1
|
Goto T, Yasui M, Teramoto Y, Nagata Y, Mizushima T, Miyamoto H. Latrophilin-3 as a downstream effector of the androgen receptor induces urothelial tumorigenesis. Mol Carcinog 2024; 63:1847-1854. [PMID: 38925569 DOI: 10.1002/mc.23783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Emerging evidence indicates that androgen receptor (AR) signaling plays a critical role in the pathogenesis of male-dominant urothelial cancer. Meanwhile, latrophilins (LPHNs), a group of the G-protein-coupled receptor to which a spider venom latrotoxin is known to bind, remain largely uncharacterized in neoplastic diseases. The present study aimed to determine the functional role of LPHN3 (encoded by the ADGRL3 gene), in association with AR signaling, in urothelial tumorigenesis. In human normal urothelial SVHUC cells, AR overexpression and androgen treatment considerably increased the expression levels of ADGRL3/LPHN3, while chromatin immunoprecipitation assay revealed the binding of AR to the promoter region of ADGRL3. In SVHUC or SVHUC-AR cells with exposure to a chemical carcinogen 3-methylcholanthrene, LPHN3 activation via ligand (e.g., α-latrotoxin, FLRT3) treatment during the process of the neoplastic/malignant transformation or LPHN3 knockdown via shRNA virus infection induced or reduced, respectively, the oncogenic activity. In N-butyl-N-(4-hydroxybutyl)nitrosamine-treated female mice, α-latrotoxin or FLRT3 injection accelerated the development of bladder tumors. Immunohistochemistry in surgical specimens further showed the significantly elevated expression of LPHN3 in non-muscle-invasive bladder tumors, compared with adjacent normal urothelial tissues, which was associated with a marginally (p = 0.051) higher risk of disease recurrence after transurethral resection. In addition, positivity of LPHN3 and AR in these tumors was strongly correlated. These findings indicate that LPHN3 functions as a downstream effector of AR and promotes urothelial tumorigenesis.
Collapse
MESH Headings
- Humans
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Animals
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/chemically induced
- Urothelium/pathology
- Urothelium/metabolism
- Mice
- Receptors, Peptide/metabolism
- Receptors, Peptide/genetics
- Male
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Female
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/genetics
- Signal Transduction
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Line, Tumor
Collapse
Affiliation(s)
- Takuro Goto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Masato Yasui
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Yuki Teramoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Yujiro Nagata
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Taichi Mizushima
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Urology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Goto T, Teramoto Y, Nagata Y, Miyamoto H. Latrophilin-3 as a downstream effector of the androgen receptor induces bladder cancer progression. Discov Oncol 2024; 15:440. [PMID: 39269616 PMCID: PMC11399515 DOI: 10.1007/s12672-024-01324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Emerging evidence indicates that androgen receptor (AR) signaling plays a critical role in the pathogenesis of male-dominant urothelial cancer and its outgrowth. Meanwhile, latrophilins (LPHNs), a group of the G-protein-coupled receptors to which a spider venom latrotoxin (LTX) is known to bind, remain largely uncharacterized in neoplastic diseases. The present study aimed to determine the functional role of LPHN3 (encoded by the ADGRL3 gene), in association with AR signaling, in the progression of bladder cancer. In AR-positive bladder cancer lines, dihydrotestosterone considerably increased the expression levels of ADGRL3 and LPHN3, while chromatin immunoprecipitation assay revealed the binding of AR to the promoter region of ADGRL3. Treatment with LPHN3 ligands (e.g. α-LTX, FLRT3) resulted in the induction of ADGRL3 expression, as well as cell viability, in bladder cancer lines. By contrast, LPHN3 knockdown via shRNA virus infection significantly reduced the viability and migration of these cells. Immunohistochemistry in transurethral resection specimens further showed a strong correlation between LPHN3 and AR expression. Moreover, LPHN3 positivity in muscle-invasive bladder tumors, as an independent prognosticator, was associated with a significantly higher risk of disease progression and disease-specific mortality following radical cystectomy. These findings suggest that LPHN3 functions as a downstream effector of AR and promotes the growth of bladder cancer.
Collapse
Affiliation(s)
- Takuro Goto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuki Teramoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yujiro Nagata
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Teramoto Y, Elahi Najafi MA, Matsukawa T, Sharma A, Goto T, Miyamoto H. Latrophilins as Downstream Effectors of Androgen Receptors including a Splice Variant, AR-V7, Induce Prostate Cancer Progression. Int J Mol Sci 2024; 25:7289. [PMID: 39000396 PMCID: PMC11242678 DOI: 10.3390/ijms25137289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Latrophilins (LPHNs), a group of the G-protein-coupled receptor to which a spider venom latrotoxin (LTX) is known to bind, remain largely uncharacterized in neoplastic diseases. In the present study, we aimed to determine the role of LPHNs in the progression of prostate cancer. We assessed the actions of LPHNs, including LPHN1, LPHN2, and LPHN3, in human prostate cancer lines via their ligand (e.g., α-LTX, FLRT3) treatment or shRNA infection, as well as in surgical specimens. In androgen receptor (AR)-positive LNCaP/C4-2/22Rv1 cells, dihydrotestosterone considerably increased the expression levels of LPHNs, while chromatin immunoprecipitation assay revealed the binding of endogenous ARs, including AR-V7, to the promoter region of each LPHN. Treatment with α-LTX or FLRT3 resulted in induction in the cell viability and migration of both AR-positive and AR-negative lines. α-LTX and FLRT3 also enhanced the expression of Bcl-2 and phosphorylated forms of JAK2 and STAT3. Meanwhile, the knockdown of each LPHN showed opposite effects on all of those mediated by ligand treatment. Immunohistochemistry in radical prostatectomy specimens further showed the significantly elevated expression of each LPHN in prostate cancer, compared with adjacent normal-appearing prostate, which was associated with a significantly higher risk of postoperative biochemical recurrence in both univariate and multivariable settings. These findings indicate that LPHNs function as downstream effectors of ARs and promote the growth of androgen-sensitive, castration-resistant, or even AR-negative prostate cancer.
Collapse
Affiliation(s)
- Yuki Teramoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mohammad Amin Elahi Najafi
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Takuo Matsukawa
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Adhya Sharma
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Takuro Goto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
4
|
Hu Y, Zhu S, Xu R, Wang M, Chen F, Zhang Z, Feng B, Wang J, Chen Z, Wang J. Delta-catenin attenuates medulloblastoma cell invasion by targeting EMT pathway. Front Genet 2022; 13:867872. [PMID: 36303547 PMCID: PMC9595215 DOI: 10.3389/fgene.2022.867872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Medulloblastoma is the most common pediatric malignant tumor in central nervous system. Although its prognosis has been improved enormously by the combination treatments with surgery, radiotherapy, and chemotherapy, it still could progress via invasion and distant dissemination. We aimed to investigate molecular mechanisms of medulloblastoma invasion in the current work. Methods: The gene expression profile of medulloblastoma were analyzed based on the data deposited in Gene Expression Omnibus (GEO) and filtered according to brain specific proteins in the Uniprot. Delta-catenin was identified and further analyzed about its expression and roles in the prognosis of medulloblastoma patient. The function of delta-catenin on cell invasion and migration were investigated by transwell and wound healing assay. Whether delta-catenin participates in the epithelial-mesenchymal transition (EMT) regulated invasion was also studied. Results: Delta-catenin expression was highly upregulated in tumor tissues compared to normal tissues from medulloblastoma patients in five independent, nonoverlapping cohorts. Furthermore, delta-catenin expression level was upregulated in WNT subgroup, and significantly correlated with better prognosis, and associated with metastasis through GEO database analysis. Functional assays indicated that delta-catenin inhibited medulloblastoma cell invasion and migration through regulating the key factors of EMT pathway, such as E-cadherin and vimentin. Conclusion: Delta-catenin might be a positive predictor for prognosis of medulloblastoma patients, through attenuating medulloblastoma cell invasion by inhibiting EMT pathway.
Collapse
Affiliation(s)
- Yuanjun Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sihan Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rizhen Xu
- Department of Surgery, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Manxia Wang
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Furong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zeshun Zhang
- Department of Surgery, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Binghong Feng
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian Wang
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jing Wang, Zhongping Chen, Jian Wang,
| | - Zhongping Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jing Wang, Zhongping Chen, Jian Wang,
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jing Wang, Zhongping Chen, Jian Wang,
| |
Collapse
|