1
|
Giroud C, Szommer T, Coxon C, Monteiro O, Grimes T, Zarganes-Tzitzikas T, Christott T, Bennett J, Buchan K, Brennan PE, Fedorov O. Covalent Inhibitors of S100A4 Block the Formation of a Pro-Metastasis Non-Muscle Myosin 2A Complex. J Med Chem 2024. [PMID: 39425667 DOI: 10.1021/acs.jmedchem.4c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The S100 protein family functions as protein-protein interaction adaptors regulated by Ca2+ binding. Formation of various S100 complexes plays a central role in cell functions, from calcium homeostasis to cell signaling, and is implicated in cell growth, migration, and tumorigenesis. We established a suite of biochemical and cellular assays for small molecule screening based on known S100 protein-protein interactions. From 25 human S100 proteins, we focused our attention on S100A4 because of its well-established role in cancer progression and metastasizes by interacting with nonmuscle myosin II (NMII). We identified several potent and selective inhibitors of this interaction and established the covalent nature of binding, confirmed by mass spectrometry and crystal structures. 5b showed on-target activity in cells and inhibition of cancer cell migration. The identified S100A4 inhibitors can serve as a basis for the discovery of new cancer drugs operating via a novel mode of action.
Collapse
Affiliation(s)
- Charline Giroud
- Centre for Medicines Discovery, Nuffield Department of Medicine, NDM Research building, Old Road Campus, Oxford OX3 7FZ, U.K
| | - Tamas Szommer
- Centre for Medicines Discovery, Nuffield Department of Medicine, NDM Research building, Old Road Campus, Oxford OX3 7FZ, U.K
| | - Carmen Coxon
- Centre for Medicines Discovery, Nuffield Department of Medicine, NDM Research building, Old Road Campus, Oxford OX3 7FZ, U.K
| | - Octovia Monteiro
- Centre for Medicines Discovery, Nuffield Department of Medicine, NDM Research building, Old Road Campus, Oxford OX3 7FZ, U.K
| | - Thomas Grimes
- Centre for Medicines Discovery, Nuffield Department of Medicine, NDM Research building, Old Road Campus, Oxford OX3 7FZ, U.K
- Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, Old Road Campus, Oxford OX3 7FZ, U.K
| | - Tryfon Zarganes-Tzitzikas
- Centre for Medicines Discovery, Nuffield Department of Medicine, NDM Research building, Old Road Campus, Oxford OX3 7FZ, U.K
- Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, Old Road Campus, Oxford OX3 7FZ, U.K
| | - Thomas Christott
- Centre for Medicines Discovery, Nuffield Department of Medicine, NDM Research building, Old Road Campus, Oxford OX3 7FZ, U.K
| | - James Bennett
- Centre for Medicines Discovery, Nuffield Department of Medicine, NDM Research building, Old Road Campus, Oxford OX3 7FZ, U.K
| | - Karly Buchan
- Centre for Medicines Discovery, Nuffield Department of Medicine, NDM Research building, Old Road Campus, Oxford OX3 7FZ, U.K
| | - Paul E Brennan
- Centre for Medicines Discovery, Nuffield Department of Medicine, NDM Research building, Old Road Campus, Oxford OX3 7FZ, U.K
| | - Oleg Fedorov
- Centre for Medicines Discovery, Nuffield Department of Medicine, NDM Research building, Old Road Campus, Oxford OX3 7FZ, U.K
| |
Collapse
|
2
|
Lin Y, Chen X, Lin L, Xu B, Zhu X, Lin X. Sesamolin serves as an MYH14 inhibitor to sensitize endometrial cancer to chemotherapy and endocrine therapy via suppressing MYH9/GSK3β/β-catenin signaling. Cell Mol Biol Lett 2024; 29:63. [PMID: 38698330 PMCID: PMC11067147 DOI: 10.1186/s11658-024-00583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Endometrial cancer (EC) is one of the most common gynecological cancers. Herein, we aimed to define the role of specific myosin family members in EC because this protein family is involved in the progression of various cancers. METHODS Bioinformatics analyses were performed to reveal EC patients' prognosis-associated genes in patients with EC. Furthermore, colony formation, immunofluorescence, cell counting kit 8, wound healing, and transwell assays as well as coimmunoprecipitation, cycloheximide chase, luciferase reporter, and cellular thermal shift assays were performed to functionally and mechanistically analyze human EC samples, cell lines, and a mouse model, respectively. RESULTS Machine learning techniques identified MYH14, a member of the myosin family, as the prognosis-associated gene in patients with EC. Furthermore, bioinformatics analyses based on public databases showed that MYH14 was associated with EC chemoresistance. Moreover, immunohistochemistry validated MYH14 upregulation in EC cases compared with that in normal controls and confirmed that MYH14 was an independent and unfavorable prognostic indicator of EC. MYH14 impaired cell sensitivity to carboplatin, paclitaxel, and progesterone, and increased cell proliferation and metastasis in EC. The mechanistic study showed that MYH14 interacted with MYH9 and impaired GSK3β-mediated β-catenin ubiquitination and degradation, thus facilitating the Wnt/β-catenin signaling pathway and epithelial-mesenchymal transition. Sesamolin, a natural compound extracted from Sesamum indicum (L.), directly targeted MYH14 and attenuated EC progression. Additionally, the compound disrupted the interplay between MYH14 and MYH9 and repressed MYH9-regulated Wnt/β-catenin signaling. The in vivo study further verified sesamolin as a therapeutic drug without side effects. CONCLUSIONS Herein, we identified that EC prognosis-associated MYH14 was independently responsible for poor overall survival time of patients, and it augmented EC progression by activating Wnt/β-catenin signaling. Targeting MYH14 by sesamolin, a cytotoxicity-based approach, can be applied synergistically with chemotherapy and endocrine therapy to eventually mitigate EC development. This study emphasizes MYH14 as a potential target and sesamolin as a valuable natural drug for EC therapy.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Xiao Chen
- Department of Intensive Care Unit, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Intensive Care Unit, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Linping Lin
- Hunan Institute of Engineering, Xiangtan, 411100, Hunan, China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Gulou District, Fuzhou, 350001, Fujian, China.
| | - Xiaofeng Zhu
- Department of Oral Maxillo-Facial Surgery, The First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijing District, Fuzhou, 350005, Fujian, China.
- Department of Oral Maxillo-Facial Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Xian Lin
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, No. 1120 Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China.
- Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
3
|
Nakagawa M, Matsumoto T, Yokoi A, Hashimura M, Oguri Y, Konno R, Ishibashi Y, Ito T, Ohhigata K, Harada Y, Fukagawa N, Kodera Y, Saegusa M. Interaction between membranous EBP50 and myosin 9 as a favorable prognostic factor in ovarian clear cell carcinoma. Mol Oncol 2023; 17:2168-2182. [PMID: 37539980 PMCID: PMC10552901 DOI: 10.1002/1878-0261.13503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
Ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) is a scaffold protein that is required for epithelial polarity. Knockout (KO) of membranous EBP50 (Me-EBP50) in ovarian clear cell carcinoma (OCCC) cells induced an epithelial-mesenchymal transition (EMT)-like phenotype, along with decreased proliferation, accelerated migration capability, and induction of cancer stem cell (CSC)-like properties. Shotgun proteomics analysis of proteins that co-immunoprecipitated with EBP50 revealed that Me-EBP50 strongly interacts with myosin 9 (MYH9). Specific inhibition of MYH9 with blebbistatin phenocopied Me-EBP50 KO, and blebbistatin treatment potentiated the effects of Me-EBP50 KO. In OCCC cells from clinical samples, Me-EBP50 and MYH9 were co-localized at the apical plasma membrane. Patients with a combination of Me-EBP50-high and MYH9-high scores had the best prognosis for overall and progression-free survival. Our data suggest that Me-EBP50 has tumor-suppressive effects through the establishment and maintenance of epithelial polarization. By contrast, loss of Me-EBP50 expression induces EMT-like phenotypes, probably due to MYH9 dysfunction; this results in increased cell mobility and enhanced CSC-like properties, which in turn promote OCCC progression.
Collapse
Affiliation(s)
- Mayu Nakagawa
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Toshihide Matsumoto
- Department of PathologyKitasato University School of Allied Health ScienceSagamiharaJapan
| | - Ako Yokoi
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Miki Hashimura
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Yasuko Oguri
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Ryo Konno
- Center for Disease Proteomics, School of ScienceKitasato UniversitySagamiharaJapan
| | - Yu Ishibashi
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Takashi Ito
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Kensuke Ohhigata
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Yohei Harada
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Naomi Fukagawa
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Yoshio Kodera
- Center for Disease Proteomics, School of ScienceKitasato UniversitySagamiharaJapan
| | - Makoto Saegusa
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| |
Collapse
|
4
|
Ichinose Y, Hasebe T, Hirasaki M, Sakakibara A, Yokogawa H, Nukui A, Hiratsuka M, Fujimoto A, Iso C, Wakui N, Shibasaki S, Kamada K, Suzuki N, Kamakura Y, Yasuda M, Aya A, Shimada H, Matsuura K, Ishiguro H, Osaki A, Saeki T. Vimentin-positive invasive breast carcinoma of no special type: A breast carcinoma with lethal biological characteristics. Pathol Int 2023; 73:413-433. [PMID: 37378453 DOI: 10.1111/pin.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Vimentin is a stable mesenchymal immunohistochemical marker and is widely recognized as a major marker of mesenchymal tumors. The purpose of the present study was to investigate if the vimentin expression status might serve as a significant predictor of outcomes in patients with invasive breast carcinoma of no special type (IBC-NST) and to investigate, by comprehensive RNA sequencing analyses, the mechanisms involved in the heightened malignant potential of vimentin-positive IBC-NSTs. This study, conducted using the data of 855 patients with IBC-NST, clearly identified vimentin expression status as a very important independent biological parameter for accurately predicting the outcomes in patients with IBC-NST. RNA sequence analyses clearly demonstrated significant upregulation of coding RNAs known to be closely associated with cell proliferation or cellular senescence, and significant downregulation of coding RNAs known to be closely associated with transmembrane transport in vimentin-positive IBC-NSTs. We conclude that vimentin-positive IBC-NSTs show heightened malignant biological characteristics, possibly attributable to the upregulation of RNAs closely associated with proliferative activity and cellular senescence, and downregulation of RNAs closely associated with transmembrane transport in IBC-NSTs.
Collapse
Affiliation(s)
- Yuki Ichinose
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Takahiro Hasebe
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Masataka Hirasaki
- Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Ayaka Sakakibara
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Hideki Yokogawa
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Asami Nukui
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Miyuki Hiratsuka
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Akihiro Fujimoto
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Chihiro Iso
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Noriko Wakui
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Satomi Shibasaki
- Community Health Science Center, Saitama Medical University, Iruma, Saitama, Japan
| | - Koichi Kamada
- Department of Pathology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Nobuyuki Suzuki
- Department of Pathology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Yasuo Kamakura
- Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Masanori Yasuda
- Department of Pathology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Asano Aya
- Department of Breast Oncology, Saitama Medical University, Iruma, Saitama, Japan
| | - Hiroko Shimada
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Kazuo Matsuura
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Hiroshi Ishiguro
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Akihiko Osaki
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Toshiaki Saeki
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| |
Collapse
|
5
|
Kobayashi Y, Yokoi A, Hashimura M, Oguri Y, Konno R, Matsumoto T, Tochimoto M, Nakagawa M, Ishibashi Y, Ito T, Ohhigata K, Harada Y, Fukagawa N, Kodera Y, Saegusa M. Nucleobindin-2 mediates TGF-β1-driven phenotypes in ZEB1-high uterine carcinosarcoma. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00168-2. [PMID: 37169340 DOI: 10.1016/j.ajpath.2023.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a hallmark of uterine carcinosarcoma (UCS). Here, we used shotgun proteomics analysis to identify biomarkers associated with blebbistatin-mediated EMT in UCS, and found upregulation of nucleobindin-2 (NUCB2) in endometrial carcinoma (Em Ca) cells. Expression of N-cadherin, Snail, Slug, and ZEB1, was reduced in NUCB2 knockout Em Ca cells, whereas ZEB1, Twist1, and vimentin were upregulated in NUCB2-overexpressing Em Ca cells. NUCB2 knockout reduced cell proliferation and migration, whereas NUCB2 overexpression had the opposite effect. Treatment of Em Ca cells with TGF-β1 dramatically altered morphology toward a fibroblastic appearance; concomitantly, expression of NUCB2 and ZEB1 increased. The NUCB2 promoter was also activated by transfection of Smad2. In UCS tissues, NUCB2 expression was significantly higher in sarcomatous as compared to carcinomatous components; this was consistent with increased TGF-β1 mRNA expression in stromal and sarcomatous components as compared to carcinomatous components. In addition, NUCB2 score correlated positively with ZEB1 and vimentin scores, whereas ZEB1 score correlated positively with Slug and vimentin scores and inversely with the E-cadherin score. We therefore suggest that TGF-β-dependent upregulation of NUCB2 and ZEB1 contributes to the phenotypic characteristics of sarcomatous components in UCS.
Collapse
Affiliation(s)
- Yui Kobayashi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Ako Yokoi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Ryo Konno
- Center for Disease Proteomics, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan
| | - Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Allied Health Science,1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Masataka Tochimoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Mayu Nakagawa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Yu Ishibashi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Takashi Ito
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Kensuke Ohhigata
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Yohei Harada
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Naomi Fukagawa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshio Kodera
- Center for Disease Proteomics, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|
6
|
A Simplified and Effective Approach for the Isolation of Small Pluripotent Stem Cells Derived from Human Peripheral Blood. Biomedicines 2023; 11:biomedicines11030787. [PMID: 36979766 PMCID: PMC10045871 DOI: 10.3390/biomedicines11030787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Pluripotent stem cells are key players in regenerative medicine. Embryonic pluripotent stem cells, despite their significant advantages, are associated with limitations such as their inadequate availability and the ethical dilemmas in their isolation and clinical use. The discovery of very small embryonic-like (VSEL) stem cells addressed the aforementioned limitations, but their isolation technique remains a challenge due to their small cell size and their efficiency in isolation. Here, we report a simplified and effective approach for the isolation of small pluripotent stem cells derived from human peripheral blood. Our approach results in a high yield of small blood stem cell (SBSC) population, which expresses pluripotent embryonic markers (e.g., Nanog, SSEA-3) and the Yamanaka factors. Further, a fraction of SBSCs also co-express hematopoietic markers (e.g., CD45 and CD90) and/or mesenchymal markers (e.g., CD29, CD105 and PTH1R), suggesting a mixed stem cell population. Finally, quantitative proteomic profiling reveals that SBSCs contain various stem cell markers (CD9, ITGA6, MAPK1, MTHFD1, STAT3, HSPB1, HSPA4), and Transcription reg complex factors (e.g., STAT5B, PDLIM1, ANXA2, ATF6, CAMK1). In conclusion, we present a novel, simplified and effective isolating process that yields an abundant population of small-sized cells with characteristics of pluripotency from human peripheral blood.
Collapse
|
7
|
Bogani G, Ray-Coquard I, Concin N, Ngoi NYL, Morice P, Caruso G, Enomoto T, Takehara K, Denys H, Lorusso D, Coleman R, Vaughan MM, Takano M, Provencher DM, Sagae S, Wimberger P, Póka R, Segev Y, Kim SI, Kim JW, Candido Dos Reis FJ, Ramirez PT, Mariani A, Leitao M, Makker V, Abu-Rustum NR, Vergote I, Zannoni G, Tan D, McCormack M, Paolini B, Bini M, Raspagliesi F, Benedetti Panici P, Di Donato V, Muzii L, Colombo N, Pignata S, Scambia G, Monk BJ. Endometrial carcinosarcoma. Int J Gynecol Cancer 2023; 33:147-174. [PMID: 36585027 DOI: 10.1136/ijgc-2022-004073] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Endometrial carcinosarcoma is a rare and aggressive high-grade endometrial carcinoma with secondary sarcomatous trans-differentiation (conversion theory). The clinical presentation and diagnostic work-up roughly align with those of the more common endometrioid counterpart, although endometrial carcinosarcoma is more frequently diagnosed at an advanced stage. Endometrial carcinosarcoma is not a single entity but encompasses different histological subtypes, depending on the type of carcinomatous and sarcomatous elements. The majority of endometrial carcinosarcomas are characterized by p53 abnormalities. The proportion of POLE and microsatellite instablity-high (MSI-H) is directly related to the epithelial component, being approximately 25% and 3% in endometrioid and non-endometrioid components.The management of non-metastatic disease is based on a multimodal approach with optimal surgery followed by (concomitant or sequential) chemotherapy and radiotherapy, even for early stages. Palliative chemotherapy is recommended in the metastatic or recurrent setting, with carboplatin/paclitaxel doublet being the first-line regimen. Although the introduction of immunotherapy plus/minus a tyrosine kinase inhibitor shifted the paradigm of treatment of patients with recurrent endometrial cancer, patients with endometrial carcinosarcoma were excluded from most studies evaluating single-agent immunotherapy or the combination. However, the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) approved the use of pembrolizumab and lenvatinib in endometrial cancer (all histotypes) after progression on chemotherapy and single-agent immunotherapy in MSI-H cancers. In the era of precision medicine, emerging knowledge on molecular endometrial carcinosarcoma is opening new promising therapeutic options for more personalized treatment. The present review outlines state-of-the-art knowledge and future directions for patients with endometrial carcinosarcoma.
Collapse
Affiliation(s)
- Giorgio Bogani
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Nicole Concin
- Department of Gynecology and Obstetrics; Innsbruck Medical Univeristy, Innsbruck, Austria
| | | | - Philippe Morice
- Department of Surgery, Institut Gustave RoussT, Villejuif, France
| | - Giuseppe Caruso
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Rome, Italy
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Belgium
| | - Kazuhiro Takehara
- Department of Gynecologic Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Hannelore Denys
- Department of Medical Oncology, University Hospital Ghent, Gent, Belgium
| | | | - Robert Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michelle M Vaughan
- Department of Medical Oncology, Canterbury Regional Cancer and Haematology Service, Christchurch, New Zealand
| | - Masashi Takano
- Department of Obstetrics and Gynecology, National Defense Medical College, Tokorozawa, Medical, Japan
| | | | | | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Technische Universitat Dresden Medizinische Fakultat Carl Gustav Carus, Dresden, Germany
| | | | - Yakir Segev
- Department of Obstetrics and Gynecology, Carmel Hospital, Haifa, Israel
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| | | | - Pedro T Ramirez
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrea Mariani
- Department of Gynecologic Surgery, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Mario Leitao
- Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Vicky Makker
- Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Nadeem R Abu-Rustum
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Ignace Vergote
- Department of Gynecology and Obstetrics, Gynecologic Oncology, Leuven Cancer Institute, Catholic University Leuven, Leuven, Belgium
| | - Gianfranco Zannoni
- Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - David Tan
- National University Cancer Institute, Singapore
| | - Mary McCormack
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Biagio Paolini
- Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italy
| | - Marta Bini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Lombardia, Italy
| | | | | | - Violante Di Donato
- Department of Obstetrics and Gynecology, University Sapienza of Roma, Rome, Italy
| | - Ludovico Muzii
- Department of Maternal, Infantile, and Urological Sciences, Umberto I Hospital, Sapienza University of Rome, Roma, Italy
| | - Nicoletta Colombo
- Medical Gynecologic Oncology Unit; University of Milan Bicocca; Milan; Italy, European Institute of Oncology, Milano, Italy
| | - Sandro Pignata
- Department of Gynaecological Oncology, National Cancer Institute Napels, Naples, Italy
| | - Giovanni Scambia
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Bradley J Monk
- HonorHealth, University of Arizona, Creighton University, Phoenix, Arizona, USA
| |
Collapse
|
8
|
Liu M, Liu S, Li F, Li C, Chen S, Gao X, Wang X. The miR-124-3p regulates the allergic airway inflammation and remodeling in an ovalbumin-asthmatic mouse model by inhibiting S100A4. Immun Inflamm Dis 2023; 11:e730. [PMID: 36799806 PMCID: PMC9896513 DOI: 10.1002/iid3.730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Asthma is a chronic respiratory disease with an increasing incidence every year. microRNAs (miRNAs) have been demonstrated to have implications for asthma. However, limited information is available regarding the effect of miR-124-3p on this disease. Therefore, this study aimed to explore the possible effects of miR-124-3p and S100A4 on inflammation and epithelial-mesenchymal transition (EMT) in asthma using mouse models. METHOD Ovalbumin was used to induce asthmatic mouse models. Lung injury in mouse models was assessed, and the bronchoalveolar lavage fluid of mice was collected to determine the number of eosinophilic granulocytes and assess inflammation. The expression levels of miR-124-3p, S100A4, E-cadherin, N-cadherin, Snail1, vimentin, and TGF-β1/Smad2 signaling pathway-related proteins were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. In vitro experiments, cells were transfected with miR-124-3p mimics or inhibitors to test the expression of S100A4 by RT-qPCR and western blot analysis, and the mutual binding of miR-124-3p and S100A4 was validated by dual-luciferase reporter gene assay. RESULTS Overexpression of miR-124-3p or inhibition of S100A4 expression attenuated bronchial mucus secretion and collagenous fibers and suppressed inflammatory cell infiltration. Additionally, upon miR-124-3p overexpression or S100A4 suppression, eosinophilic granulocytes were decreased, interleukin-4 (IL-4) and IL-13 expression levels were reduced in the bronchoalveolar lavage fluid, serum total IgE level was reduced, and the TGF-β1/Smad2 signaling pathway was suppressed. Mechanically, a dual-luciferase reporter gene assay verified the binding relationship between miR-124-3p and S100A4. CONCLUSION miR-124-3p can negatively target S100A4 to attenuate inflammation in asthmatic mouse models by suppressing the EMT process and the TGF-β/smad2 signaling pathway.
Collapse
Affiliation(s)
- Min Liu
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Shuang Liu
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Fajiu Li
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Chenghong Li
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Shi Chen
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Xiaoyan Gao
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Xiaojiang Wang
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| |
Collapse
|
9
|
PTEN overexpression and nuclear β-catenin stabilization promote morular differentiation through induction of epithelial-mesenchymal transition and cancer stem cell-like properties in endometrial carcinoma. Cell Commun Signal 2022; 20:181. [PMID: 36411429 PMCID: PMC9677676 DOI: 10.1186/s12964-022-00999-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Although a lack of functional PTEN contributes to tumorigenesis in a wide spectrum of human malignancies, little is known about the functional role of its overexpression in the tumors. The current study focused on PTEN overexpression in endometrial carcinoma (Em Ca). METHODS The functional impact of PTEN overexpression was assessed by Em Ca cell lines. Immunohistochemical analyses were also conducted using 38 Em Ca with morular lesions. RESULTS Em Ca cell lines stably overexpressing PTEN (H6-PTEN) exhibited epithelial-mesenchymal transition (EMT)-like features, probably through β-catenin/Slug-meditated suppression of E-cadherin. PTEN overexpression also inhibited cell proliferation, accelerated cellular senescence, increased apoptotic features, and enhanced migration capability. Moreover, H6-PTEN cells exhibited cancer stem cell (CSC)-like properties, along with high expression of aldehyde dehydrogenase 1 and CD44s, a large ALDH 1high population, enriched spheroid formation, and β-catenin-mediated upregulation of cyclin D2, which is required for persistent CSC growth. In clinical samples, immunoreactivities for PTEN, as well as CSC-related molecules, were significantly higher in morular lesions as compared to the surrounding carcinomas. PTEN score was positively correlated with expression of nuclear β-catenin, cytoplasmic CD133, and CD44v6, and negatively with cell proliferation. Finally, estrogen receptor-α (ERα)-dependent expression of Ezrin-radixin-moesin-binding phophoprotein-50 (EBP50), a multifunctional scaffolding protein, acts as a negative regulator of morular formation by Em Ca cells through interacting with PTEN and β-catenin. CONCLUSION In the abscess of ERα/EBP50 expression, PTEN overexpression and nuclear β-catenin stabilization promote the establishment and maintenance of morular phenotype associated with EMT/CSC-like features in Em Ca cells. Video Abstract.
Collapse
|
10
|
Zhang M, Yang D, Li L, Liu L, Wang T, Liu T, Li L, Liu Y. Case report: ZEB1 expression in three cases of hepatic carcinosarcoma. Front Oncol 2022; 12:972650. [PMID: 36172159 PMCID: PMC9511137 DOI: 10.3389/fonc.2022.972650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatic carcinosarcoma (HCS) is defined as a tumor that contains cancer from the epithelium and sarcoma from mesenchymal tissue. HCS has a low incidence rate and is composed of osteosarcoma, chondrosarcoma, or angiosarcoma. Though surgery is the main treatment for HCS, it has proven unsatisfactory, resulting in a very poor prognosis of HCS. Currently, the reports on HCS are mainly about the description of clinical pathological phenomena, imaging features, and mutation sites of related genes, the underlying molecular mechanism of HCS remains undefined. Through the dynamic process of epithelial-mesenchymal transition (EMT), cancer cells acquire a mesenchymal phenotype, simultaneously losing epithelial properties. Zinc finger E-box binding homeobox 1 (ZEB1) is an EMT-inducing transcription factor; its main regulatory target is E-cadherin in EMT process. Esophageal carcinosarcoma (ECS) is associated with EMT. The current study showed that EMT might promote the development of ECS and uterine carcinosarcoma (UCS), and ZEB1 was highly expressed in the sarcomatous components. In the current study, three cases were collected, and the clinicopathological features were compared with those of corresponding cases. The expression level, and subcellular localization of ZEB1 were detected using immunohistochemistry. The expression of the ZEB1 in the nucleus was found to be significantly higher in sarcomatous components than that in cancer components in all three cases, suggesting an association of HCS with EMT.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Dongchang Yang
- Department of Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Lu Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Lin Liu
- Health Management Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Ting Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- *Correspondence: Yanrong Liu, ; Ting Wang,
| | - Tao Liu
- Department of Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Lei Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Yanrong Liu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- *Correspondence: Yanrong Liu, ; Ting Wang,
| |
Collapse
|
11
|
Inter‑component immunohistochemical assessment of proliferative markers in uterine carcinosarcoma. Oncol Lett 2022; 24:363. [PMID: 36238851 PMCID: PMC9494350 DOI: 10.3892/ol.2022.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022] Open
Abstract
In the scientific literature, a selected number of reports have investigated the impact of proliferative activity on the development and progression of uterine carcinosarcomas (UC). The aim of the present retrospective study was to compare the immunohistochemical proliferation markers [Ki67, proliferating cell nuclear antigen (PCNA), minichromosome maintenance complex component 3 (MCM3), and topoisomerase IIα (topoIIα)] assessment in both components of UC. A total of 30 paraffin-embedded slides of UCs, obtained from patients who underwent surgery between January 1, 2006, and December 31, 2020, were analyzed. Medical records and clinicopathological data of patients were reviewed. Formalin-fixed, paraffin-embedded tissue sections were immunostained with monoclonal antibodies against Ki67, PCNA, MCM3 and topoIIα. Ki67-positive nuclear immunoreactivity was reported in 20 (67%) and 16 (53%) UC carcinomatous and sarcomatous components, respectively. In the epithelial component, Ki67 positive staining was related to the International Federation of Gynecology and Obstetrics (FIGO) stage (P=0.025), and histological grade (G1 vs. G2/G3, P=0.031). Nuclear PCNA reactivity was observed in 18 (60%) and 16 (53%) carcinomatous and sarcomatous components, respectively. Notably, all four cases with omental metastases were PCNA-positive, and a relationship between staining pattern and the existence of metastases was of significant value (P=0.018). MCM3-positive nuclear staining was found nearly twice as high in the carcinomatous (n=19; 63%), compared with the sarcomatous (n=11; 37%) component, respectively, and MCM3 expression in the epithelial component was related to clinical stage (P=0.030), and the existence of omental metastasis (P=0.012). In addition, out of the 30 UCs, 17 (57%) and 13 (43%) showed topoIIα positivity in the carcinomatous and sarcomatous UC components, respectively. A significant relationship between protein immunoreactivity and FIGO stage (P=0.049), and omental metastasis (P=0.026) was revealed to exist. However, no significant differences between expression of proliferation markers and clinicopathological features in the sarcomatous UC component were identified. Finally, a significant correlation between each protein immunohistochemical staining was demonstrated, particularly in the sarcomatous UC component. Collectively, a combined analysis of Ki67, PCNA, MCM3, and topoIIα may provide more detailed information of cell-cycle alterations determining the heterogeneity of uterine carcinosarcomas.
Collapse
|
12
|
A functional role of S100A4/non-muscle myosin IIA axis for pro-tumorigenic vascular functions in glioblastoma. Cell Commun Signal 2022; 20:46. [PMID: 35392912 PMCID: PMC8991692 DOI: 10.1186/s12964-022-00848-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive form of brain tumor and has vascular-rich features. The S100A4/non-muscle myosin IIA (NMIIA) axis contributes to aggressive phenotypes in a variety of human malignancies, but little is known about its involvement in GBM tumorigenesis. Herein, we examined the role of the S100A4/NMIIA axis during tumor progression and vasculogenesis in GBM. METHODS We performed immunohistochemistry for S100A4, NMIIA, and two hypoxic markers, hypoxia-inducible factor-1α (HIF-1α) and carbonic anhydrase 9 (CA9), in samples from 94 GBM cases. The functional impact of S100A4 knockdown and hypoxia were also assessed using a GBM cell line. RESULTS In clinical GBM samples, overexpression of S100A4 and NMIIA was observed in both non-pseudopalisading (Ps) and Ps (-associated) perinecrotic lesions, consistent with stabilization of HIF-1α and CA9. CD34(+) microvascular densities (MVDs) and the interaction of S100A4 and NMIIA were significantly higher in non-Ps perinecrotic lesions compared to those in Ps perinecrotic areas. In non-Ps perinecrotic lesions, S100A4(+)/HIF-1α(-) GBM cells were recruited to the surface of preexisting host vessels in the vascular-rich areas. Elevated vascular endothelial growth factor A (VEGFA) mRNA expression was found in S100A4(+)/HIF-1α(+) GBM cells adjacent to the vascular-rich areas. In addition, GBM patients with high S100A4 protein expression had significantly worse OS and PFS than did patients with low S100A4 expression. Knockdown of S100A4 in the GBM cell line KS-1 decreased migration capability, concomitant with decreased Slug expression; the opposite effects were elicited by blebbistatin-dependent inhibition of NMIIA. CONCLUSION S100A4(+)/HIF-1α(-) GBM cells are recruited to (and migrate along) preexisting vessels through inhibition of NMIIA activity. This is likely stimulated by extracellular VEGF that is released by S100A4(+)/HIF-1α(+) tumor cells in non-Ps perinecrotic lesions. In turn, these events engender tumor progression via acceleration of pro-tumorigenic vascular functions. Video abstract.
Collapse
|
13
|
Nakagawa M, Higuchi S, Hashimura M, Oguri Y, Matsumoto T, Yokoi A, Ishibashi Y, Ito T, Saegusa M. Functional interaction between S100A1 and MDM2 may modulate p53 signaling in normal and malignant endometrial cells. BMC Cancer 2022; 22:184. [PMID: 35177036 PMCID: PMC8855586 DOI: 10.1186/s12885-022-09249-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/13/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND S100A1 expression is deregulated in a variety of human malignancies, but its role in normal and malignant endometrial cells is unclear. METHODS We used endometrial carcinoma (Em Ca) cell lines to evaluate the physical and functional interaction of S100A1 with p53 and its negative regulator, mouse double minute 2 (MDM2). We also evaluated the expression of S100A1, p53, and MDM2 in clinical samples consisting of 89 normal endometrial and 189 Em Ca tissues. RESULTS S100A1 interacted with MDM2 but not p53 in Em Ca cell lines. Treatment of cells stably overexpressing S100A1 with Nutlin-3A, an inhibitor of the p53/MDM2 interaction, increased expression of p53-target genes including p21waf1 and BAX. S100A1 overexpression enhanced cellular migration, but also sensitized cells to the antiproliferative and proapoptotic effects of Adriamycin, a genotoxic agent; these phenotypes were abrogated when S100A1 was knocked down using shRNA. In clinical samples from normal endometrium, S100A1 expression was significantly higher in endometrial glandular cells of the middle/late secretory and menstrual stages when compared to cells in the proliferative phases; high S100A1 was also positively correlated with expression of MDM2 and p21waf1 and apoptotic status, and inversely correlated with Ki-67 scores. However, such correlations were absent in Em Ca tissues. CONCLUSION The interaction between S100A1 and MDM2 may modulate proliferation, susceptibility to apoptosis, and migration through alterations in p53 signaling in normal- but not malignant-endometrial cells.
Collapse
Affiliation(s)
- Mayu Nakagawa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Shyoma Higuchi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Ako Yokoi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yu Ishibashi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Takashi Ito
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
14
|
Zhang Q, Xia T, Qi C, Du J, Ye C. High expression of S100A2 predicts poor prognosis in patients with endometrial carcinoma. BMC Cancer 2022; 22:77. [PMID: 35042454 PMCID: PMC8764844 DOI: 10.1186/s12885-022-09180-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background S100A2, a member of the S100 protein family, is abnormally expressed and plays a vital role in multiple cancers. However, little is known about the clinical significance of S100A2 in endometrial carcinoma. Methods Clinicopathological data were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Gene Expression Omnibus (GEO), and Clinical Proteomic Tumor Analysis Consortium (CPTAC). First, the expression and prognostic value of different S100 family members in endometrial carcinoma were evaluated. Subsequently, the Kaplan–Meier plotter and Cox regression analysis were used to assess the prognostic significance of S100A2, while the association between S100A2 expression and clinical characteristics in endometrial carcinoma was also analyzed using logistic regression. A receiver operating characteristic (ROC) curve and a nomogram were constructed. The putative underlying cellular mechanisms were explored using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and gene set enrichment analysis (GSEA). Results Our results revealed that S100A2 expression was significantly higher in endometrial carcinoma tissue than in non-cancerous tissue at both the mRNA and protein levels. Analysis of Kaplan–Meier plotter data revealed that patients with high S100A2 expression had shorter overall survival (OS) and disease specific survival (DSS) compared with those of patients with low S100A2 expression. Multivariate Cox analysis further confirmed that high S100A2 expression was an independent risk factor for OS in patients with endometrial carcinoma. Other clinicopathologic features found to be related to worse prognosis in endometrial carcinoma included age, clinical stage, histologic grade, and tumor invasion. Importantly, ROC analysis also confirmed that S100A2 has a high diagnostic value in endometrial carcinoma. KEGG enrichment analysis and GSEA revealed that the estrogen and IL-17 signaling pathways were significantly upregulated in the high S100A2 expression group, in which estrogen response, JAK-STAT3, K-Ras, and TNFα/NF-κB were differentially enriched. Conclusions S100A2 plays an important role in endometrial carcinoma progression and may represent an independent diagnostic and prognostic biomarker for endometrial carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09180-5.
Collapse
|
15
|
A New Stemness-Related Prognostic Model for Predicting the Prognosis in Pancreatic Ductal Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6669570. [PMID: 34671679 PMCID: PMC8523240 DOI: 10.1155/2021/6669570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/17/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
Objective This study is aimed at identifying stemness-related genes in pancreatic ductal adenocarcinoma (PDAC). Methods The RNA-seq data of PADC patients were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The mRNA expression-based stemness index (mRNAsi) and epigenetically regulated mRNAsi (EREG-mRNAsi) of PADC patients were evaluated. The mRNAsi-related gene sets in PADC were identified by weighted gene coexpression network analysis (WGCNA). The key genes were further analyzed using functional enrichment analysis. The Kaplan-Meier survival analysis and the Cox proportional hazards model were used to evaluate the prognostic value of the key genes. Prognostic hub genes were used to establish nomograms. The receiver operating characteristic (ROC) curves, concordance index (C-index), and calibration curves were used to assess the discrimination and accuracy of the nomogram. Finally, these results were validated in the Gene Expression Omnibus (GEO) database. Results A total of 36 key genes related to mRNAsi were identified by WGCNA. A prognostic gene signature compromising seven genes (TPX2, ZWINT, UBE2C, CCNB2, CDK1, BUB1, and BIRC5) was established to predict the overall survival (OS) of PADC patients. The Cox regression analysis revealed that the risk score was an independent prognostic factor for PADC. Patients were then divided into the high-risk and low-risk groups. The ROC curves, C-index, and calibration curves indicated good performance of the prognostic signature in the TCGA and GEO datasets. Moreover, the nomogram incorporating clinical parameters showed better sensitivity and specificity for predicting the OS of PADC patients. Conclusion The stemness-related prognostic model successfully predicted the OS of PADC patients and could be used for the treatment of PADC.
Collapse
|
16
|
Matsumoto T, Yoki A, Konno R, Oguri Y, Hashimura M, Tochimoto M, Nakagawa M, Jiang Z, Ishibashi Y, Ito T, Kodera Y, Saegusa M. Cytoplasmic EBP50 and elevated PARP1 are unfavorable prognostic factors in ovarian clear cell carcinoma. Carcinogenesis 2021; 42:1162-1170. [PMID: 34323956 DOI: 10.1093/carcin/bgab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Patients with ovarian clear cell carcinoma (OCCC) experience frequent recurrence, which is most likely due to chemoresistance. We used shotgun proteomics analysis and identified upregulation of ezrin-binding phosphoprotein 50 (EBP50) in recurrent OCCC samples. Cytoplasmic and/or nuclear (Cyt/N), but not membranous, EBP50 immunoreactivity was significantly higher in recurrent OCCC as compared to that of primary tumors. OCCC cells expressing cytoplasmic EBP50 were significantly less susceptible to cisplatin (CDDP)-induced apoptosis compared to cells expressing membranous EBP50. Abrogation of resistance following knockdown of cytoplasmic EBP50 was accompanied by decreased XIAP and BCL2, increased BAX and increased caspase-3 cleavage. We found that poly (ADP-ribose) polymerase1 (PARP1), which is involved in DNA damage detection and repair, binds to EBP50 through its PDZ1 domain. CDDP treatment of cells expressing cytoplasmic (but not membranous) EBP50 increased nuclear PARP1 expression, whereas knockdown of EBP50 cells decreased PARP1 expression and activity following CDDP treatment. Finally, OCCC patients with a combination of Cyt/N EBP50 and high PARP1 score had worst the prognosis for overall and progression-free survival. Together, our data suggest that cytoplasmic EBP50 inhibits apoptosis and promotes OCCC survival through stabilization of PARP1 activity and modulation of the XIAP/BCL2/BAX axis. This may increase the likelihood of tumor recurrence, and we therefore suggest a combined analysis for EBP50 and PARP1 may have great utility in OCCC prediction and prognosis.
Collapse
Affiliation(s)
- Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Ako Yoki
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Ryo Konno
- Center for Disease Proteomics, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Masataka Tochimoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Mayu Nakagawa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Zesong Jiang
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Yu Ishibashi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Takashi Ito
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshio Kodera
- Center for Disease Proteomics, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
17
|
Pan Z, Zhang Y, Li C, Yin Y, Liu R, Zheng G, Fan W, Zhang Q, Song Z, Guo Z, Rong J, Shen Y. MiR-296-5p ameliorates deep venous thrombosis by inactivating S100A4. Exp Biol Med (Maywood) 2021; 246:2259-2268. [PMID: 34192971 DOI: 10.1177/15353702211023034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Deep venous thrombosis is one of the most common venous thromboembolic diseases and has a low cure rate and a high postoperative recurrence rate. Furthermore, emerging evidence indicates that microRNAs are involved in deep venous thrombosis. miR-296-5p is an important microRNA that plays a critical role in various cellular functions, and S100A4 is closely related to vascular function. miR-296-5p is downregulated in deep venous thrombosis patients, and its predicted target S100A4 is upregulated in deep venous thrombosis patients. Therefore, it was hypothesized that miR-296-5p may play a vital role in the development of deep venous thrombosis by targeting S100A4. An Ox-LDL-stimulated HUVEC and deep venous thrombosis mouse model was employed to detect the biological functions of miR-296-5p and S100A4. Dual luciferase reporter assays and pull-down assays were used to authenticate the interaction between miR-296-5p and S100A4. ELISA and Western blotting were employed to detect the protein levels of thrombosis-related factors and the endothelial-to-mesenchymal transition (EndMT)-related factors. The miR-296-5p levels were reduced, while the S100A4 levels were enhanced in deep venous thrombosis patients, and the miR-296-5p levels were negatively correlated with the S100A4 levels in deep venous thrombosis patients. miR-296-5p suppressed S100A4 expression by targeting the 3' UTR of S100A4. MiR-296-5p knockdown accelerated ox-LDL-induced HUVEC apoptosis, oxidative stress, thrombosis-related factor expression, and EndMT, while S100A4 knockdown antagonized these effects in ox-LDL-induced HUVECs. S100A4 knockdown reversed the effect induced by miR-296-5p knockdown. Moreover, the in vivo studies revealed that miR-296-5p knockdown in deep venous thrombosis mice exacerbated deep venous thrombosis formation, whereas S100A4 knockdown had the opposite effect. These results indicate that elevated miR-296-5p inhibits deep venous thrombosis formation by inhibiting S100A4 expression. Both miR-296-5p and S100A4 may be potential diagnostic markers and therapeutic targets for deep venous thrombosis.
Collapse
Affiliation(s)
- Zhichang Pan
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Yu Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chuanyong Li
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Yuan Yin
- Department of Endocrinology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Rui Liu
- Department of Rheumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Guangfeng Zheng
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Weijian Fan
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Qiang Zhang
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Zhenyu Song
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Ziyue Guo
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Jianjie Rong
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
18
|
Lyu T, Wang Y, Li D, Yang H, Qin B, Zhang W, Li Z, Cheng C, Zhang B, Guo R, Song Y. Exosomes from BM-MSCs promote acute myeloid leukemia cell proliferation, invasion and chemoresistance via upregulation of S100A4. Exp Hematol Oncol 2021; 10:24. [PMID: 33789743 PMCID: PMC8011411 DOI: 10.1186/s40164-021-00220-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
Background BM-MSCs play an important role in cancer development through the release of cytokines or exosomes. Studies have shown that extracellular exosomes derived from BM-MSCs are a key pro-invasive factor. However, how BM-MSC-exos influence AML cell proliferation, invasion and chemoresistance remains poorly understood. Methods We isolated exosomes from BM-MSCs and used electron microscopy, particle size separation and western blots to identify the exosomes. The invasion of leukemia cells was observed with a transwell assay. The stemness traits and chemoresistance of the leukemia cells were detected by FCM, colony formation and CCK-8 assays. TCGA database was used to investigate the prognostic relevance of S100A4 and its potential role in AML. Results In this study, we found that BM-MSC-exos increased the metastatic potential, maintained the stemness and contributed to the chemoresistance of leukemia cells. Mechanistically, BM-MSC-exos promoted the proliferation, invasion and chemoresistance of leukemia cells via upregulation of S100A4. Downregulating S100A4 clearly suppressed the proliferation, invasion, and chemoresistance of leukemia cells after treatment with BM-MSC-exos. Bioinformatic analysis with data in TCGA database showed that S100A4 was associated with poor prognosis in AML patients, and functional enrichment revealed its involvement in the processes of cell–cell adhesion and cytokine regulation. Conclusions S100A4 is vital in the BM-MSC-exo-driven proliferation, invasion and chemoresistance of leukemia cells and may serve as a potential target for leukemia therapy.
Collapse
Affiliation(s)
- Tianxin Lyu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yinuo Wang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, 100034, China
| | - Ding Li
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Hui Yang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, 100034, China
| | - Bin Qin
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Wenli Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Zhiyue Li
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Cheng Cheng
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Binglei Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| |
Collapse
|
19
|
Zhang Y, Li W, Lin Z, Hu J, Wang J, Ren Y, Wei B, Fan Y, Yang Y. The Long Noncoding RNA Linc01833 Enhances Lung Adenocarcinoma Progression via MiR-519e-3p/S100A4 Axis. Cancer Manag Res 2020; 12:11157-11167. [PMID: 33173348 PMCID: PMC7648568 DOI: 10.2147/cmar.s279623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Lung cancer (LC) is among the most prevalent malignancies worldwide, with extremely high morbidity and mortality rates. Mounting evidence has suggested that the abnormally expressed long noncoding RNA (lncRNA) in lung cancer tissues may play vital roles in tumor progression. In the present research, we aimed to examine the functions and underlying mechanism of linc01833 in lung adenocarcinoma (LUAD). Methods qRT-PCR was employed to determine transfection efficiency. CCK-8, transwell invasion assay, Western blotting analysis and qRT-PCR were used to detect proliferation as well as migration of different LUAD cell lines, and were also applied to determine the changes during epithelial–mesenchymal transformation (EMT). Afterwards, bioinformatics and dual-luciferase reporter assay were utilized to explore and to identify the potential corresponding targets of linc01833 and miR-519e-3p. Results Linc01833 OE can significantly improve proliferation as well as invasion ability of LC cells and promote the EMT process. Dual-luciferase reporter assay demonstrated that linc01833 could directly bind to miR-519e-3p, thereby inhibiting its expression. Further experiments showed that S100A4 was a direct target of miR-519e-3p. Rescue assay demonstrated that linc01833 acted on the miR-519e-3p/S100A4 axis. Conclusion We verified the mechanism of linc01833 in promoting infiltration and metastasis in LUAD. To be specific, linc01833 can function as a competitive endogenous RNA (ceRNA) to adsorb miR-519e-3p through a sponge and regulate S100A4 in lung cancer, thereby being involved in LUAD progression. Collectively, our research provides new insights towards the in-depth understanding of LC progression mechanisms.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Wenhua Li
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Zongxiang Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Jingfeng Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Jingpu Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yukai Ren
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - BoChong Wei
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yuxia Fan
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
20
|
Hiruta A, Oguri Y, Yokoi A, Matsumoto T, Oda Y, Tomohiro M, Hashimura M, Jiang Z, Tochimoto M, Nakagawa M, Saegusa M. S100A4/Nonmuscle Myosin IIA/p53 Axis Contributes to Aggressive Features in Ovarian High-Grade Serous Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2304-2316. [PMID: 32805233 DOI: 10.1016/j.ajpath.2020.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/02/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
S100A4 is a small calcium-binding protein that exerts its biological functions by interacting with nonmuscle myosin IIA (NMIIA) and p53. Although S100A4 promotes metastasis in several tumors, little is known about its involvement in the progression of ovarian high-grade serous carcinomas (HGSCs). Herein, we focused on functional roles of the S100A4/NMIIA/p53 axis in these tumors. In HGSC cell lines harboring mutant p53, knockdown (KD) of S100A4 reduced the expression of several epithelial-mesenchymal transition/cancer stem cell markers and the ALDH1high population, consistent with an inhibition of stemness features. S100A4-KD also increased apoptosis, decreased cell proliferation, and accelerated cell mobility. This was accompanied by increased Snail expression, which, in turn, was likely due to loss of p53 function. In contrast, specific inhibition of NMIIA by blebbistatin induced phenotypes that-with the exception of cell proliferation and mobility-were opposite to those observed in S100A4-KD cells. In clinical samples, cytoplasmic and/or nuclear interactions between S100A4, NMIIA, and mutant p53 were observed. In addition, high expression of S100A4, but not NMIIA or p53, was a significant and independent unfavorable prognostic factor in HGSC patients. These findings suggest that, via its interaction with NMIIA and p53, overexpressed S100A4 may induce epithelial-mesenchymal transition/cancer stem cell properties in HGSC and elicit several other tumor-associated phenotypes.
Collapse
Affiliation(s)
- Ai Hiruta
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Ako Yokoi
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yusuke Oda
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mikihisa Tomohiro
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Zesong Jiang
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masataka Tochimoto
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mayu Nakagawa
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan.
| |
Collapse
|