells in an IL-27-dependemt manner. These results present evidence that EGR3-HDAC6-IL-27 axis can regulate allergic inflammation by mediating cellular interactions.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Misun Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea.,Chuncheon Center, Korea Basic Science Institute, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
18
|
Jiang T, Li Z, Zhao D, Hui B, Zheng Z. SOX18 enhances the proliferation and migration of airway smooth muscle cells induced by tumor necrosis factor-α via the regulation of Notch1 signaling. Int Immunopharmacol 2021; 96:107746. [PMID: 34004439 DOI: 10.1016/j.intimp.2021.107746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Childhood asthma is a frequent chronic disease of pediatric populations. The excessive proliferation and migration of airway smooth muscle cells contribute to airway remodeling during asthma pathogenesis. Sex-determining region on the Y chromosome-related high mobility group box 18 (SOX18) has been reported to be over-expressed in asthma. However, whether SOX18 plays a role in modulating the airway remodeling of asthma is not fully understood. The purposes of this work were to assess the potential role of SOX18 in modulating airway remodeling using tumor necrosis factor-α (TNF-α)-stimulated airway smooth muscle cells in vitro. Our results showed that SOX18 expression was increased following TNF-α stimulation in airway smooth muscle cells. The silencing of SOX18 markedly prohibited the proliferation and migration of airway smooth muscle cells induced by TNF-α, whilst the over-expression of SOX18 produced the opposite effects. Further investigation revealed that SOX18 promoted the expression of Notch1, and enhanced the activation of Notch1 signaling in airway smooth muscle cells stimulated by TNF-α. The inhibition of Notch1 markedly diminished SOX18-over-expression-evoked promotion effects on TNF-α-induced proliferation and migration of airway smooth muscle cells. In addition, the reactivation of Notch1 signaling markedly reversed the SOX18-silencing-induced suppressive effect on the TNF-α-induced proliferation and the migration of airway smooth muscle cells. In summary, the findings of this work demonstrate that SOX18 regulates the proliferation and migration of airway smooth muscle cells induced by TNF-α via the modulation of Notch1 signaling. This study indicates a potential role for SOX18 in promoting airway remodeling during asthma pathogenesis.
Collapse
Affiliation(s)
- Te Jiang
- Pediatrics, Northwest Women's and Children's Hospital, Xi'an 610113, China
| | - Zhankui Li
- Pediatrics, Northwest Women's and Children's Hospital, Xi'an 610113, China.
| | - Di Zhao
- Pediatrics, Northwest Women's and Children's Hospital, Xi'an 610113, China
| | - Bengang Hui
- Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Zhiyuan Zheng
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
19
|
Zhou J, Zhang N, Zhang W, Lu C, Xu F. The YAP/HIF-1α/miR-182/EGR2 axis is implicated in asthma severity through the control of Th17 cell differentiation. Cell Biosci 2021; 11:84. [PMID: 33980319 PMCID: PMC8117288 DOI: 10.1186/s13578-021-00560-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Asthma is a heterogeneous chronic inflammatory disease of the airway, involving reversible airflow limitation and airway remodeling. T helper 17 (Th17) cells play an important role in the pathogenesis of allergic asthma. However, there is limited understanding of the signaling pathways controlling Th17 cell differentiation in asthma. The aim of this study was to investigate if the Yes-associated protein (YAP)/hypoxia inducible factor-1α (HIF-1α)/microRNA-182 (miR-182)/early growth response 2 (EGR2) axis is involved in mediating Th17 cell differentiation and disease severity in asthma. METHODS The study included 29 pediatric patients with asthma, 22 healthy volunteers, ovalbumin-induced murine asthma models, and mouse naive CD4+ T cells. The subpopulation of Th17 cells was examined by flow cytometry. The levels of interleukin-17A were determined by enzyme linked immunosorbent assay. Chromatin immunoprecipitation-quantitative polymerase chain reaction assays and dual-luciferase reporter gene assays were performed to examine interactions between HIF-1α and miR-182, and between miR-182 and EGR2. RESULTS YAP, HIF-1α, and miR-182 were upregulated but EGR2 was downregulated in human and mouse peripheral blood mononuclear cells from the asthma group. Abundant expression of YAP and HIF-1α promoted miR-182 expression and then inhibited EGR2, a target of miR-182, thus enhancing Th17 differentiation and deteriorating asthma and lipid metabolism dysfunction. In addition, in vivo overexpression of EGR2 countered the promoting effect of the YAP/HIF-1α/miR-182 axis on asthma and lipid metabolism dysfunction. CONCLUSION These results indicate that activation of the YAP/HIF-1α/miR-182/EGR2 axis may promote Th17 cell differentiation, exacerbate asthma development, and aggravate lipid metabolism dysfunction, thus suggesting a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Street, Donghu District, Nanchang, 330006, People's Republic of China
| | - Ning Zhang
- Department of Imaging, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Street, Donghu District, Nanchang, 330006, People's Republic of China
| | - Caiju Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Street, Donghu District, Nanchang, 330006, People's Republic of China
| | - Fei Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Street, Donghu District, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
20
|
He Z, Wu J, Zeng X, Bao H, Liu X. Role of the Notch ligands Jagged1 and Delta4 in Th17/Treg immune imbalance in a mouse model of chronic asthma. Exp Lung Res 2021; 47:289-299. [PMID: 34096812 DOI: 10.1080/01902148.2021.1933653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Asthma is associated with a T helper (Th)17/regulatory T (Treg) cells immune imbalance where the Notch signaling pathway contributes vitally. This study aimed to explore the role of Notch ligands Jagged1 and Delta4 in the Th17/Treg immune imbalance of chronic asthmatic mice. METHODS The experimental animals were randomly assigned to the Saline, ovalbumin (OVA), and OVA + γ-secretase inhibitor (GSI) groups. A mouse model of chronic asthma was induced by OVA sensitization and challenge. GSI was injected intraperitoneally before the OVA challenge in the OVA + GSI group. Lung function, lung histopathology and immunohistochemistry to assess airway inflammation, enzyme-linked immunosorbent assay to measure cytokines levels, flow cytometry to measure the proportions of Th17 (Th17%) and Treg% in CD4+T cells, quantitative real-time polymerase chain reaction and western blot to measure mRNA and protein levels of Jagged1 and Delta4 in lung tissue, and correlation analysis were performed. RESULTS Lung function and histopathology and IL-4, IL-13, and IFN-γ levels in the bronchoalveolar lavage fluid (BALF) of chronic asthmatic mice showed characteristic changes of asthma. The Th17%, Th17/Treg ratio, BALF and serum IL-17 levels, and IL-17/IL-10 ratio increased significantly in the OVA group, while the Treg% and IL-10 level significantly decreased. mRNA and protein expression levels of Jagged1 and Delta4 increased significantly. GSI could reduce the Th17%, Th17/Treg ratio, IL-17, IL-17/IL-10 ratio, and Jagged1 expression in chronic asthmatic mice. The mRNA and protein levels of Jagged1 and Delta4 were positively correlated with the Th17/Treg ratio in the OVA group, while only those of Jagged1 were positively correlated with the Th17/Treg ratio in the OVA + GSI group. CONCLUSIONS In chronic asthmatic mice, the Th17/Treg ratio increased, and the Notch ligands Jagged1 and Delta4 were overactive and positively regulated the Th17/Treg imbalance. GSI partially inhibited Jagged1 and relieved the Th17/Treg imbalance.
Collapse
Affiliation(s)
- Zhen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Jirong Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoli Zeng
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hairong Bao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoju Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
21
|
Deng Y, Chen S, Song S, Huang Y, Chen R, Tao A. Anti-DLL4 ameliorates toluene diisocyanate-induced experimental asthma by inhibiting Th17 response. Int Immunopharmacol 2021; 94:107444. [PMID: 33578263 DOI: 10.1016/j.intimp.2021.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/22/2022]
Abstract
Toluene diisocyanate (TDI) exhibits an ability to induce steroid insensitive asthma with the involvement of Th17 cells. And emerging evidence has indicated that DLL4 signaling promotes Th17 differentiation through directly upregulating Rorc and IL-17 transcription. Thus, we sought to evaluate the effects of DLL4 blocking antibody on TDI-induced asthma model. Female BALB/c mice were sensitized and challenged with TDI to generate an asthma model. TDI-exposed mice were intraperitoneally injected with anti-DLL4 antibody and then analyzed for various parameters of the airway inflammatory responses. Increased expression of DLL4 in spleen and lung was detected in TDI-exposed mice. Furthermore, anti-DLL4 treatment alleviated TDI-induced airway hyperreactivity (AHR), airway inflammation, airway epithelial injury and airway smooth muscle (ASM) thickening. In the meantime, neutralizing DLL4 also blunted Th17 response via downregulation of ROR-γt expression, while had no effect on Th2 cells and regulatory T (Treg) cells. Overall, anti-DLL4 ameliorated TDI-induced experimental asthma by inhibiting Th17 response, implying the feasibility of targeting DLL4 for therapy of Th17-predominant severe asthma.
Collapse
Affiliation(s)
- Yao Deng
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China
| | - Shuyu Chen
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China; Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shijie Song
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China
| | - Yin Huang
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Ailin Tao
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Pediatric obese asthma is a complex disease that remains poorly understood. The increasing worldwide incidence of both asthma and obesity over the last few decades, their current high prevalence and the challenges in treating obese asthmatic patients all highlight the importance of a better understanding of the pathophysiological mechanisms in obese asthma. While it is well established that patients with obesity are at an increased risk of developing asthma, the mechanisms by which obesity drives the onset of asthma, and modifies existing asthma, remain unclear. Here, we will focus on mechanisms by which obesity alters immune function in asthma. RECENT FINDINGS Lung parenchyma has an altered structure in some pediatric obese asthmatics, known as dysanapsis. Central adiposity is linked to reduced pulmonary function and a better predictor of asthma risk in children than BMI. Obesity in young children is associated with an increased risk of developing asthma, as well as early puberty, and hormonal alterations are implicated in obese asthma. Obesity and asthma each yield immunometabolic dysregulation separately and we are learning more about alterations in these pathways in pediatric obese asthma and the potential impact of bariatric surgery on those processes. SUMMARY The recent progress in clarifying the connections between childhood obesity and asthma and their combined impacts on immune function moves us closer to the goals of improved understanding of the pathophysiological mechanisms underpinning obese asthma and improved therapeutic target selection. However, this common inflammatory disease remains understudied, especially in children, and much remains to be learned.
Collapse
Affiliation(s)
- Ceire Hay
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
| | - Sarah E. Henrickson
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Miethe S, Karsonova A, Karaulov A, Renz H. Obesity and asthma. J Allergy Clin Immunol 2021; 146:685-693. [PMID: 33032723 DOI: 10.1016/j.jaci.2020.08.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
Obesity has been well recognized as an important comorbidity in patients with asthma, representing a unique phenotype and endotype. This association indicates a close relationship between metabolic and inflammatory dysregulation. However, the detailed organ-organ, cellular, and molecular interactions are not completely resolved. Because of that, the relationship between obesity and asthma remains unclear. In this article, clinical and epidemiological studies, as well as data from experimental animal work, are being summarized to provide a state of the art update on this important topic. Much more work is needed, particularly mechanistic, to fully understand the interaction between obesity and asthma and to develop novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Sarah Miethe
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany
| | - Antonina Karsonova
- Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany; German Center for Lung Research (DZL).
| |
Collapse
|
24
|
Meng YF, Pu Q, Dai SY, Ma Q, Li X, Zhu W. Nicotinamide Mononucleotide Alleviates Hyperosmolarity-Induced IL-17a Secretion and Macrophage Activation in Corneal Epithelial Cells/Macrophage Co-Culture System. J Inflamm Res 2021; 14:479-493. [PMID: 33658825 PMCID: PMC7917392 DOI: 10.2147/jir.s292764] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/27/2021] [Indexed: 01/06/2023] Open
Abstract
Background Hyperosmosis stress (HS) was a key pathological factor in the development of dry eye disease (DED). Nicotinamide mononucleotide (NMN) demonstrated protective effects in the corneal damage, however, its role in the HS-induced DED remained unclear. Methods A NaCl based HS in-vitro model (500 mOsm) was generated and used in a co-culture system including corneal epithelial cells (CEC) and macrophage cell line RAW264.7. The effect of NMN on NAD+ metabolism and the expression of HS biomarker, tonicity-responsive element binding protein (TonEBP), was studied in the CEC. The cellular activity, including cell viability, apoptosis status and lactate dehydrogenase (LDH) release through trypan blue staining, flow cytometry and LDH assay, respectively. The mitochondrial membrane potential (MMP) assay would be conducted using the JC1 kit. The expression of IL-17a were detected using RT-PCR, ELISA and Western blot. After co-culture with the CEC in different group for 24 h, the phagocytosis ability and macrophage polarization were assessed in RAW264.7 cells co-cultured with CEC with or without HS or NMN treatment. Besides, the involvement of Notch pathway in the RAW264.7 would be analyzed. The potential involvement of Sirtuin 1 (SIRT1) and IL-17a in the crosstalk between CEC and macrophage was studied with SIRT1 inhibitor EX 527 and anti-IL-17a monoclonal antibody, respectively. Results NMN treatment increased NAD+ concentration and thus improved cell viability, reduced apoptotic rate and decreased the LDH release in HS-treated CEC. Besides, NMN alleviated HS-induced MMP, intracellular ROS and LDH release. Besides, it was confirmed NMN improve SIRT1 function and decreased the HS related IL-17a expression in CEC and then alleviated macrophage phagocytosis ability and M1 polarization based on a CEC-macrophage co-culture system. Moreover, NMN treatment of CEC in the CEC could moderate the subsequent macrophage activation through Notch pathway. SIRT1 activation and IL-17a inhibition was regarded as key progress in the function of NMN based on the application of EX 527 and anti-IL-17a antibody in the CEC-macrophage co-culture system. Conclusion The findings demonstrated that NMN could alleviated HS-induced DED status through regulating the CEC/macrophage interaction. Our data pointed to the role of SIRT1, IL-17a and Notch pathway in the function of NMN and then provided updated knowledge of potential NMN application in the management of DED.
Collapse
Affiliation(s)
- Yi-Fang Meng
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, People's Republic of China
| | - Qi Pu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - San-You Dai
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qian Ma
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinyu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Zhu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, People's Republic of China
| |
Collapse
|
25
|
Zeng Z, Ma W, Zhao R, Dong X. Airway exposure to perfluorooctanoate exacerbates airway hyperresponsiveness and downregulates glucocorticoid receptor expression in asthmatic mice. Transl Pediatr 2021; 10:323-332. [PMID: 33708518 PMCID: PMC7944165 DOI: 10.21037/tp-20-246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Multiple environmental risk factors play a vital role in the pathogenesis of asthma, which contribute to the phenotypic expression of asthma. Perfluorooctanoate (PFOA) is the most common and abundant perfluorocarbon (PFC) in humans, and it has been detected in water and the atmosphere worldwide. Glucocorticoid receptor (GR) is considered to exert a protective effect on asthma and is associated with the sensitivity to glucocorticoids. Dermal or oral exposure to PFOA has been shown to contribute various effects on airway inflammation in individuals with ovalbumin (OVA)-induced asthma. Notably, airway exposure has a critical contribution to the pathogenesis of asthma. However, the effect of airway exposure to PFOA on airway hyperresponsiveness (AHR) in patients with asthma is not currently understood. METHODS BALB/c mice were administered OVA to induce asthma. PFOA was then administered intratracheally to OVA-induced mice for seven days. Then we assessed the effect of airway exposure to PFOA on AHR and the regulation of the GR expression in asthmatic mice. RESULTS The results showed aggravated AHR and T helper type 2 (Th2) airway inflammation in asthmatic mice. Furthermore, these mice show a substantial decrease in the expression of the GR mRNA and protein. CONCLUSIONS These data strongly suggest that acute airway exposure to PFOA leads to Th2-related AHR and decreases GR expression, which may increase the difficulty in the treatment of asthma.
Collapse
Affiliation(s)
- Zeyu Zeng
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weihui Ma
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ran Zhao
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Dong
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Li X, Zou F, Lu Y, Fan X, Wu Y, Feng X, Sun X, Liu Y. Notch1 contributes to TNF-α-induced proliferation and migration of airway smooth muscle cells through regulation of the Hes1/PTEN axis. Int Immunopharmacol 2020; 88:106911. [PMID: 32871474 DOI: 10.1016/j.intimp.2020.106911] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
Abstract
Notch1 has been implicated in asthma pathogenesis. However, the function of Notch1 in regulating airway smooth muscle (ASM) cell proliferation and migration during airway remodeling of asthma remains unknown. Using an in vitro model induced by tumor necrosis factor (TNF)-α, we reported in this study that Notch1 participated in TNF-α-induced proliferation and migration of ASM cells. Our results demonstrated that Notch1 expression was significantly upregulated in ASM cells exposed to TNF-α. Notch1 inhibition significantly repressed TNF-α-induced ASM cell proliferation and migration, while Notch1 overexpression promoted the opposite effect. Moreover, Notch1 inhibition downregulated the expression of Notch-1 intracellular domain (NICD) and Hes1, while upregulated PTEN expression in TNF-α-exposed cells. Notably, Hes1 overexpression partially reversed the Notch1-inhibition-mediated inhibitory effect on TNF-α-induced ASM cell proliferation and migration. In addition, the promoting effect of Notch1 inhibition on PTEN expression was markedly abrogated by Hes1 overexpression. Overall, these findings demonstrated that Notch1 inhibition repressed TNF-α-induced ASM cell proliferation and migration by modulating the Hes1/PTEN signaling axis, a finding that highlights the involvement of Notch1/Hes1/PTEN in regulating airway remodeling of asthma.
Collapse
Affiliation(s)
- Xudong Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Yiyi Lu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Xinping Fan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Yuanyuan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Xiaoli Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Xiuzhen Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China.
| |
Collapse
|
27
|
Lu Z, Meng S, Chang W, Fan S, Xie J, Guo F, Yang Y, Qiu H, Liu L. Mesenchymal stem cells activate Notch signaling to induce regulatory dendritic cells in LPS-induced acute lung injury. J Transl Med 2020; 18:241. [PMID: 32546185 PMCID: PMC7298963 DOI: 10.1186/s12967-020-02410-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been shown to alleviate acute lung injury (ALI) and induce the production of regulatory dendritic cells (DCregs), but the potential link between these two cell types remains unclear. The goal of this study was to investigate the effect and mechanism of MSC-induced regulatory dendritic cells in ALI mice. Material/methods In vivo experiments, C57BL/6 wild-type male mice were sacrificed at different times after intratracheal injection of LPS to observe changes in lung DC maturation and pathological damage. MSCs, DCregs or/and carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled DCs were administered to the mice by tail vein, and flow cytometry was performed to measure the phenotype of lung DCs and T cells. Lung injury was estimated by the lung wet weight/body weight ratio and histopathological analysis. In vitro, Western blotting or flow cytometry was used to detect the expression of Notch ligand or receptor in MSCs or DCs after coculture or LPS stimulation. Finally, in vivo and in vitro, we used the Notch signaling inhibitor DAPT to verify the effect of the Notch pathway on MSC-induced DCregs and their pulmonary protection. Results We showed significant accumulation and maturation of lung DCs 2 h after intratracheal injection of LPS, which were positively correlated with the lung pathological injury score. MSC treatment alleviated ALI lung injury, accompanied by a decrease in the number and maturity of classical DCs in the lungs. CFSE-labeled DCs migrated to the lungs of ALI mice more than those of the normal group, and the elimination of CFSE-labeled DCs in the blood was slower. MSCs inhibited the migration of CFSE-labeled DCs to the lung and promoted their elimination in the blood. DCregs, which are obtained by contact coculture of mDCs with MSCs, expressed reduced levels of MHCII, CD86, CD40 and increased levels of PD-L1, and had a reduced ability to stimulate lymphocyte proliferation and activation (expression of CD44 and CD69). mDCs expressing Notch2 significantly increased after coculture with MSCs or rhJagged1, and MSCs expressed more Jagged1 after LPS stimulation. After stimulation of mDCs with recombinant Jagged1, DCs with low expression of MHCII, CD86 and CD40 were also induced, and the effects of both rhJagged1 and MSCs on DCs were blocked by the Notch inhibitor DAPT. Intra-airway DAPT reversed the inhibitory effect of mesenchymal stem cells on DC recruitment to the lungs and its maturation. Conclusions Our results suggested that the recruitment and maturation of lung DCs is an important process in early ALI, MSCs attenuate LPS-induced ALI by inducing the production of DCregs by activating Notch signaling.
Collapse
Affiliation(s)
- Zhonghua Lu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shanshan Meng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Wei Chang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shanwen Fan
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Jianfeng Xie
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Fengmei Guo
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China.
| |
Collapse
|