1
|
Li Y, Dong X, Xing H, Liu W, Gu R, Qiu S, Xu Y, Wei H, Wang M, Zheng G, Rao Q, Wang J. U2AF1 mutation causes an oxidative stress and DNA repair defect in hematopoietic and leukemic cells. Free Radic Biol Med 2025; 228:379-391. [PMID: 39814107 DOI: 10.1016/j.freeradbiomed.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
U2AF1 is a core component of spliceosome and controls cell-fate specific alternative splicing. U2AF1 mutations have been frequently identified in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) patients, and mutations in U2AF1 are associated with poor prognosis in hematopoietic malignant diseases. Here, by forced expression of mutant U2AF1 (U2AF1 S34F) in hematopoietic and leukemic cell lines, we find that U2AF1 S34F causes increased reactive oxygen species (ROS) production. In hematopoietic cell line, a defect in mitochondrial function and DNA damage response deficiency are found in U2AF1 S34F expressing 32D cells. In leukemic cell line Molm13 cells, U2AF1 mutation leads to resistance to DNA damaging agents. Accumulation of DNA damage is also found in U2AF1 S34F expressing leukemic cells when treated with DNA damage agent. Finally, in our established hematopoietic-specific U2af1 S34F knock-in mice model, U2AF1 mutation leads to the development of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) and causes DNA damage accumulation in hematopoietic cells. Our study provides evidence that U2AF1 mutation causes DNA damage response deficiency and DNA damage accumulation in hematopoietic cells, and suggests that mutant U2AF1 induced higher ROS production, resistance to DNA damaging agents and increased genomic instability may contribute to poor prognosis of AML patients with U2AF1 mutations.
Collapse
Affiliation(s)
- Yishuang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Xuanjia Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Wenbing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Runxia Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China.
| |
Collapse
|
2
|
Maul-Newby HM, Halene S. Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis. Exp Hematol 2024; 140:104655. [PMID: 39393608 PMCID: PMC11732257 DOI: 10.1016/j.exphem.2024.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Alternative splicing has long been recognized as a powerful tool to expand the diversity of the transcriptome and the proteome. The study of hematopoiesis, from hematopoietic stem cell maintenance and differentiation into committed progenitors to maturation into functional blood cells, has led the field of stem cell research and cellular differentiation for decades. The importance of aberrant splicing due to mutations in cis has been exemplified in thalassemias, resulting from aberrant expression of β-globin. The simultaneous development of increasingly sophisticated technologies, in particular the combination of multicolor flow cytometric cell sorting with bulk and single-cell sequencing, has provided sophisticated insights into the complex regulation of the blood system. The recognition that mutations in key splicing factors drive myeloid malignancies, in particular myelodysplastic syndromes, has galvanized research into alternative splicing in hematopoiesis and its diseases. In this review, we will update the audience on the exciting novel technologies, highlight alternative splicing events and their regulators with essential functions in hematopoiesis, and provide a high-level overview how splicing factor mutations contribute to hematologic malignancies.
Collapse
Affiliation(s)
- Hannah M Maul-Newby
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
3
|
Li Z, Fan J, Xiao Y, Wang W, Zhen C, Pan J, Wu W, Liu Y, Chen Z, Yan Q, Zeng H, Luo S, Liu L, Tu Z, Zhao X, Hou Y. Essential role of Dhx16-mediated ribosome assembly in maintenance of hematopoietic stem cells. Leukemia 2024; 38:2699-2708. [PMID: 39333759 DOI: 10.1038/s41375-024-02423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Hematopoietic stem cells (HSCs) are vital for the differentiation of all mature blood cells, with their homeostasis being tightly regulated by intrinsic and extrinsic factors. Alternative splicing, mediated by the spliceosome complex, plays a crucial role in regulating HSC homeostasis by increasing protein diversity. This study focuses on the ATP-dependent RNA helicase DHX16, a key spliceosome component, and its role in HSC regulation. Using conditional knockout mice, we demonstrate that loss of Dhx16 in the hematopoietic system results in significant depletion of hematopoietic stem and progenitor cells, bone marrow failure, and rapid mortality. Dhx16-deficient HSCs exhibit impaired quiescence, G2-M phase cell cycle arrest, reduced protein synthesis, abnormal ribosome assembly, increased apoptosis, and decreased self-renewal capacity. Multi-omics analysis identified intron 4 retention in Emg1 mRNA in Dhx16 knockout HSCs, leading to reduced EMG1 protein expression, disrupted ribosome assembly, and nucleolar stress, activating the p53 pathway. Overexpression of Emg1 in Dhx16-deficient HSCs partially restored ribosome assembly and HSC function, suggesting Emg1 as a potential therapeutic target for ribosomopathies. Our findings reveal the critical role of Dhx16 in HSC homeostasis through the regulation of alternative splicing and ribosome assembly, providing insights into the molecular mechanisms underlying hematopoietic diseases and potential therapeutic strategies.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jiankun Fan
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yalan Xiao
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Wang
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Changlin Zhen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Junbing Pan
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Weiru Wu
- Department of Clinical Hematology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanyuan Liu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Chen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qinrong Yan
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Hanqing Zeng
- Department of Hematology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Shuyu Luo
- Chongqing BI Academy, Chongqing, 401127, China
| | - Lun Liu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhanhan Tu
- Leicester Medical School, University of Leicester College of Life Sciences, Leicester, Leicester, UK.
- University of Leicester Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester College of Life Sciences, Leicester, Leicester, UK.
| | - Xueya Zhao
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Yang Y, Su S, Chen J, Yang X, Zhang S, Sang A. The perspective of ceRNA regulation of circadian rhythm on choroidal neovascularization. Sci Rep 2024; 14:27359. [PMID: 39521855 PMCID: PMC11550829 DOI: 10.1038/s41598-024-78479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Abnormal growth of blood vessels (choroidal neovascularization) can lead to age-related macular degeneration (AMD) and eventually cause vision loss due to detachment of the retinal pigmented epithelium. This indicates that choroidal neovascularization is important for the treatment of AMD. The circadian clock in the mammalian retina is responsible for controlling various functions of the retina, enabling it to adjust to changes in light and darkness. Recent studies have revealed a potential connection between the circadian clock and eye diseases, although a cause-and-effect relationship has not been definitively established. C57BL/6J male mice (aged 6 weeks) were randomly divided into two groups (Control group: 9:00-21:00 light period (300 lx); Jet lag group: 8-hour phase advance once every 4 days). A laser-induced CNV model was created after 2 weeks of feeding in a controlled or jet-lagged environment. Then, full transcriptome sequencing was performed. The pathways regulated by differentially expressed mRNAs were identified by GO analysis and GSEA. Further protein networks were constructed with the STRING database and Cytoscape software. WGCNA was used to further explore the co-expression modules of these differential genes and the correlation between these differential genes and phenotypes. ceRNA networks were constructed with miRanda and TargetScan. The pathways associated with the overlapping differentially expressed mRNAs in the ceRNA network were identified, and the hub genes were validated by qPCR. A total of 661 important DEGs, 31 differentially expressed miRNAs, 106 differentially expressed lncRNAs and 87 differentially expressed circRNAs were identified. GO and GSEA showed that the upregulated DEGs were mainly involved in reproductive structure development and reproductive system development. The STRING database and Cytoscape were used to determine the protein interaction relationships of these DEGs. WGCNA divided the expression of these genes into several modules and screened the hub genes of each module separately. Furthermore, a ceRNA network was constructed. GO analysis and GSEA showed that these target DEmRNAs mainly function in wound healing, cell spreading, epiboly involved in wound healing, epiboly, and morphogenesis of an epithelial sheet. Finally, ten key genes were identified, and their expression patterns were confirmed by real-time qPCR. In this study, we investigated the regulatory mechanism of ceRNAs in choroidal neovascularization according to different light-dark cycles in the eyeball.
Collapse
Affiliation(s)
- Ying Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Shu Su
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jia Chen
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaowei Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Shenglai Zhang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- Medical School of Nantong University, Nantong, Jiangsu, China.
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- Medical School of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
5
|
Joshi P, Keyvani Chahi A, Liu L, Moreira S, Vujovic A, Hope KJ. RNA binding protein-directed control of leukemic stem cell evolution and function. Hemasphere 2024; 8:e116. [PMID: 39175825 PMCID: PMC11339706 DOI: 10.1002/hem3.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/26/2024] [Indexed: 08/24/2024] Open
Abstract
Strict control over hematopoietic stem cell decision making is essential for healthy life-long blood production and underpins the origins of hematopoietic diseases. Acute myeloid leukemia (AML) in particular is a devastating hematopoietic malignancy that arises from the clonal evolution of disease-initiating primitive cells which acquire compounding genetic changes over time and culminate in the generation of leukemic stem cells (LSCs). Understanding the molecular underpinnings of these driver cells throughout their development will be instrumental in the interception of leukemia, the enabling of effective treatment of pre-leukemic conditions, as well as the development of strategies to target frank AML disease. To this point, a number of precancerous myeloid disorders and age-related alterations are proving as instructive models to gain insights into the initiation of LSCs. Here, we explore this myeloid dysregulation at the level of post-transcriptional control, where RNA-binding proteins (RBPs) function as core effectors. Through regulating the interplay of a myriad of RNA metabolic processes, RBPs orchestrate transcript fates to govern gene expression in health and disease. We describe the expanding appreciation of the role of RBPs and their post-transcriptional networks in sustaining healthy hematopoiesis and their dysregulation in the pathogenesis of clonal myeloid disorders and AML, with a particular emphasis on findings described in human stem cells. Lastly, we discuss key breakthroughs that highlight RBPs and post-transcriptional control as actionable targets for precision therapy of AML.
Collapse
Affiliation(s)
- Pratik Joshi
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Ava Keyvani Chahi
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Lina Liu
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Steven Moreira
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Ana Vujovic
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Kristin J. Hope
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| |
Collapse
|
6
|
Liu M, Xing Y, Tan J, Chen X, Xue Y, Qu L, Ma J, Jin X. Comprehensive summary: the role of PBX1 in development and cancers. Front Cell Dev Biol 2024; 12:1442052. [PMID: 39129784 PMCID: PMC11310070 DOI: 10.3389/fcell.2024.1442052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
PBX1 is a transcription factor that can promote the occurrence of various tumors and play a reg-ulatory role in tumor growth, metastasis, invasion, and drug resistance. Furthermore, a variant generated by fusion of E2A and PBX1, E2A-PBX1, has been found in 25% of patients with childhood acute lymphoblastic leukemia. Thus, PBX1 is a potential therapeutic target for many cancers. Here, we describe the structure of PBX1 and E2A-PBX1 as well as the molecular mecha-nisms whereby these proteins promote tumorigenesis to provide future research directions for developing new treatments. We show that PBX1 and E2A-PBX1 induce the development of highly malignant and difficult-to-treat solid and blood tumors. The development of specific drugs against their targets may be a good therapeutic strategy for PBX1-related cancers. Furthermore, we strongly recommend E2A-PBX1 as one of the genes for prenatal screening to reduce the incidence of childhood hematological malignancies.
Collapse
Affiliation(s)
- Mingsheng Liu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yan Xing
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jiufeng Tan
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xiaoliang Chen
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yaming Xue
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Licheng Qu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jianchao Ma
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xuefei Jin
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| |
Collapse
|
7
|
Yuan X, Sabzvar MK, Patil AD, Chinnaswamy K, Howie KL, Andhavaram R, Wang B, Siegler MA, Dumaz A, Stuckey JA, Corey SJ, Maciejewski JP, Visconte V, Yang CY. Comprehensive Analyses of the Effects of the Small-Molecule Inhibitor of the UHM Domain in the Splicing Factor U2AF1 in Leukemia Cells. RESEARCH SQUARE 2024:rs.3.rs-4477663. [PMID: 38883705 PMCID: PMC11177969 DOI: 10.21203/rs.3.rs-4477663/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mutations in RNA splicing factor genes including SF3B1, U2AF1, SRSF2, and ZRSR2 have been reported to contribute to development of myeloid neoplasms including myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia (sAML). Chemical tools targeting cells carrying these mutant genes remain limited and underdeveloped. Among the four proteins, mutant U2AF1 (U2AF1mut) acquires an altered 3' splice site selection preference and co-operates with the wild-type U2AF1 (U2AF1wt) to change various gene isoform patterns to support MDS cells survival and proliferation. U2AF1 mutations in MDS cells are always heterozygous and the cell viability is reduced when exposed to additional insult affecting U2AF1wt function. To investigate if the pharmacological inhibition of U2AF1wt function can provoke drug-induced vulnerability of cells harboring U2AF1 mut , we conducted a fragment-based library screening campaign to discover compounds targeting the U2AF homology domain (UHM) in U2AF1 that is required for the formation of the U2AF1/U2AF2 complex to define the 3' splice site. The most promising hit (SF1-8) selectively inhibited growth of leukemia cell lines overexpressingU2AF1 mut and human primary MDS cells carrying U2AF1 mut . RNA-seq analysis of K562-U2AF1mut following treatment with SF1-8 further revealed alteration of isoform patterns for a set of proteins that impair or rescue pathways associated with endocytosis, intracellular vesicle transport, and secretion. Our data suggested that further optimization of SF1-8 is warranted to obtain chemical probes that can be used to evaluate the therapeutic concept of inducing lethality to U2AF1 mut cells by inhibiting the U2AF1wt protein.
Collapse
Affiliation(s)
- Xinrui Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mona Kazemi Sabzvar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Amol D Patil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Kathryn L Howie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ramaraju Andhavaram
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Borwyn Wang
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Maxime A Siegler
- Department of Chemistry, John Hopkins University, Baltimore, MD, 21218, USA
| | - Arda Dumaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Seth J Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Dolfini D, Gnesutta N, Mantovani R. Expression and function of NF-Y subunits in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189082. [PMID: 38309445 DOI: 10.1016/j.bbcan.2024.189082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
NF-Y is a Transcription Factor (TF) targeting the CCAAT box regulatory element. It consists of the NF-YB/NF-YC heterodimer, each containing an Histone Fold Domain (HFD), and the sequence-specific subunit NF-YA. NF-YA expression is associated with cell proliferation and absent in some post-mitotic cells. The review summarizes recent findings impacting on cancer development. The logic of the NF-Y regulome points to pro-growth, oncogenic genes in the cell-cycle, metabolism and transcriptional regulation routes. NF-YA is involved in growth/differentiation decisions upon cell-cycle re-entry after mitosis and it is widely overexpressed in tumors, the HFD subunits in some tumor types or subtypes. Overexpression of NF-Y -mostly NF-YA- is oncogenic and decreases sensitivity to anti-neoplastic drugs. The specific roles of NF-YA and NF-YC isoforms generated by alternative splicing -AS- are discussed, including the prognostic value of their levels, although the specific molecular mechanisms of activity are still to be deciphered.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy.
| |
Collapse
|
9
|
Wu J, Ma L, Gong Q, Chen Y, Chen L, Shi C. NEAR-INFRARED DYE IR-780 ALLEVIATES HEMATOPOIETIC SYSTEM DAMAGE BY PROMOTING HEMATOPOIETIC STEM CELLS INTO QUIESCENCE. Shock 2024; 61:442-453. [PMID: 38411611 DOI: 10.1097/shk.0000000000002317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
ABSTRACT Potential radiation exposure is a general concern, but there still lacks radioprotective countermeasures. Here, we found a small molecular near-infrared dye IR-780, which promoted hematopoietic stem cells (HSCs) into quiescence to resist stress. When mice were treated with IR-780 before stress, increased HSC quiescence and better hematopoietic recovery were observed in mice in stress conditions. However, when given after radiation, IR-780 did not show obvious benefit. Transplantation assay and colony-forming assay were carried out to determine self-renewal ability and repopulation capacity of HSCs. Furthermore, IR-780 pretreatment reduced the generation of reactive oxygen species (ROS) and DNA damage in HSCs after radiation. In homeostasis, the percentage of Lineage - , Sca-1 + , and c-Kit + cells and long-term HSCs (LT-HSCs) were improved, and more HSCs were in G0 state after administration of IR-780. Further investigations showed that IR-780 selectively accumulated in mitochondria membrane potential high LT-HSCs (MMP-high LT-HSCs). Finally, IR-780 promoted human CD34 + HSC reconstruction ability in NOD-Prkdc scid Il2rg null mice after transplantation and improved repopulation capacity in vitro culture. Our research showed that IR-780 selectively entered MMP-high LT-HSCs and promoted them into dormancy, thus reducing hematopoietic injury and improving regeneration capacity. This novel approach might hold promise as a potential countermeasure for radiation injury.
Collapse
Affiliation(s)
- Jie Wu
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing, China
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| | - Long Chen
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
10
|
Perez CM, Gong Z, Yoo C, Roy D, Deoraj A, Felty Q. Inhibitor of DNA Binding Protein 3 (ID3) and Nuclear Respiratory Factor 1 (NRF1) Mediated Transcriptional Gene Signatures are Associated with the Severity of Cerebral Amyloid Angiopathy. Mol Neurobiol 2024; 61:835-882. [PMID: 37668961 DOI: 10.1007/s12035-023-03541-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/25/2023] [Indexed: 09/06/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is a degenerative vasculopathy. We have previously shown that transcription regulating proteins- inhibitor of DNA binding protein 3 (ID3) and the nuclear respiratory factor 1 (NRF1) contribute to vascular dysregulation. In this study, we have identified sex specific ID3 and NRF1-mediated gene networks in CAA patients diagnosed with Alzheimer's Disease (AD). High expression of ID3 mRNA coupled with low NRF1 mRNA levels was observed in the temporal cortex of men and women CAA patients. Low NRF1 mRNA expression in the temporal cortex was found in men with severe CAA. High ID3 expression was found in women with the genetic risk factor APOE4. Low NRF1 expression was also associated with APOE4 in women with CAA. Genome wide transcriptional activity of both ID3 and NRF1 paralleled their mRNA expression levels. Sex specific differences in transcriptional gene signatures of both ID3 and NRF1 were observed. These findings were further corroborated by Bayesian machine learning and the GeNIe simulation models. Dynamic machine learning using a Monte Carlo Markov Chain (MCMC) gene ordering approach revealed that ID3 was associated with disease severity in women. NRF1 was associated with CAA and severity of this disease in men. These findings suggest that aberrant ID3 and NRF1 activity presumably plays a major role in the pathogenesis and severity of CAA. Further analyses of ID3- and NRF1-regulated molecular drivers of CAA may provide new targets for personalized medicine and/or prevention strategies against CAA.
Collapse
Affiliation(s)
- Christian Michael Perez
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Zhenghua Gong
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Changwon Yoo
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Deodutta Roy
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Alok Deoraj
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA.
| |
Collapse
|
11
|
Gu X, Li K, Zhang M, Chen Y, Zhou J, Yao C, Zang Y, He J, Wan J, Guo B. Aspartyl-tRNA synthetase 2 orchestrates iron-sulfur metabolism in hematopoietic stem cells via fine-tuning alternative RNA splicing. Cell Rep 2023; 42:113264. [PMID: 37838946 DOI: 10.1016/j.celrep.2023.113264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/10/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
Aspartyl-tRNA synthetase 2 (Dars2) is involved in the regulation of mitochondrial protein synthesis and tissue-specific mitochondrial unfolded protein response (UPRmt). The role of Dars2 in the self-renewal and differentiation of hematopoietic stem cells (HSCs) is unknown. Here, we show that knockout (KO) of Dars2 significantly impairs the maintenance of hematopoietic stem and progenitor cells (HSPCs) without involving its tRNA synthetase activity. Dars2 KO results in significantly reduced expression of Srsf2/3/6 and impairs multiple events of mRNA alternative splicing (AS). Dars2 directly localizes to Srsf3-labeled spliceosomes in HSPCs and regulates the stability of Srsf3. Dars2-deficient HSPCs exhibit aberrant AS of mTOR and Slc22a17. Dars2 KO greatly suppresses the levels of labile ferrous iron and iron-sulfur cluster-containing proteins, which dampens mitochondrial metabolic activity and DNA damage repair pathways in HSPCs. Our study reveals that Dars2 plays a crucial role in the iron-sulfur metabolism and maintenance of HSPCs by modulating RNA splicing.
Collapse
Affiliation(s)
- Xuan Gu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kailing Li
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing at IUPUI, Indianapolis, IN 46202, USA
| | - Meng Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yandan Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingchao Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunxu Yao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Zang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jiefeng He
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.
| | - Jun Wan
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing at IUPUI, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Bin Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Hematology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
12
|
Mumme HL, Raikar SS, Bhasin SS, Thomas BE, Lawrence T, Weinzierl EP, Pang Y, DeRyckere D, Gawad C, Wechsler DS, Porter CC, Castellino SM, Graham DK, Bhasin M. Single-cell RNA sequencing distinctly characterizes the wide heterogeneity in pediatric mixed phenotype acute leukemia. Genome Med 2023; 15:83. [PMID: 37845689 PMCID: PMC10577904 DOI: 10.1186/s13073-023-01241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Mixed phenotype acute leukemia (MPAL), a rare subgroup of leukemia characterized by blast cells with myeloid and lymphoid lineage features, is difficult to diagnose and treat. A better characterization of MPAL is essential to understand the subtype heterogeneity and how it compares with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Therefore, we performed single-cell RNA sequencing (scRNAseq) on pediatric MPAL bone marrow (BM) samples to develop a granular map of the MPAL blasts and microenvironment landscape. METHODS We analyzed over 40,000 cells from nine pediatric MPAL BM samples to generate a single-cell transcriptomic landscape of B/myeloid (B/My) and T/myeloid (T/My) MPAL. Cells were clustered using unsupervised single-cell methods, and malignant blast and immune clusters were annotated. Differential expression analysis was performed to identify B/My and T/My MPAL blast-specific signatures by comparing transcriptome profiles of MPAL with normal BM, AML, and ALL. Gene set enrichment analysis (GSEA) was performed, and significantly enriched pathways were compared in MPAL subtypes. RESULTS B/My and T/My MPAL blasts displayed distinct blast signatures. Transcriptomic analysis revealed that B/My MPAL profile overlaps with B-ALL and AML samples. Similarly, T/My MPAL exhibited overlap with T-ALL and AML samples. Genes overexpressed in both MPAL subtypes' blast cells compared to AML, ALL, and healthy BM included MAP2K2 and CD81. Subtype-specific genes included HBEGF for B/My and PTEN for T/My. These marker sets segregated bulk RNA-seq AML, ALL, and MPAL samples based on expression profiles. Analysis comparing T/My MPAL to ETP, near-ETP, and non-ETP T-ALL, showed that T/My MPAL had greater overlap with ETP-ALL cases. Comparisons among MPAL subtypes between adult and pediatric samples showed analogous transcriptomic landscapes of corresponding subtypes. Transcriptomic differences were observed in the MPAL samples based on response to induction chemotherapy, including selective upregulation of the IL-16 pathway in relapsed samples. CONCLUSIONS We have for the first time described the single-cell transcriptomic landscape of pediatric MPAL and demonstrated that B/My and T/My MPAL have distinct scRNAseq profiles from each other, AML, and ALL. Differences in transcriptomic profiles were seen based on response to therapy, but larger studies will be needed to validate these findings.
Collapse
Affiliation(s)
- Hope L Mumme
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Taylor Lawrence
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
| | - Elizabeth P Weinzierl
- Department of Pathology and Laboratory Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Yakun Pang
- Department: Pediatrics - Hematology/Oncology, Stanford University, Stanford, CA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Chuck Gawad
- Department: Pediatrics - Hematology/Oncology, Stanford University, Stanford, CA, USA
| | - Daniel S Wechsler
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Reynolds SB, Pettit K, Kandarpa M, Talpaz M, Li Q. Exploring the Molecular Landscape of Myelofibrosis, with a Focus on Ras and Mitogen-Activated Protein (MAP) Kinase Signaling. Cancers (Basel) 2023; 15:4654. [PMID: 37760623 PMCID: PMC10527328 DOI: 10.3390/cancers15184654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Myelofibrosis (MF) is a clonal myeloproliferative neoplasm (MPN) characterized clinically by cytopenias, fatigue, and splenomegaly stemming from extramedullary hematopoiesis. MF commonly arises from mutations in JAK2, MPL, and CALR, which manifests as hyperactive Jak/Stat signaling. Triple-negative MF is diagnosed in the absence of JAK2, MPL, and CALR but when clinical, morphologic criteria are met and other mutation(s) is/are present, including ASXL1, EZH2, and SRSF2. While the clinical and classic molecular features of MF are well-established, emerging evidence indicates that additional mutations, specifically within the Ras/MAP Kinase signaling pathway, are present and may play important role in disease pathogenesis and treatment response. KRAS and NRAS mutations alone are reportedly present in up to 15 and 14% of patients with MF (respectively), and other mutations predicted to activate Ras signaling, such as CBL, NF1, BRAF, and PTPN11, collectively exist in as much as 21% of patients. Investigations into the prevalence of RAS and related pathway mutations in MF and the mechanisms by which they contribute to its pathogenesis are critical in better understanding this condition and ultimately in the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Samuel B. Reynolds
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Kristen Pettit
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Malathi Kandarpa
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Moshe Talpaz
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Qing Li
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| |
Collapse
|
14
|
Bouligny IM, Maher KR, Grant S. Secondary-Type Mutations in Acute Myeloid Leukemia: Updates from ELN 2022. Cancers (Basel) 2023; 15:3292. [PMID: 37444402 DOI: 10.3390/cancers15133292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
The characterization of the molecular landscape and the advent of targeted therapies have defined a new era in the prognostication and treatment of acute myeloid leukemia. Recent revisions in the European LeukemiaNet 2022 guidelines have refined the molecular, cytogenetic, and treatment-related boundaries between myelodysplastic neoplasms (MDS) and AML. This review details the molecular mechanisms and cellular pathways of myeloid maturation aberrancies contributing to dysplasia and leukemogenesis, focusing on recent molecular categories introduced in ELN 2022. We provide insights into novel and rational therapeutic combination strategies that exploit mechanisms of leukemogenesis, highlighting the underpinnings of splicing factors, the cohesin complex, and chromatin remodeling. Areas of interest for future research are summarized, and we emphasize approaches designed to advance existing treatment strategies.
Collapse
Affiliation(s)
- Ian M Bouligny
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Cancer Center, Richmond, VA 23298, USA
| | - Keri R Maher
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Cancer Center, Richmond, VA 23298, USA
| | - Steven Grant
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
15
|
Li Z, He Z, Wang J, Kong G. RNA splicing factors in normal hematopoiesis and hematologic malignancies: novel therapeutic targets and strategies. J Leukoc Biol 2023; 113:149-163. [PMID: 36822179 DOI: 10.1093/jleuko/qiac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 01/18/2023] Open
Abstract
RNA splicing, a crucial transesterification-based process by which noncoding regions are removed from premature RNA to create mature mRNA, regulates various cellular functions, such as proliferation, survival, and differentiation. Clinical and functional studies over the past 10 y have confirmed that mutations in RNA splicing factors are among the most recurrent genetic abnormalities in hematologic neoplasms, including myeloid malignancies, chronic lymphocytic leukemia, mantle cell lymphoma, and clonal hematopoiesis. These findings indicate an important role for splicing factor mutations in the development of clonal hematopoietic disorders. Mutations in core or accessory components of the RNA spliceosome complex alter splicing sites in a manner of change of function. These changes can result in the dysregulation of cancer-associated gene expression and the generation of novel mRNA transcripts, some of which are not only critical to disease development but may be also serving as potential therapeutic targets. Furthermore, multiple studies have revealed that hematopoietic cells bearing mutations in splicing factors depend on the expression of the residual wild-type allele for survival, and these cells are more sensitive to reduced expression of wild-type splicing factors or chemical perturbations of the splicing machinery. These findings suggest a promising possibility for developing novel therapeutic opportunities in tumor cells based on mutations in splicing factors. Here, we combine current knowledge of the mechanistic and functional effects of frequently mutated splicing factors in normal hematopoiesis and the effects of their mutations in hematologic malignancies. Moreover, we discuss the development of potential therapeutic opportunities based on these mutations.
Collapse
Affiliation(s)
- Zhenzhen Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, No. 127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| | - Zhongzheng He
- Department of Neurosurgery, Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161 Xiwu Road, Xincheng District, Xi'an, Shaanxi 710003, China
| | - Jihan Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, No. 127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| | - Guangyao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, Xi'an, Shaanxi 710004, China
| |
Collapse
|
16
|
Londero M, Gallo A, Cattaneo C, Ghilardi A, Ronzio M, Del Giacco L, Mantovani R, Dolfini D. NF-YAl drives EMT in Claudin low tumours. Cell Death Dis 2023; 14:65. [PMID: 36707502 PMCID: PMC9883497 DOI: 10.1038/s41419-023-05591-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/29/2023]
Abstract
NF-Y is a trimeric transcription factor whose binding site -the CCAAT box- is enriched in cancer-promoting genes. The regulatory subunit, the sequence-specificity conferring NF-YA, comes in two major isoforms, NF-YA long (NF-YAl) and short (NF-YAs). Extensive expression analysis in epithelial cancers determined two features: widespread overexpression and changes in NF-YAl/NF-YAs ratios (NF-YAr) in tumours with EMT features. We performed wet and in silico experiments to explore the role of the isoforms in breast -BRCA- and gastric -STAD- cancers. We generated clones of two Claudinlow BRCA lines SUM159PT and BT549 ablated of exon-3, thus shifting expression from NF-YAl to NF-YAs. Edited clones show normal growth but reduced migratory capacities in vitro and ability to metastatize in vivo. Using TCGA, including upon deconvolution of scRNA-seq data, we formalize the clinical importance of high NF-YAr, associated to EMT genes and cell populations. We derive a novel, prognostic 158 genes signature common to BRCA and STAD Claudinlow tumours. Finally, we identify splicing factors associated to high NF-YAr, validating RBFOX2 as promoting expression of NF-YAl. These data bring three relevant results: (i) the definition and clinical implications of NF-YAr and the 158 genes signature in Claudinlow tumours; (ii) genetic evidence of 28 amino acids in NF-YAl with EMT-promoting capacity; (iii) the definition of selected splicing factors associated to NF-YA isoforms.
Collapse
Affiliation(s)
- Michela Londero
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Alberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Camilla Cattaneo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Anna Ghilardi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Mirko Ronzio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Luca Del Giacco
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
17
|
Lebecque B, Bourgne C, Munje C, Berger J, Tassin T, Cony-Makhoul P, Guerci-Bresler A, Johnson-Ansah H, Liu W, Saugues S, Tchirkov A, Vetrie D, Copland M, Berger MG. The Spliceosome: A New Therapeutic Target in Chronic Myeloid Leukaemia. Cancers (Basel) 2022; 14:4695. [PMID: 36230624 PMCID: PMC9563771 DOI: 10.3390/cancers14194695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
RNA splicing factors are frequently altered in cancer and can act as both oncoproteins and tumour suppressors. They have been found mutated or deregulated, justifying the growing interest in the targeting of splicing catalysis, splicing regulatory proteins, and/or specific, key altered splicing events. We recently showed that the DNA methylation alterations of CD34+CD15- chronic myeloid leukaemia (CML) cells affect, among others, alternative splicing genes, suggesting that spliceosome actors might be altered in chronic-phase (CP)-CML. We investigated the expression of 12 spliceosome genes known to be oncogenes or tumour suppressor genes in primary CP-CML CD34+ cells at diagnosis (n = 15). We found that CP-CML CD34+ cells had a distinct splicing signature profile as compared with healthy donor CD34+ cells or whole CP-CML cells, suggesting: (i) a spliceosome deregulation from the diagnosis time and (ii) an intraclonal heterogeneity. We could identify three profile types, but there was no relationship with a patient's characteristics. By incubating cells with TKI and/or a spliceosome-targeted drug (TG003), we showed that CP-CML CD34+ cells are both BCR::ABL and spliceosome dependent, with the combination of the two drugs showing an additive effect while sparing healthy donors cells. Our results suggest that the spliceosome may be a new potential target for the treatment of CML.
Collapse
Affiliation(s)
- Benjamin Lebecque
- Hématologie Biologique, CHU Estaing, 63000 Clermont-Ferrand, France
- Equipe d’Accueil 7453 CHELTER, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Celine Bourgne
- Hématologie Biologique, CHU Estaing, 63000 Clermont-Ferrand, France
- Equipe d’Accueil 7453 CHELTER, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Chinmay Munje
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Juliette Berger
- Hématologie Biologique, CHU Estaing, 63000 Clermont-Ferrand, France
- Equipe d’Accueil 7453 CHELTER, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Thomas Tassin
- Hématologie Biologique, CHU Estaing, 63000 Clermont-Ferrand, France
- Equipe d’Accueil 7453 CHELTER, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Pascale Cony-Makhoul
- CH Annecy-Genevois, 74374 Pringy, France
- Groupe Fi-LMC, Centre Léon Bérard, 69008 Lyon, France
| | - Agnès Guerci-Bresler
- Groupe Fi-LMC, Centre Léon Bérard, 69008 Lyon, France
- Hématologie Clinique, CHRU Brabois, 54500 Vandoeuvre-lès-Nancy, France
| | - Hyacinthe Johnson-Ansah
- Groupe Fi-LMC, Centre Léon Bérard, 69008 Lyon, France
- Institut d’Hématologie de Basse Normandie, CHU, 14033 Caen, France
| | - Wei Liu
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sandrine Saugues
- Hématologie Biologique, CHU Estaing, 63000 Clermont-Ferrand, France
- Equipe d’Accueil 7453 CHELTER, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Andrei Tchirkov
- Equipe d’Accueil 7453 CHELTER, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
| | - David Vetrie
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mhairi Copland
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Marc G. Berger
- Hématologie Biologique, CHU Estaing, 63000 Clermont-Ferrand, France
- Equipe d’Accueil 7453 CHELTER, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
- Groupe Fi-LMC, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
18
|
Clinical Features, Gene Alterations, and Outcomes in Prefibrotic and Overt Primary and Secondary Myelofibrotic Patients. Cancers (Basel) 2022; 14:cancers14184485. [PMID: 36139644 PMCID: PMC9496754 DOI: 10.3390/cancers14184485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are divided in three major groups: polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 WHO classification incorporates also prefibrotic PMF (pre-PMF) and overt PMF. This study aimed to discriminate the clinical features, genetic alterations, and outcomes in patients with prefibrotic, overt PMF, and secondary MF (SMF). This study included 229 patients with diagnosed myelofibrosis (MF). Among 229 patients, 67 (29%), 122 (53%), and 40 (18%) were confirmed as SMF, overt PMF, and pre-PMF, respectively. The JAK2 V617F mutation was differentially distributed in SMF and PMF, contradictory to CALR and MPL mutations. Regarding nondriver mutations, the occurrence of ASXL1 mutations differed between PMF and SMF or pre-PMF. The three-year overall survival was 91.5%, 85.3%, and 94.8% in SMF, overt PMF, and pre-PMF groups. Various scoring systems could discriminate the overall survival in PMF but not in SMF and pre-PMF. Still, clinical features including anemia and thrombocytopenia were poor prognostic factors throughout the myelofibrosis, whereas mutations contributed differently. Molecular grouping by wild-type SF3B1 and SRSF2/RUNX1/U2AF1/ASXL1/TP53 mutations showed inferior progression-free survival (PFS) in PMF, SMF, and pre-PMF. We determined the clinical and genetic features related to poor prognosis in myelofibrosis.
Collapse
|
19
|
Zhao Y, Cai W, Hua Y, Yang X, Zhou J. The Biological and Clinical Consequences of RNA Splicing Factor U2AF1 Mutation in Myeloid Malignancies. Cancers (Basel) 2022; 14:4406. [PMID: 36139566 PMCID: PMC9496927 DOI: 10.3390/cancers14184406] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Mutations of spliceosome genes have been frequently identified in myeloid malignancies with the large-scale application of advanced sequencing technology. U2 small nuclear RNA auxiliary factor 1 (U2AF1), an essential component of U2AF heterodimer, plays a pivotal role in the pre-mRNA splicing processes to generate functional mRNAs. Over the past few decades, the mutation landscape of U2AF1 (most frequently involved S34 and Q157 hotspots) has been drawn in multiple cancers, particularly in myeloid malignancies. As a recognized early driver of myelodysplastic syndromes (MDSs), U2AF1 mutates most frequently in MDS, followed by acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs). Here, for the first time, we summarize the research progress of U2AF1 mutations in myeloid malignancies, including the correlations between U2AF1 mutations with clinical and genetic characteristics, prognosis, and the leukemic transformation of patients. We also summarize the adverse effects of U2AF1 mutations on hematopoietic function, and the alterations in downstream alternative gene splicing and biological pathways, thus providing comprehensive insights into the roles of U2AF1 mutations in the myeloid malignancy pathogenesis. U2AF1 mutations are expected to be potential novel molecular markers for myeloid malignancies, especially for risk stratification, prognosis assessment, and a therapeutic target of MDS patients.
Collapse
Affiliation(s)
- Yangjing Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Weili Cai
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an 223005, China
| | - Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Xiaochen Yang
- Department of Thyroid and Breast Surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Jingdong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China
| |
Collapse
|
20
|
Abstract
Hematopoietic stem cell (HSC) regeneration is the remarkable process by which extremely rare, normally inactive cells of the bone marrow can replace an entire organ if called to do so by injury or harnessed by transplantation. HSC research is arguably the first quantitative single-cell science and the foundation of adult stem cell biology. Bone marrow transplant is the oldest and most refined technique of regenerative medicine. Here we review the intertwined history of the discovery of HSCs and bone marrow transplant, the molecular and cellular mechanisms of HSC self-renewal, and the use of HSCs and their derivatives for cell therapy.
Collapse
Affiliation(s)
- Mitch Biermann
- Department of Medicine, University of California San Diego, La Jolla, California 92093
| | - Tannishtha Reya
- Department of Medicine, University of California San Diego, La Jolla, California 92093
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
21
|
Douet-Guilbert N, Soubise B, Bernard DG, Troadec MB. Cytogenetic and Genetic Abnormalities with Diagnostic Value in Myelodysplastic Syndromes (MDS): Focus on the Pre-Messenger RNA Splicing Process. Diagnostics (Basel) 2022; 12:1658. [PMID: 35885562 PMCID: PMC9320363 DOI: 10.3390/diagnostics12071658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are considered to be diseases associated with splicing defects. A large number of genes involved in the pre-messenger RNA splicing process are mutated in MDS. Deletion of 5q and 7q are of diagnostic value, and those chromosome regions bear the numbers of splicing genes potentially deleted in del(5q) and del(7q)/-7 MDS. In this review, we present the splicing genes already known or suspected to be implicated in MDS pathogenesis. First, we focus on the splicing genes located on chromosome 5 (HNRNPA0, RBM27, RBM22, SLU7, DDX41), chromosome 7 (LUC7L2), and on the SF3B1 gene since both chromosome aberrations and the SF3B1 mutation are the only genetic abnormalities in splicing genes with clear diagnostic values. Then, we present and discuss other splicing genes that are showing a prognostic interest (SRSF2, U2AF1, ZRSR2, U2AF2, and PRPF8). Finally, we discuss the haploinsufficiency of splicing genes, especially from chromosomes 5 and 7, the important amplifier process of splicing defects, and the cumulative and synergistic effect of splicing genes defects in the MDS pathogenesis. At the time, when many authors suggest including the sequencing of some splicing genes to improve the diagnosis and the prognosis of MDS, a better understanding of these cooperative defects is needed.
Collapse
Grants
- comités 16, 22, 29, 35, 56, 41 and 85 Ligue Régionale contre le cancer (comités 16, 22, 29, 35, 56, 41 and 85)
- 2021-2022 Association Halte au Cancer
- 2020-2022 Association Gaétan Saleün
- 2020-2022 Association connaître et combattre la myélodysplasie
- 2021-2022 le Collectif Agora de Guilers
- 2021-2023 Association Fondation de l'Avenir
- 2021-2023 fonds INNOVEO Brest
Collapse
Affiliation(s)
- Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
| | - Delphine G. Bernard
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| |
Collapse
|
22
|
An Q, Dong Y, Cao Y, Pan X, Xue Y, Zhou Y, Zhang Y, Ma F. Myh9 Plays an Essential Role in the Survival and Maintenance of Hematopoietic Stem/Progenitor Cells. Cells 2022; 11:cells11121865. [PMID: 35740994 PMCID: PMC9221478 DOI: 10.3390/cells11121865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Myosin heavy chain 9 (MYH9) gene encodes a protein named non-muscle heavy chain IIA (NMHC IIA), interacting with actin and participating in various biological processes. Mutations in MYH9 cause an array of autosomal dominant disorders, known as MYH9-related diseases (MYH9-RD). However, the role of MYH9 in normal hematopoiesis remains largely unexplored. By using Mx1-cre Myh9 conditional knockout mice, we established an inducible system to precisely inactivate Myh9 function in hematopoietic cells in vivo. The results showed that deletion of Myh9 led to severe defects in hematopoiesis, characterized by pancytopenia, drastic decreases of hematopoietic stem/progenitor cells (HSPC), and bone marrow failure, causing early lethality in mice. The defect in hematopoiesis caused by Myh9 ablation is cell autonomous. In addition, Myh9 deletion impairs HSPC repopulation capacity and increases apoptosis. RNA sequencing results revealed significant alterations in the expression of genes related to HSC self-renewal and maintenance, while multiple signal pathways were also involved, including genes for HSC and myeloid cell development, intrinsic apoptosis, targets of mTOR signaling, and maturity of hematopoietic cells. Our present study suggests an essential role for Myh9 in the survival and maintenance of HSPC in normal hematopoiesis.
Collapse
Affiliation(s)
- Quanming An
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yong Dong
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yang Cao
- Institute of Molecular Medicine, School of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China;
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yuan Xue
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
- Correspondence: (Y.Z.); (F.M.)
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
- Correspondence: (Y.Z.); (F.M.)
| |
Collapse
|
23
|
Sette C, Paronetto MP. Somatic Mutations in Core Spliceosome Components Promote Tumorigenesis and Generate an Exploitable Vulnerability in Human Cancer. Cancers (Basel) 2022; 14:cancers14071827. [PMID: 35406598 PMCID: PMC8997811 DOI: 10.3390/cancers14071827] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary High throughput exome sequencing approaches have disclosed recurrent cancer-associated mutations in spliceosomal components, which drive aberrant pre-mRNA processing events and support the tumor phenotype. At the same time, mutations in spliceosome genes and aberrant splicing regulation establish a selective vulnerability of cancer cells to splicing-targeting approaches, which could be exploited therapeutically. It is conceivable that a better understanding of the mechanisms and roles of abnormal splicing in tumor metabolism will facilitate the development of a novel generation of tumor-targeting drugs. In this review, we describe recent advances in the elucidation of the biological impact and biochemical effects of somatic mutations in core spliceosome components on splicing choices and their associated targetable vulnerabilities. Abstract Alternative pre-mRNA processing enables the production of distinct mRNA and protein isoforms from a single gene, thus greatly expanding the coding potential of eukaryotic genomes and fine-tuning gene expression programs. Splicing is carried out by the spliceosome, a complex molecular machinery which assembles step-wise on mRNA precursors in the nucleus of eukaryotic cells. In the last decade, exome sequencing technologies have allowed the identification of point mutations in genes encoding splicing factors as a recurrent hallmark of human cancers, with higher incidence in hematological malignancies. These mutations lead to production of splicing factors that reduce the fidelity of the splicing process and yield splicing variants that are often advantageous for cancer cells. However, at the same time, these mutations increase the sensitivity of transformed cells to splicing inhibitors, thus offering a therapeutic opportunity for novel targeted strategies. Herein, we review the recent literature documenting cancer-associated mutations in components of the early spliceosome complex and discuss novel therapeutic strategies based on small-molecule spliceosome inhibitors that exhibit strong anti-tumor effects, particularly against cancer cells harboring mutations in spliceosomal components.
Collapse
Affiliation(s)
- Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis, 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
24
|
Ye B, Sheng Y, Zhang M, Hu Y, Huang H. Early detection and intervention of clonal hematopoiesis for preventing hematological malignancies. Cancer Lett 2022; 538:215691. [DOI: 10.1016/j.canlet.2022.215691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 12/17/2022]
|
25
|
Alagpulinsa DA, Toribio MP, Alhallak I, Shmookler Reis RJ. Advances in understanding the molecular basis of clonal hematopoiesis. Trends Mol Med 2022; 28:360-377. [PMID: 35341686 DOI: 10.1016/j.molmed.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/28/2022]
Abstract
Hematopoietic stem cells (HSCs) are polyfunctional, regenerating all blood cells via hematopoiesis throughout life. Clonal hematopoiesis (CH) is said to occur when a substantial proportion of mature blood cells is derived from a single dominant HSC lineage, usually because these HSCs have somatic mutations that confer a fitness and expansion advantage. CH strongly associates with aging and enrichment in some diseases irrespective of age, emerging as an independent causal risk factor for hematologic malignancies, cardiovascular disease, adverse disease outcomes, and all-cause mortality. Defining the molecular mechanisms underlying CH will thus provide a framework to develop interventions for healthy aging and disease treatment. Here, we review the most recent advances in understanding the molecular basis of CH in health and disease.
Collapse
Affiliation(s)
- David A Alagpulinsa
- Vaccine & Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | - Mabel P Toribio
- Metabolism Unit, Division of Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Iad Alhallak
- Metabolism Unit, Division of Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare System and Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
26
|
Wadugu BA, Nonavinkere Srivatsan S, Heard A, Alberti MO, Ndonwi M, Liu J, Grieb S, Bradley J, Shao J, Ahmed T, Shirai CL, Khanna A, Fei DL, Miller CA, Graubert TA, Walter MJ. U2af1 is a haplo-essential gene required for hematopoietic cancer cell survival in mice. J Clin Invest 2021; 131:141401. [PMID: 34546980 DOI: 10.1172/jci141401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Somatic mutations in the spliceosome gene U2AF1 are common in patients with myelodysplastic syndromes. U2AF1 mutations that code for the most common amino acid substitutions are always heterozygous, and the retained WT allele is expressed, suggesting that mutant hematopoietic cells may require the residual WT allele to be viable. We show that hematopoiesis and RNA splicing in U2af1 heterozygous knockout mice were similar to those in control mice, but that deletion of the WT allele in U2AF1(S34F) heterozygous mutant-expressing hematopoietic cells (i.e., hemizygous mutant) was lethal. These results confirm that U2AF1 mutant hematopoietic cells are dependent on the expression of WT U2AF1 for survival in vivo and that U2AF1 is a haplo-essential cancer gene. Mutant U2AF1(S34F)-expressing cells were also more sensitive to reduced expression of WT U2AF1 than nonmutant cells. Furthermore, mice transplanted with leukemia cells expressing mutant U2AF1 had significantly reduced tumor burden and improved survival after the WT U2af1 allele was deleted compared with when it was not deleted. These results suggest that selectively targeting the WT U2AF1 allele in heterozygous mutant cells could induce cancer cell death and be a therapeutic strategy for patients harboring U2AF1 mutations.
Collapse
Affiliation(s)
| | | | - Amanda Heard
- Division of Oncology, Department of Medicine and
| | - Michael O Alberti
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Jie Liu
- Division of Oncology, Department of Medicine and
| | - Sarah Grieb
- Division of Oncology, Department of Medicine and
| | | | - Jin Shao
- Division of Oncology, Department of Medicine and
| | - Tanzir Ahmed
- Division of Oncology, Department of Medicine and
| | | | - Ajay Khanna
- Division of Oncology, Department of Medicine and
| | - Dennis L Fei
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA.,Cancer Biology Section, Cancer Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | | | - Timothy A Graubert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Splicing mutations are among the most recurrent genetic perturbations in hematological malignancies, highlighting an important impact of splicing regulation in hematopoietic development. However, compared to our understanding of splicing factor mutations in hematological malignancies, studies of splicing components and alternative splicing in normal hematopoiesis have been less well investigated. Here, we outline the most recent findings on splicing regulation in normal hematopoiesis and discuss the important questions in the field. RECENT FINDINGS Recent studies have highlighted the critical role of splicing regulation in hematopoiesis, including characterization of splicing components in normal hematopoiesis, investigation of transcriptional alterations on splicing, and identification of stage-specific alternative splicing events during hematopoietic development. SUMMARY These interesting findings provide insights on hematopoietic regulation at a co-transcriptional level. More high-throughput RNA ribonucleic acid (RNA) sequencing and functional genomic screens are needed to advance our knowledge of critical alternative splicing patterns in shaping hematopoiesis.
Collapse
Affiliation(s)
- Sisi Chen
- Human Oncology and Pathogenesis Program, Dept. of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Dept. of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
- Leukemia Service, Dept. of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| |
Collapse
|
28
|
Martínez-Valiente C, Garcia-Ruiz C, Rosón B, Liquori A, González-Romero E, Fernández-González R, Gómez-Redondo I, Cervera J, Gutiérrez-Adán A, Sanjuan-Pla A. Aberrant Alternative Splicing in U2af1/Tet2 Double Mutant Mice Contributes to Major Hematological Phenotypes. Int J Mol Sci 2021; 22:6963. [PMID: 34203454 PMCID: PMC8269301 DOI: 10.3390/ijms22136963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
Mutations in splicing factors are recurrent somatic alterations identified in myelodysplastic syndromes (MDS) and they frequently coincide with mutations in epigenetic factors. About 25% of patients present concurrent mutations in such pathways, suggesting a cooperative role in the pathogenesis of MDS. We focused on the splicing factor U2AF1 involved in the recognition of the 3' splice site during pre-mRNA splicing. Using a CRISPR/Cas9 system, we created heterozygous mice with a carboxy-terminal truncated U2af1 allele (U2af1mut/+), studied the U2af1mut/+ hematopoietic system, and did not observe any gross differences in both young (12-13 weeks) and old (23 months) U2af1mut/+ mice, except for a reduction in size of approximately 20%. However, hematopoietic stem/progenitor cells lacked reconstitution capacity in transplantation assays and displayed an aberrant RNA splicing by RNA sequencing. We also evaluated U2af1mut/+ in conjunction with Tet2-deficiency. Novel double mutant U2af1mut/+Tet2-/- mice showed increased monogranulocytic precursors. Hematopoietic stem/progenitor cells were also enhanced and presented functional and transcriptomic alterations. Nonetheless, U2af1mut/+Tet2-/- mice did not succumb to MDS disease over a 6-month observation period. Collectively, our data suggest that cooperation between mutant U2af1 and Tet2 loss is not sufficient for MDS initiation in mice.
Collapse
Affiliation(s)
- Cristina Martínez-Valiente
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (C.M.-V.); (C.G.-R.); (B.R.); (A.L.); (E.G.-R.)
| | - Cristian Garcia-Ruiz
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (C.M.-V.); (C.G.-R.); (B.R.); (A.L.); (E.G.-R.)
| | - Beatriz Rosón
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (C.M.-V.); (C.G.-R.); (B.R.); (A.L.); (E.G.-R.)
| | - Alessandro Liquori
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (C.M.-V.); (C.G.-R.); (B.R.); (A.L.); (E.G.-R.)
| | - Elisa González-Romero
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (C.M.-V.); (C.G.-R.); (B.R.); (A.L.); (E.G.-R.)
| | - Raúl Fernández-González
- Animal Reproduction Department, INIA, Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (R.F.-G.); (I.G.-R.); (A.G.-A.)
| | - Isabel Gómez-Redondo
- Animal Reproduction Department, INIA, Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (R.F.-G.); (I.G.-R.); (A.G.-A.)
| | - José Cervera
- Hematology Service, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), Av. Monforte de Lemos, 3-5 Pabellón 11, 28029 Madrid, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Alfonso Gutiérrez-Adán
- Animal Reproduction Department, INIA, Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (R.F.-G.); (I.G.-R.); (A.G.-A.)
| | - Alejandra Sanjuan-Pla
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (C.M.-V.); (C.G.-R.); (B.R.); (A.L.); (E.G.-R.)
| |
Collapse
|