1
|
Ioannou P, Baliou S, Samonis G. Bacteriophages in Infectious Diseases and Beyond-A Narrative Review. Antibiotics (Basel) 2023; 12:1012. [PMID: 37370331 PMCID: PMC10295561 DOI: 10.3390/antibiotics12061012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The discovery of antibiotics has revolutionized medicine and has changed medical practice, enabling successful fighting of infection. However, quickly after the start of the antibiotic era, therapeutics for infectious diseases started having limitations due to the development of antimicrobial resistance. Since the antibiotic pipeline has largely slowed down, with few new compounds being produced in the last decades and with most of them belonging to already-existing classes, the discovery of new ways to treat pathogens that are resistant to antibiotics is becoming an urgent need. To that end, bacteriophages (phages), which are already used in some countries in agriculture, aquaculture, food safety, and wastewater plant treatments, could be also used in clinical practice against bacterial pathogens. Their discovery one century ago was followed by some clinical studies that showed optimistic results that were limited, however, by some notable obstacles. However, the rise of antibiotics during the next decades left phage research in an inactive status. In the last decades, new studies on phages have shown encouraging results in animals. Hence, further studies in humans are needed to confirm their potential for effective and safe treatment in cases where there are few or no other viable therapeutic options. This study reviews the biology and applications of phages for medical and non-medical uses in a narrative manner.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
2
|
Hussain W, Yang X, Ullah M, Wang H, Aziz A, Xu F, Asif M, Ullah MW, Wang S. Genetic engineering of bacteriophages: Key concepts, strategies, and applications. Biotechnol Adv 2023; 64:108116. [PMID: 36773707 DOI: 10.1016/j.biotechadv.2023.108116] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Bacteriophages are the most abundant biological entity in the world and hold a tremendous amount of unexplored genetic information. Since their discovery, phages have drawn a great deal of attention from researchers despite their small size. The development of advanced strategies to modify their genomes and produce engineered phages with desired traits has opened new avenues for their applications. This review presents advanced strategies for developing engineered phages and their potential antibacterial applications in phage therapy, disruption of biofilm, delivery of antimicrobials, use of endolysin as an antibacterial agent, and altering the phage host range. Similarly, engineered phages find applications in eukaryotes as a shuttle for delivering genes and drugs to the targeted cells, and are used in the development of vaccines and facilitating tissue engineering. The use of phage display-based specific peptides for vaccine development, diagnostic tools, and targeted drug delivery is also discussed in this review. The engineered phage-mediated industrial food processing and biocontrol, advanced wastewater treatment, phage-based nano-medicines, and their use as a bio-recognition element for the detection of bacterial pathogens are also part of this review. The genetic engineering approaches hold great potential to accelerate translational phages and research. Overall, this review provides a deep understanding of the ingenious knowledge of phage engineering to move them beyond their innate ability for potential applications.
Collapse
Affiliation(s)
- Wajid Hussain
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohan Yang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mati Ullah
- Department of Biotechnology, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fang Xu
- Huazhong University of Science and Technology Hospital, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shenqi Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Theranostic Potentials of Gold Nanomaterials in Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14133047. [PMID: 35804818 PMCID: PMC9264814 DOI: 10.3390/cancers14133047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hematological malignancies (HMs) cover 50% of all malignancies, and people of all ages can be affected by these deadly diseases. In many cases, conventional diagnostic tools fail to diagnose HMs at an early stage, due to heterogeneity and the long-term indolent phase of HMs. Therefore, many patients start their treatment at the late stage of HMs and have poor survival. Gold nanomaterials (GNMs) have shown promise as a cancer theranostic agent. GNMs are 1 nm to 100 nm materials having magnetic resonance and surface-plasmon-resonance properties. GNMs conjugated with antibodies, nucleic acids, peptides, photosensitizers, chemotherapeutic drugs, synthetic-drug candidates, bioactive compounds, and other theranostic biomolecules may enhance the efficacy and efficiency of both traditional and advanced theranostic approaches to combat HMs. Abstract Hematological malignancies (HMs) are a heterogeneous group of blood neoplasia generally characterized by abnormal blood-cell production. Detection of HMs-specific molecular biomarkers (e.g., surface antigens, nucleic acid, and proteomic biomarkers) is crucial in determining clinical states and monitoring disease progression. Early diagnosis of HMs, followed by an effective treatment, can remarkably extend overall survival of patients. However, traditional and advanced HMs’ diagnostic strategies still lack selectivity and sensitivity. More importantly, commercially available chemotherapeutic drugs are losing their efficacy due to adverse effects, and many patients develop resistance against these drugs. To overcome these limitations, the development of novel potent and reliable theranostic agents is urgently needed to diagnose and combat HMs at an early stage. Recently, gold nanomaterials (GNMs) have shown promise in the diagnosis and treatment of HMs. Magnetic resonance and the surface-plasmon-resonance properties of GNMs have made them a suitable candidate in the diagnosis of HMs via magnetic-resonance imaging and colorimetric or electrochemical sensing of cancer-specific biomarkers. Furthermore, GNMs-based photodynamic therapy, photothermal therapy, radiation therapy, and targeted drug delivery enhanced the selectivity and efficacy of anticancer drugs or drug candidates. Therefore, surface-tuned GNMs could be used as sensitive, reliable, and accurate early HMs, metastatic HMs, and MRD-detection tools, as well as selective, potent anticancer agents. However, GNMs may induce endothelial leakage to exacerbate cancer metastasis. Studies using clinical patient samples, patient-derived HMs models, or healthy-animal models could give a precise idea about their theranostic potential as well as biocompatibility. The present review will investigate the theranostic potential of vectorized GNMs in HMs and future challenges before clinical theranostic applications in HMs.
Collapse
|
4
|
Todorovic Z, Todorovic D, Markovic V, Ladjevac N, Zdravkovic N, Djurdjevic P, Arsenijevic N, Milovanovic M, Arsenijevic A, Milovanovic J. CAR T Cell Therapy for Chronic Lymphocytic Leukemia: Successes and Shortcomings. Curr Oncol 2022; 29:3647-3657. [PMID: 35621683 PMCID: PMC9139644 DOI: 10.3390/curroncol29050293] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor T (CAR T) cell therapy achieved remarkable success in B-cell leukemia and lymphoma which led to its incorporation in treatment protocols for these diseases. CAR T cell therapy for chronic lymphocytic leukemia (CLL) patients showed less success compared to other malignant tumors. In this review, we discuss the published results regarding CAR T cell therapy of CLL, possible mechanisms of failures and expected developments.
Collapse
Affiliation(s)
- Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (Z.T.); (N.Z.); (P.D.)
| | - Dusan Todorovic
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Vladimir Markovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.M.); (N.L.); (N.A.); (M.M.)
| | - Nevena Ladjevac
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.M.); (N.L.); (N.A.); (M.M.)
| | - Natasa Zdravkovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (Z.T.); (N.Z.); (P.D.)
| | - Predrag Djurdjevic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (Z.T.); (N.Z.); (P.D.)
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.M.); (N.L.); (N.A.); (M.M.)
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.M.); (N.L.); (N.A.); (M.M.)
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.M.); (N.L.); (N.A.); (M.M.)
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.M.); (N.L.); (N.A.); (M.M.)
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
5
|
Mimmi S, Maisano D, Dattilo V, Gentile M, Chiurazzi F, D’Ambrosio A, Zimbo A, Nisticò N, Aloisio A, Vecchio E, Fiume G, Iaccino E, Quinto I. Unmutated IGHV1-69 CLL Clone Displays a Distinct Gene Expression Profile by a Comparative qRT-PCR Assay. Biomedicines 2022; 10:biomedicines10030604. [PMID: 35327406 PMCID: PMC8945665 DOI: 10.3390/biomedicines10030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is a heterogeneous disease characterized by variable clinical courses among different patients. This notion was supported by the possible coexistence of two or more independent CLL clones within the same patients, identified by the characterization of the B cell receptor immunoglobulin (BcR IG) idiotypic sequence. By using the antigen-binding site of the BcR IG as bait, the identification and isolation of aggressive and drug-resistance leukemic B-cell clones could allow a deeper biological and molecular investigation. Indeed, by the screening of phage display libraries, we previously selected a peptide binder of the idiotypic region of CLL BCR IGs expressing the unmutated rearrangement IGHV1-69 and used it as a probe to perform a peptide-based cell sorting by flow cytometry in peripheral blood samples from patients with CLL. Since the IGHV1-69 clones persisted during the follow-up time in both patients, we explored the possibility of these clones having acquired an evolutive advantage compared to the other coexisting clones in terms of a higher expression of genes involved in the survival and apoptosis escape processes. To this end, we studied the expression patterns of a panel of genes involved in apoptosis regulation and in NF-kB-dependent pro-survival signals by comparative qRT-PCR assays. According to the results, IGHV1-69 clones showed a higher expression of pro-survival and anti-apoptotic genes as compared to the other CLL clones with different immunogenetic characteristics. Moreover, these IGHV1-69 clones did not carry any characteristic genetic lesions, indicating the relevance of our approach in performing a comprehensive molecular characterization of single tumor clones, as well as for designing new personalized therapeutic approaches for the most aggressive and persistent tumor clones.
Collapse
Affiliation(s)
- Selena Mimmi
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
- Correspondence: (S.M.); (V.D.); Tel.: +39-0961-369-4057 (S.M. & V.D.)
| | - Domenico Maisano
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| | - Vincenzo Dattilo
- Laboratory Genetics Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Correspondence: (S.M.); (V.D.); Tel.: +39-0961-369-4057 (S.M. & V.D.)
| | - Massimo Gentile
- Hematology Unit, Department of Onco-Hematology, A.O of Cosenza, 87100 Cosenza, Italy;
| | - Federico Chiurazzi
- Hematological Clinic, Department of Clinical Medicine, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.D.)
| | - Alessandro D’Ambrosio
- Hematological Clinic, Department of Clinical Medicine, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.D.)
| | - Annamaria Zimbo
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| | - Nancy Nisticò
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| | - Annamaria Aloisio
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| | - Eleonora Vecchio
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| | - Giuseppe Fiume
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| | - Enrico Iaccino
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| | - Ileana Quinto
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.M.); (A.Z.); (N.N.); (A.A.); (E.V.); (G.F.); (E.I.); (I.Q.)
| |
Collapse
|
6
|
Maisano D, Mimmi S, Dattilo V, Marino F, Gentile M, Vecchio E, Fiume G, Nisticò N, Aloisio A, de Santo MP, Desiderio G, Musolino V, Nucera S, Sbrana F, Andò S, Ferrero S, Morandi A, Bertoni F, Quinto I, Iaccino E. A novel phage display based platform for exosome diversity characterization. NANOSCALE 2022; 14:2998-3003. [PMID: 35141731 DOI: 10.1039/d1nr06804k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present an innovative approach allowing the identification, isolation, and molecular characterization of disease-related exosomes based on their different antigenic reactivities. The designed strategy could be immediately translated into any disease in which exosomes are involved. The identification of specific markers and their subsequent association with exosome subtypes, together with the possibility to engineer target-guided exosome-like particles, could represent the key for the effective adoption of exosomes in clinical practice.
Collapse
Affiliation(s)
- Domenico Maisano
- Department of Experimental and Clinical Medicine, University "Magna Graecia of Catanzaro", Catanzaro, Italy.
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University "Magna Graecia of Catanzaro", Catanzaro, Italy.
| | - Vincenzo Dattilo
- Genetics Units, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, University "Magna Graecia of Catanzaro", Catanzaro, Italy.
| | | | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University "Magna Graecia of Catanzaro", Catanzaro, Italy.
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University "Magna Graecia of Catanzaro", Catanzaro, Italy.
| | - Nancy Nisticò
- Department of Experimental and Clinical Medicine, University "Magna Graecia of Catanzaro", Catanzaro, Italy.
| | - Annamaria Aloisio
- Department of Experimental and Clinical Medicine, University "Magna Graecia of Catanzaro", Catanzaro, Italy.
| | | | - Giovanni Desiderio
- CNR/Nanotec, Physics Department, University of Calabria, Rende, CS, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | | | | | - Simone Ferrero
- Division of Hematology, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Turin, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Francesco Bertoni
- IOR, Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University "Magna Graecia of Catanzaro", Catanzaro, Italy.
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University "Magna Graecia of Catanzaro", Catanzaro, Italy.
| |
Collapse
|
7
|
Maisano D, Iaccino E, D'Ambrosio A, Chiurazzi F, Dattilo V, Scalise M, Gentile M, Vecchio E, Nisticò N, Aloisio A, De Sensi E, Fiume G, Quinto I, Mimmi S. Predominant VH1-69 IgBCR Clones Show Higher Expression of CD5 in Heterogeneous Chronic Lymphocytic Leukemia Populations. Front Oncol 2021; 11:703254. [PMID: 34222027 PMCID: PMC8249760 DOI: 10.3389/fonc.2021.703254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022] Open
Abstract
The immunoglobulin B cell receptor (IgBCR) expressed by chronic lymphocytic leukemia (CLL) B cells plays a pivotal role in tumorigenesis, supporting neoplastic transformation, survival, and expansion of tumor clones. We demonstrated that in the same patient, two or more CLL clones could coexist, recognized by the expression of different variable regions of the heavy chain of IgBCR, composing the antigen-binding site. In this regard, phage display screening could be considered the easier and most advantageous methodology for the identification of small peptide molecules able to mimic the natural antigen of the tumor IgBCRs. These molecules, properly functionalized, could be used as a probe to specifically identify and isolate single CLL subpopulations, for a deeper analysis in terms of drug resistance, phenotype, and gene expression. Furthermore, CLL cells express another surface membrane receptor, the CD5, which is commonly expressed by normal T cells. Piece of evidence supports a possible contribution of CD5 to the selection and maintenance of autoreactivity in B cells and the constitutive expression of CD5 on CLL cells could induce pro-survival stimuli. In this brief research report, we describe a peptide-based single-cell sorting using as bait the IgBCR of tumor cells; in the next step, we performed a quantitative analysis of CD5 expression by qRT-PCR related to the expressed IgBCR. Our approach could open a new perspective for the identification, isolation, and investigation of all subsets of IgBCR-related CLL clones, with particular attention to the more aggressive clones.
Collapse
Affiliation(s)
- Domenico Maisano
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Enrico Iaccino
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Alessandro D'Ambrosio
- Hematological Clinic, Department of Clinical Medicine, University "Federico II" of Naples, Naples, Italy
| | - Federico Chiurazzi
- Hematological Clinic, Department of Clinical Medicine, University "Federico II" of Naples, Naples, Italy
| | - Vincenzo Dattilo
- Genetics Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Mariangela Scalise
- Laboratory of Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Eleonora Vecchio
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Nancy Nisticò
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Annamaria Aloisio
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Erika De Sensi
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giuseppe Fiume
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Ileana Quinto
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Selena Mimmi
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
8
|
Aloisio A, Nisticò N, Mimmi S, Maisano D, Vecchio E, Fiume G, Iaccino E, Quinto I. Phage-Displayed Peptides for Targeting Tyrosine Kinase Membrane Receptors in Cancer Therapy. Viruses 2021; 13:649. [PMID: 33918836 PMCID: PMC8070105 DOI: 10.3390/v13040649] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) regulate critical physiological processes, such as cell growth, survival, motility, and metabolism. Abnormal activation of RTKs and relative downstream signaling is implicated in cancer pathogenesis. Phage display allows the rapid selection of peptide ligands of membrane receptors. These peptides can target in vitro and in vivo tumor cells and represent a novel therapeutic approach for cancer therapy. Further, they are more convenient compared to antibodies, being less expensive and non-immunogenic. In this review, we describe the state-of-the-art of phage display for development of peptide ligands of tyrosine kinase membrane receptors and discuss their potential applications for tumor-targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ileana Quinto
- Correspondence: (A.A.); (I.Q.): Tel.: +39-0961-3694057 (I.Q.)
| |
Collapse
|
9
|
D’Accolti M, Soffritti I, Mazzacane S, Caselli E. Bacteriophages as a Potential 360-Degree Pathogen Control Strategy. Microorganisms 2021; 9:261. [PMID: 33513949 PMCID: PMC7911525 DOI: 10.3390/microorganisms9020261] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages are viruses that exclusively kill bacteria and are the most ubiquitous organisms on the planet. Since their discovery, bacteriophages have been considered an important weapon to fight human and animal infections of bacterial origin due to their specific ability to attack the associated target bacteria. With the discovery of antibiotics, phage treatment was progressively abandoned in Western countries. However, due to the recent emergence of growing antimicrobial resistance (AMR) to antibiotics, interest in phage use in human therapy has once again grown. Similarly, at the environmental level, the extensive use of disinfectants based on chemicals, including biocides in agriculture, has been associated with the emergence of resistance against disinfectants themselves, besides having a high environmental impact. Due to these issues, the applications of phages with biocontrol purposes have become an interesting option in several fields, including farms, food industry, agriculture, aquaculture and wastewater plants. Notably, phage action is maintained even when the target bacteria are multidrug resistant (MDR), rendering this option extremely interesting in counteracting AMR emergence both for therapeutical and decontamination purposes. Based on this, bacteriophages have been interestingly proposed as environmental routine sanitizers in hospitals, to counteract the spread of the pathogenic MDR bacteria that persistently contaminate hard surfaces. This review summarizes the studies aimed at evaluating the potential use of phages as decontaminants, with a special focus on hospital sanitation.
Collapse
Affiliation(s)
- Maria D’Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.)
- CIAS Research Centre, Department of Architecture and Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.)
- CIAS Research Centre, Department of Architecture and Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Sante Mazzacane
- CIAS Research Centre, Department of Architecture and Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.)
- CIAS Research Centre, Department of Architecture and Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
10
|
Nisticò N, Maisano D, Iaccino E, Vecchio E, Fiume G, Rotundo S, Quinto I, Mimmi S. Role of Chronic Lymphocytic Leukemia (CLL)-Derived Exosomes in Tumor Progression and Survival. Pharmaceuticals (Basel) 2020; 13:E244. [PMID: 32937811 PMCID: PMC7557731 DOI: 10.3390/ph13090244] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-lymphoproliferative disease, which consists of the abnormal proliferation of CD19/CD5/CD20/CD23 positive lymphocytes in blood and lymphoid organs, such as bone marrow, lymph nodes and spleen. The neoplastic transformation and expansion of tumor B cells are commonly recognized as antigen-driven processes, mediated by the interaction of antigens with the B cell receptor (BCR) expressed on the surface of B-lymphocytes. The survival and progression of CLL cells largely depend on the direct interaction of CLL cells with receptors of accessory cells of tumor microenvironment. Recently, much interest has been focused on the role of tumor release of small extracellular vesicles (EVs), named exosomes, which incorporate a wide range of biologically active molecules, particularly microRNAs and proteins, which sustain the tumor growth. Here, we will review the role of CLL-derived exosomes as diagnostic and prognostic biomarkers of the disease.
Collapse
Affiliation(s)
- Nancy Nisticò
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Domenico Maisano
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Salvatore Rotundo
- Department of Health Sciences–University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| |
Collapse
|
11
|
Maisano D, Mimmi S, Russo R, Fioravanti A, Fiume G, Vecchio E, Nisticò N, Quinto I, Iaccino E. Uncovering the Exosomes Diversity: A Window of Opportunity for Tumor Progression Monitoring. Pharmaceuticals (Basel) 2020; 13:ph13080180. [PMID: 32759810 PMCID: PMC7464894 DOI: 10.3390/ph13080180] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Cells can communicate through special “messages in the bottle”, which are recorded in the bloodstream inside vesicles, namely exosomes. The exosomes are nanovesicles of 30–100 nm in diameter that carry functionally active biological material, such as proteins, messanger RNA (mRNAs), and micro RNA (miRNAs). Therefore, they are able to transfer specific signals from a parental cell of origin to the surrounding cells in the microenvironment and to distant organs through the circulatory and lymphatic stream. More and more interest is rising for the pathological role of exosomes produced by cancer cells and for their potential use in tumor monitoring and patient follow up. In particular, the exosomes could be an appropriate index of proliferation and cancer cell communication for monitoring the minimal residual disease, which cannot be easily detectable by common diagnostic and monitoring techniques. The lack of unequivocal markers for tumor-derived exosomes calls for new strategies for exosomes profile characterization aimed at the adoption of exosomes as an official tumor biomarker for tumor progression monitoring.
Collapse
Affiliation(s)
- Domenico Maisano
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
- Correspondence: (D.M.); (E.I.)
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Rossella Russo
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, 87100 Cosenza, Italy;
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium;
- Structural Biology Brussels, Vrije Universiteit, 1050 Brussels, Belgium
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Nancy Nisticò
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
- Correspondence: (D.M.); (E.I.)
| |
Collapse
|