1
|
Marderstein AR, De Zuani M, Moeller R, Bezney J, Padhi EM, Wong S, Coorens THH, Xie Y, Xue H, Montgomery SB, Cvejic A. Single-cell multi-omics map of human fetal blood in Down syndrome. Nature 2024; 634:104-112. [PMID: 39322663 PMCID: PMC11446839 DOI: 10.1038/s41586-024-07946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Down syndrome predisposes individuals to haematological abnormalities, such as increased number of erythrocytes and leukaemia in a process that is initiated before birth and is not entirely understood1-3. Here, to understand dysregulated haematopoiesis in Down syndrome, we integrated single-cell transcriptomics of over 1.1 million cells with chromatin accessibility and spatial transcriptomics datasets using human fetal liver and bone marrow samples from 3 fetuses with disomy and 15 fetuses with trisomy. We found that differences in gene expression in Down syndrome were dependent on both cell type and environment. Furthermore, we found multiple lines of evidence that haematopoietic stem cells (HSCs) in Down syndrome are 'primed' to differentiate. We subsequently established a Down syndrome-specific map linking non-coding elements to genes in disomic and trisomic HSCs using 10X multiome data. By integrating this map with genetic variants associated with blood cell counts, we discovered that trisomy restructured regulatory interactions to dysregulate enhancer activity and gene expression critical to erythroid lineage differentiation. Furthermore, as mutations in Down syndrome display a signature of oxidative stress4,5, we validated both increased mitochondrial mass and oxidative stress in Down syndrome, and observed that these mutations preferentially fell into regulatory regions of expressed genes in HSCs. Together, our single-cell, multi-omic resource provides a high-resolution molecular map of fetal haematopoiesis in Down syndrome and indicates significant regulatory restructuring giving rise to co-occurring haematological conditions.
Collapse
Affiliation(s)
| | - Marco De Zuani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rebecca Moeller
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jon Bezney
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Evin M Padhi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shuo Wong
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Yilin Xie
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Haoliang Xue
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Cambridge Stem Cell Institute, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Peterson JK, Clarke S, Gelb BD, Kasparian NA, Kazazian V, Pieciak K, Pike NA, Setty SP, Uveges MK, Rudd NA. Trisomy 21 and Congenital Heart Disease: Impact on Health and Functional Outcomes From Birth Through Adolescence: A Scientific Statement From the American Heart Association. J Am Heart Assoc 2024; 13:e036214. [PMID: 39263820 DOI: 10.1161/jaha.124.036214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 09/13/2024]
Abstract
Due to improvements in recognition and management of their multisystem disease, the long-term survival of infants, children, and adolescents with trisomy 21 and congenital heart disease now matches children with congenital heart disease and no genetic condition in many scenarios. Although this improved survival is a triumph, individuals with trisomy 21 and congenital heart disease have unique and complex care needs in the domains of physical, developmental, and psychosocial health, which affect functional status and quality of life. Pulmonary hypertension and single ventricle heart disease are 2 known cardiovascular conditions that reduce life expectancy in individuals with trisomy 21. Multisystem involvement with respiratory, endocrine, gastrointestinal, hematological, neurological, and sensory systems can interact with cardiovascular health concerns to amplify adverse effects. Neurodevelopmental, psychological, and functional challenges can also affect quality of life. A highly coordinated interdisciplinary care team model, or medical home, can help address these complex and interactive conditions from infancy through the transition to adult care settings. The purpose of this Scientific Statement is to identify ongoing cardiovascular and multisystem, developmental, and psychosocial health concerns for children with trisomy 21 and congenital heart disease from birth through adolescence and to provide a framework for monitoring and management to optimize quality of life and functional status.
Collapse
|
3
|
Perik-Zavodskii R, Perik-Zavodskaia O, Alrhmoun S, Volynets M, Shevchenko J, Nazarov K, Denisova V, Sennikov S. Single-cell multi-omics reveal stage of differentiation and trajectory-dependent immunity-related gene expression patterns in human erythroid cells. Front Immunol 2024; 15:1431303. [PMID: 39267736 PMCID: PMC11390661 DOI: 10.3389/fimmu.2024.1431303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
The role of Erythroid cells in immune regulation and immunosuppression is one of the emerging topics in modern immunology that still requires further clarification as Erythroid cells from different tissues and different species express different immunoregulatory molecules. In this study, we performed a thorough investigation of human bone marrow Erythroid cells from adult healthy donors and adult acute lymphoblastic leukemia patients using the state-of-the-art single-cell targeted proteomics and transcriptomics via BD Rhapsody and cancer-related gene copy number variation analysis via NanoString Sprint Profiler. We found that human bone marrow Erythroid cells express the ARG1, LGALS1, LGALS3, LGALS9, and C10orf54 (VISTA) immunosuppressive genes, CXCL5, CXCL8, and VEGFA cytokine genes, as well as the genes involved in antimicrobial immunity and MHC Class II antigen presentation. We also found that ARG1 gene expression was restricted to the single erythroid cell cluster that we termed ARG1-positive Orthochromatic erythroblasts and that late Erythroid cells lose S100A9 and gain MZB1 gene expression in case of acute lymphoblastic leukemia. These findings show that steady-state erythropoiesis bone marrow Erythroid cells express myeloid signature genes even without any transdifferentiating stimulus like cancer.
Collapse
Affiliation(s)
- Roman Perik-Zavodskii
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Olga Perik-Zavodskaia
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Saleh Alrhmoun
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Marina Volynets
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia Shevchenko
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Kirill Nazarov
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Vera Denisova
- Clinic of immunopathology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Sergey Sennikov
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
4
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
5
|
Mason NR, Cahill H, Diamond Y, McCleary K, Kotecha RS, Marshall GM, Mateos MK. Down syndrome-associated leukaemias: current evidence and challenges. Ther Adv Hematol 2024; 15:20406207241257901. [PMID: 39050114 PMCID: PMC11268035 DOI: 10.1177/20406207241257901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/13/2024] [Indexed: 07/27/2024] Open
Abstract
Children with Down syndrome (DS) are at increased risk of developing haematological malignancies, in particular acute megakaryoblastic leukaemia and acute lymphoblastic leukaemia. The microenvironment established by abnormal haematopoiesis driven by trisomy 21 is compounded by additional genetic and epigenetic changes that can drive leukaemogenesis in patients with DS. GATA-binding protein 1 (GATA1) somatic mutations are implicated in the development of transient abnormal myelopoiesis and the progression to myeloid leukaemia of DS (ML-DS) and provide a model of the multi-step process of leukaemogenesis in DS. This review summarises key genetic drivers for the development of leukaemia in patients with DS, the biology and treatment of ML-DS and DS-associated acute lymphoblastic leukaemia, late effects of treatments for DS-leukaemias and the focus for future targeted therapy.
Collapse
Affiliation(s)
- Nicola R. Mason
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Hilary Cahill
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Yonatan Diamond
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Karen McCleary
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Bone Marrow Transplantation, Perth Children’s Hospital, Perth, WA, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Glenn M. Marshall
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, Randwick, NSW, Australia School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Marion K. Mateos
- Kids Cancer Centre, Sydney Children’s Hospital, Level 1 South Wing, High Street, Randwick, NSW 2031, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
6
|
Miyauchi J. The hematopoietic microenvironment of the fetal liver and transient abnormal myelopoiesis associated with Down syndrome: A review. Crit Rev Oncol Hematol 2024; 199:104382. [PMID: 38723838 DOI: 10.1016/j.critrevonc.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Transient abnormal myelopoiesis (TAM) in neonates with Down syndrome is a distinct form of leukemia or preleukemia that mirrors the hematological features of acute megakaryoblastic leukemia. However, it typically resolves spontaneously in the early stages. TAM originates from fetal liver (FL) hematopoietic precursor cells and emerges due to somatic mutations in GATA1 in utero. In TAM, progenitor cells proliferate and differentiate into mature megakaryocytes and granulocytes. This process occurs both in vitro, aided by hematopoietic growth factors (HGFs) produced in the FL, and in vivo, particularly in specific anatomical sites like the FL and blood vessels. The FL's hematopoietic microenvironment plays a crucial role in TAM's pathogenesis and may contribute to its spontaneous regression. This review presents an overview of current knowledge regarding the unique features of TAM in relation to the FL hematopoietic microenvironment, focusing on the functions of HGFs and the pathological features of TAM.
Collapse
Affiliation(s)
- Jun Miyauchi
- Department of Diagnostic Pathology, Saitama City Hospital, Saitama, Saitama-ken, Japan.
| |
Collapse
|
7
|
Klockner TC, Campbell CS. Selection forces underlying aneuploidy patterns in cancer. Mol Cell Oncol 2024; 11:2369388. [PMID: 38919375 PMCID: PMC11197905 DOI: 10.1080/23723556.2024.2369388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Aneuploidy, the presence of an aberrant number of chromosomes, has been associated with tumorigenesis for over a century. More recently, advances in karyotyping techniques have revealed its high prevalence in cancer: About 90% of solid tumors and 50-70% of hematopoietic cancers exhibit chromosome gains or losses. When analyzed at the level of specific chromosomes, there are strong patterns that are observed in cancer karyotypes both pan-cancer and for specific cancer types. These specific aneuploidy patterns correlate strongly with outcomes for tumor initiation, progression, metastasis formation, immune evasion and resistance to therapeutic treatment. Despite their prominence, understanding the basis underlying aneuploidy patterns in cancer has been challenging. Advances in genetic engineering and bioinformatic analyses now offer insights into the genetic determinants of aneuploidy pattern selection. Overall, there is substantial evidence that expression changes of particular genes can act as the positive selective forces for adaptation through aneuploidy. Recent findings suggest that multiple genes contribute to the selection of specific aneuploid chromosomes in cancer; however, further research is necessary to identify the most impactful driver genes. Determining the genetic basis and accompanying vulnerabilities of specific aneuploidy patterns is an essential step in selectively targeting these hallmarks of tumors.
Collapse
Affiliation(s)
- Tamara C. Klockner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Chromosome Biology, University of Vienna, Vienna, Austria
- A Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Christopher S. Campbell
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Carey-Smith SL, Kotecha RS, Cheung LC, Malinge S. Insights into the Clinical, Biological and Therapeutic Impact of Copy Number Alteration in Cancer. Int J Mol Sci 2024; 25:6815. [PMID: 38999925 PMCID: PMC11241182 DOI: 10.3390/ijms25136815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Copy number alterations (CNAs), resulting from the gain or loss of genetic material from as little as 50 base pairs or as big as entire chromosome(s), have been associated with many congenital diseases, de novo syndromes and cancer. It is established that CNAs disturb the dosage of genomic regions including enhancers/promoters, long non-coding RNA and gene(s) among others, ultimately leading to an altered balance of key cellular functions. In cancer, CNAs have been associated with almost all steps of the disease: predisposition, initiation, development, maintenance, response to treatment, resistance, and relapse. Therefore, understanding how specific CNAs contribute to tumourigenesis may provide prognostic insight and ultimately lead to the development of new therapeutic approaches to improve patient outcomes. In this review, we provide a snapshot of what is currently known about CNAs and cancer, incorporating topics regarding their detection, clinical impact, origin, and nature, and discuss the integration of innovative genetic engineering strategies, to highlight the potential for targeting CNAs using novel, dosage-sensitive and less toxic therapies for CNA-driven cancer.
Collapse
Affiliation(s)
- Shannon L. Carey-Smith
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Sébastien Malinge
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Popa CA, Andreescu NI, Arghirescu TS, Petrescu CAM, Jincă CM, Huţ EF, Drăgoi RG, Puenea G, Popa D. Classic and molecular cytogenetic findings in leukemia patients from the Western part of Romania. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:203-208. [PMID: 39020534 PMCID: PMC11384830 DOI: 10.47162/rjme.65.2.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in childhood and rare in adults, while acute myeloid leukemia (AML) is less common in children and more common in older adults. The aim of the study was to present our experience for the diagnostic of leukemia by using the classic and molecular cytogenetic methods. The study was conducted between 2009 and 2019 within the Classic and Molecular Genetic Laboratory of the Oncohematology Department from the Louis Ţurcanu Emergency Hospital for Children, Timişoara, Romania. The study group included 337 children and adults, evaluated between 2009 and 2019. By using the conventional and molecular cytogenetic technique, the cytogenetic anomalies found were 35 numerical chromosomal abnormalities, 10 (9;22)(q34;q11) [four ALL, one AML, five chronic myeloid leukemia (CML)] translocations, nine (15;17)(q24;q21) translocations, three (14;14)(q11;q32) translocations, two (4;11)(q21;q23) translocations, one (1;14)(p32;q11) translocation, one (7;14)(qter;q11) translocation, one (8;21)(q22;q22) translocation, one (9;14)(p12;q32) translocation, seven rearrangements of the MLL gene and two rearrangements of the core-binding factor subunit beta∕myosin heavy chain 11 (CBFB∕MYH11) gene. The use of conventional and molecular cytogenetic analysis is one of the most important prognostic indicators in acute leukemia patients, allowing the identification of biologically distinct subtypes of disease and selection of appropriate treatment approaches.
Collapse
Affiliation(s)
- Cristina Annemari Popa
- Department of Genetics, Genomic Medicine Centre, Department of Pediatrics, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania; ;
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Upadhyay M, Singh NK, Ashish A, Upadhyay M, Singh A, Singh R. The Rapid Evaluation of Down Syndrome With Quantitative Fluorescence Polymerase Chain Reaction (QF-PCR): A Pilot Study Among the Population in Eastern Uttar Pradesh, India. Cureus 2024; 16:e59241. [PMID: 38813278 PMCID: PMC11134114 DOI: 10.7759/cureus.59241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2024] [Indexed: 05/31/2024] Open
Abstract
Background and objective Down syndrome (DS) is characterized by the presence of an additional chromosome; it is a typical chromosomal disorder causing intellectual disability in individuals. The diagnostic process for DS often involves conventional karyotyping, which can be time-consuming. Trisomy 21 and other chromosomal abnormalities may now be quickly and accurately diagnosed using quantitative fluorescence polymerase chain reaction (QF-PCR). In light of this, this study aimed to investigate chromosomal abnormalities in DS using conventional karyotyping and QF-PCR among the population in eastern Uttar Pradesh, India. Methods Blood samples from 40 individuals with clinically diagnosed DS were collected. Conventional karyotyping involved standard cytogenetic techniques, while QF-PCR utilized DNA extraction and analysis with chromosome-specific short tandem repeat (STR) markers. Results Various distinct physical characteristics were observed in the DS individuals, such as mongoloid slant and low-set ears. Karyotyping and QF-PCR analyses revealed different chromosomal configurations associated with DS trisomy 21, with additional chromosomal abnormalities found in some individuals, including partial monosomy 18 and mosaic trisomy 21. However, in a few cases, neither karyotyping nor QF-PCR revealed any abnormalities. Conclusions The study demonstrated that QF-PCR is a reliable and rapid method for diagnosing DS, providing results within 24 hours. This approach allows for the simultaneous diagnosis of a large number of samples and reduces the time required to obtain results. In the diagnostic procedure for DS, we believe QF-PCR will prove to be a useful tool. Furthermore, therapeutic interventions based on their clinical traits and molecular karyotyping can enhance the quality of life of people with DS.
Collapse
Affiliation(s)
- Maneesha Upadhyay
- Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | - Nitish K Singh
- Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | - Ashish Ashish
- Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | - Meenakshi Upadhyay
- Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | - Ankur Singh
- Pediatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | - Royana Singh
- Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| |
Collapse
|
11
|
Barwe SP, Kolb EA, Gopalakrishnapillai A. Down syndrome and leukemia: An insight into the disease biology and current treatment options. Blood Rev 2024; 64:101154. [PMID: 38016838 DOI: 10.1016/j.blre.2023.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Children with Down syndrome (DS) have a 10- to 20-fold greater predisposition to develop acute leukemia compared to the general population, with a skew towards myeloid leukemia (ML-DS). While ML-DS is known to be a subtype with good outcome, patients who relapse face a dismal prognosis. Acute lymphocytic leukemia in DS (DS-ALL) is considered to have poor prognosis. The relapse rate is high in DS-ALL compared to their non-DS counterparts. We have a better understanding about the mutational spectrum of DS leukemia. Studies using animal, embryonic stem cell- and induced pluripotent stem cell-based models have shed light on the mechanism by which these mutations contribute to disease initiation and progression. In this review, we list the currently available treatment strategies for DS-leukemias along with their outcome with emphasis on challenges with chemotherapy-related toxicities in children with DS. We focus on the mechanisms of initiation and progression of leukemia in children with DS and highlight the novel molecular targets with greater success in preclinical trials that have the potential to progress to the clinic.
Collapse
Affiliation(s)
- Sonali P Barwe
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - E Anders Kolb
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA.
| |
Collapse
|
12
|
Chen CC, Silberman RE, Ma D, Perry JA, Khalid D, Pikman Y, Amon A, Hemann MT, Rowe RG. Inherent genome instability underlies trisomy 21-associated myeloid malignancies. Leukemia 2024; 38:521-529. [PMID: 38245602 DOI: 10.1038/s41375-024-02151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Constitutional trisomy 21 (T21) is a state of aneuploidy associated with high incidence of childhood acute myeloid leukemia (AML). T21-associated AML is preceded by transient abnormal myelopoiesis (TAM), which is triggered by truncating mutations in GATA1 generating a short GATA1 isoform (GATA1s). T21-associated AML emerges due to secondary mutations in hematopoietic clones bearing GATA1s. Since aneuploidy generally impairs cellular fitness, the paradoxically elevated risk of myeloid malignancy in T21 is not fully understood. We hypothesized that individuals with T21 bear inherent genome instability in hematopoietic lineages that promotes leukemogenic mutations driving the genesis of TAM and AML. We found that individuals with T21 show increased chromosomal copy number variations (CNVs) compared to euploid individuals, suggesting that genome instability could be underlying predisposition to TAM and AML. Acquisition of GATA1s enforces myeloid skewing and maintenance of the hematopoietic progenitor state independently of T21; however, GATA1s in T21 hematopoietic progenitor cells (HPCs) further augments genome instability. Increased dosage of the chromosome 21 (chr21) gene DYRK1A impairs homology-directed DNA repair as a mechanism of elevated mutagenesis. These results posit a model wherein inherent genome instability in T21 drives myeloid malignancy in concert with GATA1s mutations.
Collapse
Affiliation(s)
- Chun-Chin Chen
- Stem Cell Transplantation Program, Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Rebecca E Silberman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- RA Capital, Boston, MA, USA
| | - Duanduan Ma
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility, Swanson Biotechnology Center, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Delan Khalid
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - R Grant Rowe
- Stem Cell Transplantation Program, Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Lam SSY, Tsui SP, Fung CY, Saw NY, Javed A, Ip AHW, Ma ESK, Leung AYH. Distinct karyotypic and mutational landscape in trisomy AML. Br J Haematol 2024; 204:939-944. [PMID: 38054248 DOI: 10.1111/bjh.19249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Trisomy karyotype occurs in 5%-10% of AML. Its mutational landscape and prognostic significance are not well defined. A cohort of 156 trisomy AML patients was analysed, with reference to 615 cytogenetically normal (CN) AML patients. Trisomy AML showed distinct mutational landscape with more prevalent SMC1A, N/KRAS, ASXL1 and BCOR but fewer CEBPAbZIP and NPM1 mutations in patients ≤60, and fewer NPM1 mutations in those >60. NRAS mutations were associated with poor outcome in trisomy AML, whereas DNMT3A and FLT3-ITD mutations had neutral effect. Trisomy AML appeared biologically distinct from CN-AML.
Collapse
Affiliation(s)
- Stephen S Y Lam
- Division of Haematology, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sze P Tsui
- Division of Haematology, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pathology, Queen Mary Hospital, Hong Kong SAR, China
| | - C Y Fung
- Division of Haematology, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Nicole Y Saw
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Asif Javed
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Alvin H W Ip
- Department of Pathology, Queen Mary Hospital, Hong Kong SAR, China
| | - Edmond S K Ma
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanitorium & Hospital, Hong Kong SAR, China
| | - Anskar Y H Leung
- Division of Haematology, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| |
Collapse
|
14
|
Zhegalova IV, Vasiluev PA, Flyamer IM, Shtompel AS, Glazyrina E, Shilova N, Minzhenkova M, Markova Z, Petrova NV, Dashinimaev EB, Razin SV, Ulianov SV. Trisomies Reorganize Human 3D Genome. Int J Mol Sci 2023; 24:16044. [PMID: 38003233 PMCID: PMC10671006 DOI: 10.3390/ijms242216044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Trisomy is the presence of one extra copy of an entire chromosome or its part in a cell nucleus. In humans, autosomal trisomies are associated with severe developmental abnormalities leading to embryonic lethality, miscarriage or pronounced deviations of various organs and systems at birth. Trisomies are characterized by alterations in gene expression level, not exclusively on the trisomic chromosome, but throughout the genome. Here, we applied the high-throughput chromosome conformation capture technique (Hi-C) to study chromatin 3D structure in human chorion cells carrying either additional chromosome 13 (Patau syndrome) or chromosome 16 and in cultured fibroblasts with extra chromosome 18 (Edwards syndrome). The presence of extra chromosomes results in systematic changes of contact frequencies between small and large chromosomes. Analyzing the behavior of individual chromosomes, we found that a limited number of chromosomes change their contact patterns stochastically in trisomic cells and that it could be associated with lamina-associated domains (LAD) and gene content. For trisomy 13 and 18, but not for trisomy 16, the proportion of compacted loci on a chromosome is correlated with LAD content. We also found that regions of the genome that become more compact in trisomic cells are enriched in housekeeping genes, indicating a possible decrease in chromatin accessibility and transcription level of these genes. These results provide a framework for understanding the mechanisms of pan-genome transcription dysregulation in trisomies in the context of chromatin spatial organization.
Collapse
Affiliation(s)
- Irina V. Zhegalova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 127051 Moscow, Russia
| | | | - Ilya M. Flyamer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Anastasia S. Shtompel
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | | | | | | | - Zhanna Markova
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Natalia V. Petrova
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Erdem B. Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Sergey V. Razin
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Sergey V. Ulianov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
15
|
Peroni E, Gottardi M, D’Antona L, Randi ML, Rosato A, Coltro G. Hematologic Neoplasms Associated with Down Syndrome: Cellular and Molecular Heterogeneity of the Diseases. Int J Mol Sci 2023; 24:15325. [PMID: 37895004 PMCID: PMC10607483 DOI: 10.3390/ijms242015325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The molecular basis of Down syndrome (DS) predisposition to leukemia is not fully understood but involves various factors such as chromosomal abnormalities, oncogenic mutations, epigenetic alterations, and changes in selection dynamics. Myeloid leukemia associated with DS (ML-DS) is preceded by a preleukemic phase called transient abnormal myelopoiesis driven by GATA1 gene mutations and progresses to ML-DS via additional mutations in cohesin genes, CTCF, RAS, or JAK/STAT pathway genes. DS-related ALL (ALL-DS) differs from non-DS ALL in terms of cytogenetic subgroups and genetic driver events, and the aberrant expression of CRLF2, JAK2 mutations, and RAS pathway-activating mutations are frequent in ALL-DS. Recent advancements in single-cell multi-omics technologies have provided unprecedented insights into the cellular and molecular heterogeneity of DS-associated hematologic neoplasms. Single-cell RNA sequencing and digital spatial profiling enable the identification of rare cell subpopulations, characterization of clonal evolution dynamics, and exploration of the tumor microenvironment's role. These approaches may help identify new druggable targets and tailor therapeutic interventions based on distinct molecular profiles, ultimately improving patient outcomes with the potential to guide personalized medicine approaches and the development of targeted therapies.
Collapse
Affiliation(s)
- Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, 31033 Padua, Italy
| | - Lucia D’Antona
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy
| | - Maria Luigia Randi
- First Medical Clinic, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Giacomo Coltro
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Center of Research and Innovation for Myeloproliferative Neoplasms, CRIMM, AOU Careggi, 50134 Florence, Italy
| |
Collapse
|
16
|
Rosli AA, Azlan A, Rajasegaran Y, Mot YY, Heidenreich O, Yusoff NM, Moses EJ. Cytogenetics analysis as the central point of genetic testing in acute myeloid leukemia (AML): a laboratory perspective for clinical applications. Clin Exp Med 2023; 23:1137-1159. [PMID: 36229751 DOI: 10.1007/s10238-022-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
Chromosomal abnormalities in acute myeloid leukemia (AML) have significantly contributed to scientific understanding of its molecular pathogenesis, which has aided in the development of therapeutic strategies and enhanced management of AML patients. The diagnosis, prognosis and treatment of AML have also rapidly transformed in recent years, improving initial response to treatment, remission rates, risk stratification and overall survival. Hundreds of rare chromosomal abnormalities in AML have been discovered thus far using chromosomal analysis and next-generation sequencing. As a result, the World Health Organization (WHO) has categorized AML into subgroups based on genetic, genomic and molecular characteristics, to complement the existing French-American classification which is solely based on morphology. In this review, we aim to highlight the most clinically relevant chromosomal aberrations in AML together with the technologies employed to detect these aberrations in laboratory settings.
Collapse
Affiliation(s)
- Aliaa Arina Rosli
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Adam Azlan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Prinses Máxima Centrum Voor Kinderoncologie, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Emmanuel Jairaj Moses
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
17
|
Fischer GM, Gliem TJ, Greipp PT, Rosenberg AE, Folpe AL, Hornick JL. Anaplastic Kaposi Sarcoma: A Clinicopathologic and Molecular Genetic Analysis. Mod Pathol 2023; 36:100191. [PMID: 37080393 DOI: 10.1016/j.modpat.2023.100191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
Kaposi sarcoma (KS) is a human herpesvirus 8 (HHV8)-associated vascular proliferation that most often involves the skin. Rarely, KS shows marked nuclear atypia or pleomorphism; such examples are known as "anaplastic" KS. This poorly characterized variant often pursues an aggressive course; little is known of its genetic landscape. This study evaluated the clinicopathologic and genomic features of anaplastic KS. We identified 9 anaplastic KS cases from 7 patients and 8 conventional KS cases, including a matched conventional KS and primary metastasis anaplastic KS pair from a single patient (anaplastic KS diagnosed 9 years after conventional KS). All patients with anaplastic KS were men, aged 51 to 82 years, who had locally aggressive tumors predominantly affecting the soft tissue and bone of the lower extremities (5/7 patients). Four patients were known to be HIV positive (all on antiretrovirals), 2 were HIV negative, and 1 was of unknown HIV status. The tumors showed angiosarcoma-like or pleomorphic spindle cell sarcoma morphology. Plasma cell-rich chronic inflammation and hemosiderin deposition were commonly present. Single-nucleotide polymorphism-based chromosomal microarray analysis showed the anaplastic KS cohort to demonstrate highly recurrent whole chromosome (chr) gains of chr 7, 11, 19, and 21, which primarily affected olfactory and G protein-coupled receptor signaling and losses of chr6_q and chrY. Compared with conventional KS, anaplastic KS cases showed significantly more total copy number alterations and more frequent gains of chr7 and chr11_q13.1 (MARK2, RELA, and ESRRA, including high copy number gain in 1 case). Pathway analysis demonstrated that these gains preferentially affected genes that facilitate cyclin-dependent cell signaling. Furthermore, anaplastic KS cases were phylogenetically distinct from conventional KS cases, including the patient-matched primary metastasis anaplastic KS pair and conventional KS. Our study is the first to demonstrate that a more complex genome and distinct copy number alterations distinguish anaplastic KS from conventional KS. Gains of chr7 and chr11_q13.1 appear central to biological transformation.
Collapse
Affiliation(s)
- Grant M Fischer
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Troy J Gliem
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
18
|
Page EC, Heatley SL, Rehn J, Thomas PQ, Yeung DT, White DL. Gain of chromosome 21 increases the propensity for P2RY8::CRLF2 acute lymphoblastic leukemia via increased HMGN1 expression. Front Oncol 2023; 13:1177871. [PMID: 37483494 PMCID: PMC10358767 DOI: 10.3389/fonc.2023.1177871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) patients with a gain of chromosome 21, intrachromosomal amplification of chromosome 21 (iAMP21), or Down syndrome (DS), have increased expression of genes in the DS critical region (DSCR) of chromosome 21, including the high-mobility group nucleosome-binding protein 1, HMGN1. Children with DS are predisposed to develop hematologic malignancies, providing insight into the role of chromosome 21 in the development of leukemias. A 320-kb deletion in the pseudoautosomal region of the X/Y chromosome in leukemic cells, resulting in a gene fusion between the purinergic receptor and cytokine receptor-like factor-2 (P2Y Receptor Family Member 8 (P2RY8)::CRLF2), is a common feature in ~60% of DS-ALL and ~40% of iAMP21 patients, suggesting a link between chromosome 21 and P2RY8::CRLF2. In an Australian cohort of pediatric B-ALL patients with P2RY8::CRLF2 (n = 38), eight patients harbored gain of chromosome 21 (+21), and two patients had iAMP21, resulting in a significantly increased HMGN1 expression. An inducible CRISPR/Cas9 system was used to model P2RY8::CRLF2 and investigate its cooperation with HMGN1. This model was then used to validate HMGN1 as an influencing factor for P2RY8::CRLF2 development. Using Cas9 to cleave the DNA at the pseudoautosomal region without directed repair, cells expressing HMGN1 favored repair, resulting in P2RY8::CRLF2 generation, compared with cells without HMGN1. CRISPR/Cas9 P2RY8::CRLF2 cells expressing HMGN1 exhibit increased proliferation, thymic stromal lymphopoietin receptor (TSLPR) expression, and JAK/STAT signaling, consistent with cells from patients with P2RY8::CRLF2. Our patient expression data and unique CRISPR/Cas9 modeling, when taken together, suggest that HMGN1 increases the propensity for P2RY8::CRLF2 development. This has important implications for patients with DS, +21, or iAMP21.
Collapse
Affiliation(s)
- Elyse C. Page
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering, and Technology, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
| | - Jacqueline Rehn
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
| | - Paul Q. Thomas
- Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
- SA Gene Editing Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
- Australasian Leukaemia and Lymphoma Group, Melbourne, VIC, Australia
- Department of Hematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering, and Technology, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
- Australasian Leukaemia and Lymphoma Group, Melbourne, VIC, Australia
- Australian and New Zealand Children’s Hematology/Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
19
|
Gedefaw L, Liu CF, Ip RKL, Tse HF, Yeung MHY, Yip SP, Huang CL. Artificial Intelligence-Assisted Diagnostic Cytology and Genomic Testing for Hematologic Disorders. Cells 2023; 12:1755. [PMID: 37443789 PMCID: PMC10340428 DOI: 10.3390/cells12131755] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Artificial intelligence (AI) is a rapidly evolving field of computer science that involves the development of computational programs that can mimic human intelligence. In particular, machine learning and deep learning models have enabled the identification and grouping of patterns within data, leading to the development of AI systems that have been applied in various areas of hematology, including digital pathology, alpha thalassemia patient screening, cytogenetics, immunophenotyping, and sequencing. These AI-assisted methods have shown promise in improving diagnostic accuracy and efficiency, identifying novel biomarkers, and predicting treatment outcomes. However, limitations such as limited databases, lack of validation and standardization, systematic errors, and bias prevent AI from completely replacing manual diagnosis in hematology. In addition, the processing of large amounts of patient data and personal information by AI poses potential data privacy issues, necessitating the development of regulations to evaluate AI systems and address ethical concerns in clinical AI systems. Nonetheless, with continued research and development, AI has the potential to revolutionize the field of hematology and improve patient outcomes. To fully realize this potential, however, the challenges facing AI in hematology must be addressed and overcome.
Collapse
Affiliation(s)
- Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (C.-F.L.); (M.H.Y.Y.)
| | - Chia-Fei Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (C.-F.L.); (M.H.Y.Y.)
| | - Rosalina Ka Ling Ip
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China; (R.K.L.I.); (H.-F.T.)
| | - Hing-Fung Tse
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China; (R.K.L.I.); (H.-F.T.)
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (C.-F.L.); (M.H.Y.Y.)
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (C.-F.L.); (M.H.Y.Y.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (C.-F.L.); (M.H.Y.Y.)
| |
Collapse
|
20
|
Kosmidou A, Tragiannidis A, Gavriilaki E. Myeloid Leukemia of Down Syndrome. Cancers (Basel) 2023; 15:3265. [PMID: 37444375 DOI: 10.3390/cancers15133265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Myeloid leukemia of Down syndrome (ML-DS) is characterized by a distinct natural history and is classified by the World Health Organization (WHO) as an independent entity, occurring with unique clinical and molecular features. The presence of a long preleukemic, myelodysplastic phase, called transient abnormal myelopoiesis (TAM), precedes the initiation of ML-DS and is defined by unusual chromosomal findings. Individuals with constitutional trisomy 21 have a profound dosage imbalance in the hematopoiesis-governing genes located on chromosome 21 and thus are subject to impaired fetal as well as to neonatal erythro-megakaryopoiesis. Almost all neonates with DS develop quantitative and morphological hematological abnormalities, yet still only 5-10% of them present with one of the preleukemic or leukemic conditions of DS. The acquired mutations in the key hematopoietic transcription factor gene GATA1, found solely in cells trisomic for chromosome 21, are considered to be the essential step for the selective growth advantage of leukemic cells. While the majority of cases of TAM remain clinically 'silent' or undergo spontaneous remission, the remaining 20% to 30% of them progress into ML-DS until the age of 4 years. The hypersensitivity of ML-DS blasts to chemotherapeutic agents, including but not limited to cytarabine, and drugs' increased infectious and cardiac toxicity have necessitated the development of risk-adapted treatment protocols for children with ML-DS. Recent advances in cytogenetics and specific molecular mechanisms involved in the evolution of TAM and ML-DS are reviewed here, as well as their integration in the improvement of risk stratification and targeted management of ML-DS.
Collapse
Affiliation(s)
- Aikaterini Kosmidou
- 2nd Department of Internal Medicine, General Hospital of Kavala, 65500 Kavala, Greece
| | - Athanasios Tragiannidis
- 2nd Department of Pediatrics, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleni Gavriilaki
- Hematology Department, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| |
Collapse
|
21
|
Palmi C, Bresolin S, Junk S, Fazio G, Silvestri D, Zaliova M, Oikonomou A, Scharov K, Stanulla M, Moericke A, Zimmermann M, Schrappe M, Buldini B, Bhatia S, Borkhardt A, Saitta C, Galbiati M, Bardini M, Lo Nigro L, Conter V, Valsecchi MG, Biondi A, te Kronnie G, Cario G, Cazzaniga G. Definition and Prognostic Value of Ph-like and IKZF1plus Status in Children With Down Syndrome and B-cell Precursor Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e892. [PMID: 37304931 PMCID: PMC10256328 DOI: 10.1097/hs9.0000000000000892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/11/2023] [Indexed: 06/13/2023] Open
Abstract
Children with Down syndrome have an augmented risk for B-cell acute lymphoblastic leukemia (DS-ALL), which is associated with lower survival than in non-DS-ALL. It is known that cytogenetic abnormalities common in childhood ALL are less frequent in DS-ALL, while other genetic aberrancies (ie, CRLF2 overexpression and IKZF1 deletions) are increased. A possible cause for the lower survival of DS-ALL that we herewith evaluated for the first time was the incidence and prognostic value of the Philadelphia-like (Ph-like) profile and the IKZF1plus pattern. These features have been associated with poor outcome in non-DS ALL and therefore introduced in current therapeutic protocols. Forty-six out of 70 DS-ALL patients treated in Italy from 2000 to 2014 displayed Ph-like signature, mostly characterized by CRLF2 (n = 33) and IKZF1 (n = 16) alterations; only 2 cases were positive for ABL-class or PAX5-fusion genes. Moreover, in an Italian and German joint cohort of 134 DS-ALL patients, we observed 18% patients positive for IKZF1plus feature. Ph-like signature and IKZF1 deletion were associated with poor outcome (cumulative incidence of relapse: 27.7 ± 6.8% versus 13 ± 7%; P = 0.04 and 35.2 ± 8.6% versus 17 ± 3.9%; P = 0.007, respectively), which further worsens when IKZF1 deletion was co-occurring with P2RY8::CRLF2, qualifying for the IKZF1plus definition (13/15 patients had an event of relapse or treatment-related death). Notably, ex vivo drug screening revealed sensitivity of IKZF1plus blasts for drugs active against Ph-like ALL such as Birinapant and histone deacetylase inhibitors. We provided data in a large setting of a rare condition (DS-ALL) supporting that these patients, not associated with other high-risk features, need tailored therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Palmi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Silvia Bresolin
- Women’s and Children’s Health Department, Hematology-Oncology Clinic and Laboratory, University-Hospital of Padua, Italy
- Istituto di Ricerca Pediatrica-Città della Speranza, Padua, Italy
| | - Stefanie Junk
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Daniela Silvestri
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marketa Zaliova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Katerina Scharov
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Anja Moericke
- Pediatrics, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Martin Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Pediatrics, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Barbara Buldini
- Women’s and Children’s Health Department, Hematology-Oncology Clinic and Laboratory, University-Hospital of Padua, Italy
- Istituto di Ricerca Pediatrica-Città della Speranza, Padua, Italy
| | - Sanil Bhatia
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Claudia Saitta
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marta Galbiati
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Michela Bardini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Luca Lo Nigro
- Center of Pediatric Hematology and Oncology, Azienda Policlinico-San Marco, Catania, Italy
| | - Valentino Conter
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Maria Grazia Valsecchi
- Statistics, University of Milan Bicocca, Monza, Italy
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Biondi
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milan Bicocca, Italy
| | - Geertruy te Kronnie
- Women’s and Children’s Health Department, Hematology-Oncology Clinic and Laboratory, University-Hospital of Padua, Italy
| | - Gunnar Cario
- Pediatrics, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Medical Genetics, School of Medicine and Surgery, University of Milan Bicocca, Monza, Italy
| |
Collapse
|
22
|
Iacobucci I, Witkowski MT, Mullighan CG. Single-cell analysis of acute lymphoblastic and lineage-ambiguous leukemia: approaches and molecular insights. Blood 2023; 141:356-368. [PMID: 35926109 PMCID: PMC10023733 DOI: 10.1182/blood.2022016954] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023] Open
Abstract
Despite recent progress in identifying the genetic drivers of acute lymphoblastic leukemia (ALL), prognosis remains poor for those individuals who experience disease recurrence. Moreover, acute leukemias of ambiguous lineage lack a biologically informed framework to guide classification and therapy. These needs have driven the adoption of multiple complementary single-cell sequencing approaches to explore key issues in the biology of these leukemias, including cell of origin, developmental hierarchy and ontogeny, and the molecular heterogeneity driving pathogenesis, progression, and therapeutic responsiveness. There are multiple single-cell techniques for profiling a specific modality, including RNA, DNA, chromatin accessibility and methylation; and an expanding range of approaches for simultaneous analysis of multiple modalities. Single-cell sequencing approaches have also enabled characterization of cell-intrinsic and -extrinsic features of ALL biology. In this review we describe these approaches and highlight the extensive heterogeneity that underpins ALL gene expression, cellular differentiation, and clonal architecture throughout disease pathogenesis and treatment resistance. In addition, we discuss the importance of the dynamic interactions that occur between leukemia cells and the nonleukemia microenvironment. We discuss potential opportunities and limitations of single-cell sequencing for the study of ALL biology and treatment responsiveness.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
| | - Matthew T. Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Charles G. Mullighan
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
- Hematological Malignancies Program, St Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
23
|
Roberts I. Leukemogenesis in infants and young children with trisomy 21. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:1-8. [PMID: 36485097 PMCID: PMC9820574 DOI: 10.1182/hematology.2022000395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Children with Down syndrome (DS) have a greater than 100-fold increased risk of developing acute myeloid leukemia (ML) and an approximately 30-fold increased risk of acute lymphoblastic leukemia (ALL) before their fifth birthday. ML-DS originates in utero and typically presents with a self-limiting, neonatal leukemic syndrome known as transient abnormal myelopoiesis (TAM) that is caused by cooperation between trisomy 21-associated abnormalities of fetal hematopoiesis and somatic N-terminal mutations in the transcription factor GATA1. Around 10% of neonates with DS have clinical signs of TAM, although the frequency of hematologically silent GATA1 mutations in DS neonates is much higher (~25%). While most cases of TAM/silent TAM resolve without treatment within 3 to 4 months, in 10% to 20% of cases transformation to full-blown leukemia occurs within the first 4 years of life when cells harboring GATA1 mutations persist and acquire secondary mutations, most often in cohesin genes. By contrast, DS-ALL, which is almost always B-lineage, presents after the first few months of life and is characterized by a high frequency of rearrangement of the CRLF2 gene (60%), often co-occurring with activating mutations in JAK2 or RAS genes. While treatment of ML-DS achieves long-term survival in approximately 90% of children, the outcome of DS-ALL is inferior to ALL in children without DS. Ongoing studies in primary cells and model systems indicate that the role of trisomy 21 in DS leukemogenesis is complex and cell context dependent but show promise in improving management and the treatment of relapse, in which the outcome of both ML-DS and DS-ALL remains poor.
Collapse
Affiliation(s)
- Irene Roberts
- Correspondence Irene Roberts, Department of Paediatrics, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom; e-mail: ,
| |
Collapse
|
24
|
Camargo R, de Castro Moreira Dos Santos A, Cândido Guido B, Lemos Mendanha Cavalcante L, Silva Dias AC, Mendonça de Pontes R, Magalhães Furtado F, Feitosa Salviano C, Tiziani V, Martins Córdoba JC, Quezado Magalhães IM. A sensitive and inexpensive high-resolution melting-based testing algorithm for diagnosis of transient abnormal myelopoiesis and myeloid leukemia of Down syndrome. Pediatr Blood Cancer 2022; 69:e29866. [PMID: 35731576 DOI: 10.1002/pbc.29866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Patients with Down syndrome (DS) are commonly affected by a pre-leukemic disorder known as transient abnormal myelopoiesis (TAM). This condition usually undergoes spontaneous remission within the first 2 months after birth; however, in children under 5, 20%-30% of cases evolve to myeloid leukemia of Down syndrome (ML-DS). TAM and ML-DS are caused by co-operation between trisomy 21 and acquired mutations in the GATA1 gene. Currently, only next-generation sequencing (NGS)-based methodologies are sufficiently sensitive for diagnosis in samples with small GATA1 mutant clones (≤10% blasts). Alternatively, this study presents research on a new, fast, sensitive, and inexpensive high-resolution melting (HRM)-based diagnostic approach that allows the detection of most cases of GATA1 mutations, including silent TAM. The algorithm first uses flow cytometry for blast count, followed by HRM and Sanger sequencing to search for mutations on exons 2 and 3 of GATA1. We analyzed 138 samples of DS patients: 110 of asymptomatic neonates, 10 suspected of having TAM, and 18 suspected of having ML-DS. Our algorithm enabled the identification of 33 mutant samples, among them five cases of silent TAM (5/110) and seven cases of ML-DS (7/18) with blast count ≤10%, in which GATA1 alterations were easily detected by HRM. Depending on the type of genetic variation and its location, our methodology reached sensitivity similar to that obtained by NGS (0.3%) at a considerably reduced time and cost, thus making it accessible worldwide.
Collapse
Affiliation(s)
- Ricardo Camargo
- Laboratório de Pesquisa Translacional, Hospital da Criança de Brasília José Alencar, Brasília, Brazil
| | - Agenor de Castro Moreira Dos Santos
- Laboratório de Pesquisa Translacional, Hospital da Criança de Brasília José Alencar, Brasília, Brazil.,Laboratório Central de Saúde Pública do Distrito Federal, Brasília, Brazil
| | - Bruna Cândido Guido
- Laboratório de Pesquisa Translacional, Hospital da Criança de Brasília José Alencar, Brasília, Brazil
| | | | - Anna Carolina Silva Dias
- Laboratório de Pesquisa Translacional, Hospital da Criança de Brasília José Alencar, Brasília, Brazil
| | | | - Felipe Magalhães Furtado
- Laboratório de Pesquisa Translacional, Hospital da Criança de Brasília José Alencar, Brasília, Brazil
| | | | - Valdenize Tiziani
- Laboratório de Pesquisa Translacional, Hospital da Criança de Brasília José Alencar, Brasília, Brazil
| | | | | |
Collapse
|
25
|
Shetty D, Talker E, Dhamne C, Mohanty P, Chaubal K, Tembhare P, Patkar N, Subramanian PG, Moulik NR, Narula G, Banavali S. Copy number gain of JAK2 on marker chromosome in a case of relapsed pediatric B-ALL. Pediatr Blood Cancer 2022; 69:e29658. [PMID: 35373889 DOI: 10.1002/pbc.29658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Dhanlaxmi Shetty
- Cancer Cytogenetics Department, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Mumbai, India
| | - Elizabeth Talker
- Cancer Cytogenetics Department, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Chetan Dhamne
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Mumbai, India
| | - Purvi Mohanty
- Cancer Cytogenetics Department, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Kruti Chaubal
- Cancer Cytogenetics Department, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Prashant Tembhare
- Department of Hematopathology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Mumbai, India
| | - Nikhil Patkar
- Department of Hematopathology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Mumbai, India
| | - P G Subramanian
- Department of Hematopathology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Mumbai, India
| | - Nirmalya Roy Moulik
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Mumbai, India
| | - Gaurav Narula
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Mumbai, India
| | - Shripad Banavali
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Mumbai, India
| |
Collapse
|
26
|
Li J, Kalev-Zylinska ML. Advances in molecular characterization of myeloid proliferations associated with Down syndrome. Front Genet 2022; 13:891214. [PMID: 36035173 PMCID: PMC9399805 DOI: 10.3389/fgene.2022.891214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) has a unique molecular landscape that differs from other subtypes of acute myeloid leukemia. ML-DS is often preceded by a myeloproliferative neoplastic condition called transient abnormal myelopoiesis (TAM) that disrupts megakaryocytic and erythroid differentiation. Over the last two decades, many genetic and epigenetic changes in TAM and ML-DS have been elucidated. These include overexpression of molecules and micro-RNAs located on chromosome 21, GATA1 mutations, and a range of other somatic mutations and chromosomal alterations. In this review, we summarize molecular changes reported in TAM and ML-DS and provide a comprehensive discussion of these findings. Recent advances in the development of CRISPR/Cas9-modified induced pluripotent stem cell-based disease models are also highlighted. However, despite significant progress in this area, we still do not fully understand the pathogenesis of ML-DS, and there are no targeted therapies. Initial diagnosis of ML-DS has a favorable prognosis, but refractory and relapsed disease can be difficult to treat; therapeutic options are limited in Down syndrome children by their stronger sensitivity to the toxic effects of chemotherapy. Because of the rarity of TAM and ML-DS, large-scale multi-center studies would be helpful to advance molecular characterization of these diseases at different stages of development and progression.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| |
Collapse
|
27
|
Mejia EJ, Rossano JW. Congenital heart disease and the risk of cancer: The importance of understanding associated comorbidities. Lancet Reg Health Eur 2022; 18:100415. [PMID: 35663364 PMCID: PMC9160338 DOI: 10.1016/j.lanepe.2022.100415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Erika J. Mejia
- Corresponding author at: 3401 Civic Center Boulevard, Philadelphia, PA 19104.
| | | |
Collapse
|
28
|
Aziz-Bose R, Wachter F, Chiarle R, Lindeman NI, Kim AS, Degar BA, Davies K, Pikman Y. Rapid next-generation sequencing aids in diagnosis of transient abnormal myelopoiesis in a phenotypically normal newborn. Blood Adv 2022; 6:2893-2896. [PMID: 35090166 PMCID: PMC9092404 DOI: 10.1182/bloodadvances.2021006865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Rahela Aziz-Bose
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Franziska Wachter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Roberto Chiarle
- Harvard Medical School, Boston, MA
- Department of Pathology, Boston Children’s Hospital, Boston, MA; and
| | - Neal I. Lindeman
- Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Annette S. Kim
- Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Barbara A. Degar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Kimberly Davies
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| |
Collapse
|
29
|
Behluli E, Nuhii N, Liehr T, Temaj G. Suspicions regarding the genetic inheritance of acute lymphoblastic leukemia in patients with down syndrome. JOURNAL OF MOTHER AND CHILD 2022; 26:104-110. [PMID: 35853737 PMCID: PMC10032328 DOI: 10.34763/jmotherandchild.20222601.d-22-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 02/23/2023]
Abstract
Children with Down syndrome (DS) are at markedly increased risk for acute lymphoblastic leukaemia (ALL). DS is caused by trisomy of chromosome 21 affecting approximately 1 in 732 newborns in the USA. ALL is the most common cancer in children and constitutes approximately 25% of cancer diagnoses among children under the age of 15. Different protocols for treatment and management of paediatric ALL are available; however, DS children with ALL (DS-ALL) have increased risk of therapy-related toxicity compared to those without DS. Herein, we summarize the available literature on inherited predisposition for ALL, and possibilities for molecular therapy and treatment for DS-ALL patients.
Collapse
Affiliation(s)
- Emir Behluli
- Department of Pediatrics, University of Prishtina, Prishtina, Kosovo
| | - Nexhibe Nuhii
- State University of Tetovo, Faculty of Medical Sciences, Department of Pharmacy, Tetovo, North Macedonia
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich Schiller Universität, Jena, Germany
| | - Gazmend Temaj
- Human Genetics, College UBT, Faculty of Pharmacy Prishtina, Kosovo
| |
Collapse
|
30
|
Abstract
Aneuploidy, a genomic alternation characterized by deviations in the copy number of chromosomes, affects organisms from early development through to aging. Although it is a main cause of human pregnancy loss and a hallmark of cancer, how aneuploidy affects cellular function has been elusive. The last two decades have seen rapid advances in the understanding of the causes and consequences of aneuploidy at the molecular and cellular levels. These studies have uncovered effects of aneuploidy that can be beneficial or detrimental to cells and organisms in an environmental context-dependent and karyotype-dependent manner. Aneuploidy also imposes general stress on cells that stems from an imbalanced genome and, consequently, also an imbalanced proteome. These insights provide the fundamental framework for understanding the impact of aneuploidy in genome evolution, human pathogenesis and drug resistance.
Collapse
|
31
|
Haseeb A, Huynh E, ElSheikh RH, ElHawary AS, Scelfo C, Ledoux DM, Maidana DE, Elhusseiny AM. Down syndrome: a review of ocular manifestations. Ther Adv Ophthalmol 2022; 14:25158414221101718. [PMID: 35795721 PMCID: PMC9252013 DOI: 10.1177/25158414221101718] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Down syndrome is the most common genetically mediated intellectual disability. Although many physiologic and pathologic features of Down syndrome are discussed at length in the literature, the ocular manifestations of Down syndrome have seldom been discussed in a comprehensive fashion. Given that Down syndrome has ocular manifestations from the front to the back of the eye, it is important for physicians to become familiar with these manifestations, especially given the prevalence of Down syndrome. This review aims to discuss the varied ophthalmologic manifestations of Down syndrome – including strabismus, amblyopia, nystagmus, accommodation deficits, nasolacrimal duct obstruction, keratoconus, optic nerve pathology, neoplastic disease, and retinal pathology – to facilitate better care and visual outcomes in this important patient population.
Collapse
Affiliation(s)
- Abid Haseeb
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Elisah Huynh
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reem H ElSheikh
- Department of Ophthalmology, Kasr Al-Ainy Hospitals, Cairo University, Cairo, Egypt
| | | | - Christina Scelfo
- Department of Ophthalmology, Boston Children's Hospital, Hawthorne, NY, USA
| | - Danielle M Ledoux
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel E Maidana
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Abdelrahman M Elhusseiny
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Kirsch-Volders M, Fenech M. Aneuploidy, inflammation and diseases. Mutat Res 2022; 824:111777. [PMID: 35358789 DOI: 10.1016/j.mrfmmm.2022.111777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 05/23/2023]
Abstract
This review discusses how numerical aneuploidy may trigger inflammation in somatic cells and its consequences. Therefore we: i) summarized current knowledge on the cellular and molecular pathological effects of aneuploidy; ii) considered which of these aspects are able to trigger inflammation; iii) determined the genetic and environmental factors which may modulate the link between aneuploidy and inflammation; iv) explored the rôle of diet in prevention of aneuploidy and inflammation; v) examined whether aneuploidy and inflammation are causes and/or consequences of diseases; vi) identified the knowledge gaps and research needed to translate these observations into improved health care and disease prevention. The relationships between aneuploidy, inflammation and diseases are complex, because they depend on which chromosomes are involved, the proportion of cells affected and which organs are aneuploid in the case of mosaic aneuploidy. Therefore, a systemic approach is recommended to understand the emergence of aneuploidy-driven diseases and to take preventive measures to protect individuals from exposure to aneugenic conditions.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Michael Fenech
- Genome Health Foundation, North Brighton, SA 5048, Australia; Clinical and Health Sciences, University of South Australia, SA 5000, Australia.
| |
Collapse
|
33
|
Boucher AC, Caldwell KJ, Crispino JD, Flerlage JE. Clinical and biological aspects of myeloid leukemia in Down syndrome. Leukemia 2021; 35:3352-3360. [PMID: 34518645 PMCID: PMC8639661 DOI: 10.1038/s41375-021-01414-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Children with Down syndrome are at an elevated risk of leukemia, especially myeloid leukemia (ML-DS). This malignancy is frequently preceded by transient abnormal myelopoiesis (TAM), which is self-limited expansion of fetal liver-derived megakaryocyte progenitors. An array of international studies has led to consensus in treating ML-DS with reduced-intensity chemotherapy, leading to excellent outcomes. In addition, studies performed in the past 20 years have revealed many of the genetic and epigenetic features of the tumors, including GATA1 mutations that are arguably associated with all cases of both TAM and ML-DS. Despite these advances in understanding the clinical and biological aspects of ML-DS, little is known about the mechanisms of relapse. Upon relapse, patients face a poor outcome, and there is no consensus on treatment. Future studies need to be focused on this challenging aspect of leukemia in children with DS.
Collapse
Affiliation(s)
- Austin C Boucher
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kenneth J Caldwell
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John D Crispino
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Jamie E Flerlage
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
34
|
Transient myeloproliferative disorder as the presenting feature for mosaic trisomy 21. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006126. [PMID: 34789514 PMCID: PMC8751406 DOI: 10.1101/mcs.a006126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Trisomy 21 is a common congenital disorder with well-documented clinical manifestations, including an increased risk for the transient myeloproliferative disorder as a neonate and leukemia in childhood and adolescence. Transient myeloproliferative disorder is only known to occur in hematopoietic cells with trisomy 21. Children with mosaic trisomy 21 also have a risk for hematological malignancies. We present a nondysmorphic neonate, with a negative noninvasive prenatal screening of maternal blood for trisomy 21, who came to medical attention because of ruddy skin. He was found to have mild polycythemia, thrombocytopenia, and developed peripheral blasts. His clinical presentation was consistent with transient myeloproliferative disorder, which is only seen with trisomy 21. Cytogenetic studies of peripheral blood are positive for mosaic trisomy 21.
Collapse
|
35
|
Trib1 promotes the development of acute myeloid leukemia in a Ts1Cje mouse model of Down syndrome. Leukemia 2021; 36:558-561. [PMID: 34381180 DOI: 10.1038/s41375-021-01384-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 02/02/2023]
|
36
|
Wagenblast E, Araújo J, Gan OI, Cutting SK, Murison A, Krivdova G, Azkanaz M, McLeod JL, Smith SA, Gratton BA, Marhon SA, Gabra M, Medeiros JJF, Manteghi S, Chen J, Chan-Seng-Yue M, Garcia-Prat L, Salmena L, De Carvalho DD, Abelson S, Abdelhaleem M, Chong K, Roifman M, Shannon P, Wang JCY, Hitzler JK, Chitayat D, Dick JE, Lechman ER. Mapping the cellular origin and early evolution of leukemia in Down syndrome. Science 2021; 373:eabf6202. [PMID: 34244384 DOI: 10.1126/science.abf6202] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022]
Abstract
Children with Down syndrome have a 150-fold increased risk of developing myeloid leukemia, but the mechanism of predisposition is unclear. Because Down syndrome leukemogenesis initiates during fetal development, we characterized the cellular and developmental context of preleukemic initiation and leukemic progression using gene editing in human disomic and trisomic fetal hematopoietic cells and xenotransplantation. GATA binding protein 1 (GATA1) mutations caused transient preleukemia when introduced into trisomy 21 long-term hematopoietic stem cells, where a subset of chromosome 21 microRNAs affected predisposition to preleukemia. By contrast, progression to leukemia was independent of trisomy 21 and originated in various stem and progenitor cells through additional mutations in cohesin genes. CD117+/KIT proto-oncogene (KIT) cells mediated the propagation of preleukemia and leukemia, and KIT inhibition targeted preleukemic stem cells.
Collapse
MESH Headings
- Animals
- Antigens, CD34/analysis
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Lineage
- Cell Proliferation
- Cell Transformation, Neoplastic
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Disease Models, Animal
- Disease Progression
- Down Syndrome/complications
- Down Syndrome/genetics
- Female
- GATA1 Transcription Factor/genetics
- GATA1 Transcription Factor/metabolism
- Hematopoiesis
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/physiology
- Heterografts
- Humans
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Liver/embryology
- Male
- Megakaryocytes/physiology
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mutation
- Preleukemia/genetics
- Preleukemia/metabolism
- Preleukemia/pathology
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-kit/analysis
- Proto-Oncogene Proteins c-kit/antagonists & inhibitors
- Cohesins
Collapse
Affiliation(s)
- Elvin Wagenblast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Joana Araújo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Hematology, Centro Hospitalar Universitário de São João, Porto, 4200-319, Portugal
- Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, 4200-135, Portugal
- Instituto Nacional de Investigação Biomédica, University of Porto, Porto, 4200-135, Portugal
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sarah K Cutting
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Gabriela Krivdova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maria Azkanaz
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jessica L McLeod
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sabrina A Smith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Blaise A Gratton
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Martino Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessie J F Medeiros
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Sanaz Manteghi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| | - Jian Chen
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| | - Michelle Chan-Seng-Yue
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Laura Garcia-Prat
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Leonardo Salmena
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sagi Abelson
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Mohamed Abdelhaleem
- Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Karen Chong
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maian Roifman
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Johann K Hitzler
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
37
|
Marlow EC, Ducore J, Kwan ML, Cheng SY, Bowles EJA, Greenlee RT, Pole JD, Rahm AK, Stout NK, Weinmann S, Smith-Bindman R, Miglioretti DL. Leukemia Risk in a Cohort of 3.9 Million Children with and without Down Syndrome. J Pediatr 2021; 234:172-180.e3. [PMID: 33684394 PMCID: PMC8238875 DOI: 10.1016/j.jpeds.2021.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/18/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To assess leukemia risks among children with Down syndrome in a large, contemporary cohort. STUDY DESIGN Retrospective cohort study including 3 905 399 children born 1996-2016 in 7 US healthcare systems or Ontario, Canada, and followed from birth to cancer diagnosis, death, age 15 years, disenrollment, or December 30, 2016. Down syndrome was identified using International Classification of Diseases, Ninth and Tenth Revisions, diagnosis codes. Cancer diagnoses were identified through linkages to tumor registries. Incidence and hazard ratios (HRs) of leukemia were estimated for children with Down syndrome and other children adjusting for health system, child's age at diagnosis, birth year, and sex. RESULTS Leukemia was diagnosed in 124 of 4401 children with Down syndrome and 1941 of 3 900 998 other children. In children with Down syndrome, the cumulative incidence of acute myeloid leukemia (AML) was 1405/100 000 (95% CI 1076-1806) at age 4 years and unchanged at age 14 years. The cumulative incidence of acute lymphoid leukemia in children with Down syndrome was 1059/100 000 (95% CI 755-1451) at age 4 and 1714/100 000 (95% CI 1264-2276) at age 14 years. Children with Down syndrome had a greater risk of AML before age 5 years than other children (HR 399, 95% CI 281-566). Largest HRs were for megakaryoblastic leukemia before age 5 years (HR 1500, 95% CI 555-4070). Children with Down syndrome had a greater risk of acute lymphoid leukemia than other children regardless of age (<5 years: HR 28, 95% CI 20-40, ≥5 years HR 21, 95% CI 12-38). CONCLUSIONS Down syndrome remains a strong risk factor for childhood leukemia, and associations with AML are stronger than previously reported.
Collapse
Affiliation(s)
- Emily C Marlow
- Graduate Group in Epidemiology, University of California, Davis, Davis, CA; Department of Public Health Sciences, University of California, Davis, Davis, CA
| | - Jonathan Ducore
- Department of Pediatrics, University of California, Davis, Davis, CA
| | - Marilyn L Kwan
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | | | - Erin J A Bowles
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Salt Lake City, UT
| | - Robert T Greenlee
- Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, WI
| | - Jason D Pole
- ICES, Toronto, Ontario, Canada; Centre for Health Service Research, University of Queensland, Brisbane, Australia; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | | | - Natasha K Stout
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
| | - Sheila Weinmann
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR; Center for Integrated Health Care Research, Kaiser Permanente Hawaii, Honolulu, HI
| | - Rebecca Smith-Bindman
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA; Department of Obstetrics, Gynecology and Reproductive Medicine, University of California, San Francisco, San Francisco, CA; Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, San Francisco, CA
| | - Diana L Miglioretti
- Department of Public Health Sciences, University of California, Davis, Davis, CA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Salt Lake City, UT.
| |
Collapse
|
38
|
Abstract
Children show a higher incidence of leukaemia compared with young adolescents, yet their cells are less damaged because of their young age. Children with Down syndrome (DS) have an even higher risk of developing leukaemia during the first years of life. The presence of a constitutive trisomy of chromosome 21 (T21) in DS acts as a genetic driver for leukaemia development, however, additional oncogenic mutations are required. Therefore, T21 provides the opportunity to better understand leukaemogenesis in children. Here, we describe the increased risk of leukaemia in DS during childhood from a somatic evolutionary view. According to this idea, cancer is caused by a variation in inheritable phenotypes within cell populations that are subjected to selective forces within the tissue context. We propose a model in which the increased risk of leukaemia in DS children derives from higher rates of mutation accumulation, already present during fetal development, which is further enhanced by changes in selection dynamics within the fetal liver niche. This model could possibly be used to understand the rate-limiting steps of leukaemogenesis early in life.
Collapse
|
39
|
Reed F, Larsuel ST, Mayday MY, Scanlon V, Krause DS. MRTFA: A critical protein in normal and malignant hematopoiesis and beyond. J Biol Chem 2021; 296:100543. [PMID: 33722605 PMCID: PMC8079280 DOI: 10.1016/j.jbc.2021.100543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/03/2022] Open
Abstract
Myocardin-related transcription factor A (MRTFA) is a coactivator of serum response factor, a transcription factor that participates in several critical cellular functions including cell growth and apoptosis. MRTFA couples transcriptional regulation to actin cytoskeleton dynamics, and the transcriptional targets of the MRTFA–serum response factor complex include genes encoding cytoskeletal proteins as well as immediate early genes. Previous work has shown that MRTFA promotes the differentiation of many cell types, including various types of muscle cells and hematopoietic cells, and MRTFA's interactions with other protein partners broaden its cellular roles. However, despite being first identified as part of the recurrent t(1;22) chromosomal translocation in acute megakaryoblastic leukemia, the mechanisms by which MRTFA functions in malignant hematopoiesis have yet to be defined. In this review, we provide an in-depth examination of the structure, regulation, and known functions of MRTFA with a focus on hematopoiesis. We conclude by identifying areas of study that merit further investigation.
Collapse
Affiliation(s)
- Fiona Reed
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shannon T Larsuel
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Madeline Y Mayday
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vanessa Scanlon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Diane S Krause
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
40
|
Bhansali RS, Rammohan M, Lee P, Laurent AP, Wen Q, Suraneni P, Yip BH, Tsai YC, Jenni S, Bornhauser B, Siret A, Fruit C, Pacheco-Benichou A, Harris E, Besson T, Thompson BJ, Goo YA, Hijiya N, Vilenchik M, Izraeli S, Bourquin JP, Malinge S, Crispino JD. DYRK1A regulates B cell acute lymphoblastic leukemia through phosphorylation of FOXO1 and STAT3. J Clin Invest 2021; 131:135937. [PMID: 33393494 PMCID: PMC7773384 DOI: 10.1172/jci135937] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/11/2020] [Indexed: 01/17/2023] Open
Abstract
DYRK1A is a serine/threonine kinase encoded on human chromosome 21 (HSA21) that has been implicated in several pathologies of Down syndrome (DS), including cognitive deficits and Alzheimer's disease. Although children with DS are predisposed to developing leukemia, especially B cell acute lymphoblastic leukemia (B-ALL), the HSA21 genes that contribute to malignancies remain largely undefined. Here, we report that DYRK1A is overexpressed and required for B-ALL. Genetic and pharmacologic inhibition of DYRK1A decreased leukemic cell expansion and suppressed B-ALL development in vitro and in vivo. Furthermore, we found that FOXO1 and STAT3, transcription factors that are indispensable for B cell development, are critical substrates of DYRK1A. Loss of DYRK1A-mediated FOXO1 and STAT3 signaling disrupted DNA damage and ROS regulation, respectively, leading to preferential cell death in leukemic B cells. Thus, we reveal a DYRK1A/FOXO1/STAT3 axis that facilitates the development and maintenance of B-ALL.
Collapse
Affiliation(s)
- Rahul S. Bhansali
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| | - Malini Rammohan
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| | - Paul Lee
- Abbvie, North Chicago, Illinois, USA
| | | | - Qiang Wen
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| | - Praveen Suraneni
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| | - Bon Ham Yip
- Division of Experimental Hematology, Department of Hematology, St. Jude Children’s Hospital, Memphis, Tennessee, USA
| | - Yi-Chien Tsai
- Department of Pediatric Oncology, Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Silvia Jenni
- Department of Pediatric Oncology, Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Beat Bornhauser
- Department of Pediatric Oncology, Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Aurélie Siret
- INSERM U1170, Gustave Roussy Institute, Villejuif, France
| | - Corinne Fruit
- Normandie University, UNIROUEN, Institut National des Sciences Appliquées (INSA) Rouen, CNRS, Chimie Organique et Bioorganique — Réactivité et Analyse (COBRA) UMR 6014, Rouen, France
| | - Alexandra Pacheco-Benichou
- Normandie University, UNIROUEN, Institut National des Sciences Appliquées (INSA) Rouen, CNRS, Chimie Organique et Bioorganique — Réactivité et Analyse (COBRA) UMR 6014, Rouen, France
| | - Ethan Harris
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Thierry Besson
- Normandie University, UNIROUEN, Institut National des Sciences Appliquées (INSA) Rouen, CNRS, Chimie Organique et Bioorganique — Réactivité et Analyse (COBRA) UMR 6014, Rouen, France
| | | | - Young Ah Goo
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Nobuko Hijiya
- Division of Pediatric Hematology/Oncology, Columbia University, New York, New York, USA
| | | | - Shai Izraeli
- Pediatric Hematology Oncology, Schneider Children’s Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Jean-Pierre Bourquin
- Department of Pediatric Oncology, Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Sébastien Malinge
- INSERM U1170, Gustave Roussy Institute, Villejuif, France
- Telethon Kids Institute, Telethon Kids Cancer Centre (TKCC), Nedlands, Western Australia, Australia
| | - John D. Crispino
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
- Division of Experimental Hematology, Department of Hematology, St. Jude Children’s Hospital, Memphis, Tennessee, USA
| |
Collapse
|