1
|
Hu C, Ainiwaer A, Lu Y, Li J, Fu Y, Luo J, Wu B, Yin P, Hu X, Sun Y, Li H, Lu H, Dong Z. Zinc finger protein 169 promotes tumor progress of hepatocellular cancer via up-regulating cyclin-dependent kinase 19. IUBMB Life 2025; 77:e2943. [PMID: 39868893 DOI: 10.1002/iub.2943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025]
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent types of cancer globally. Zinc finger protein 169 (ZNF169) holds significant importance as a transcription factor, yet its precise function in HCC remains to be elucidated. This study aims to examine the clinical importance, biological functions, and molecular pathways associated with ZNF169 in the development of HCC. The study employed lentiviral transduction for ZNF169 overexpression and the use of small interfering RNAs (siRNAs) to suppress its expression. ZNF169 was upregulated in HCC tissues and cell lines. Additionally, HCC patients exhibiting elevated ZNF169 levels experienced reduced overall survival, shorter disease-free survival, and diminished progression-free survival. Silencing of ZNF169 inhibited cell proliferation, migration, and cell cycle progression. Whereas ectopic expression of ZNF169 promoted HCC progression in vivo and ex vivo. Subsequently, Pearson analysis results showed that cyclin-dependent kinase 19 (CDK19) was positively correlated with ZNF169 levels in HCC using TCGA dataset. Luciferase assay findings indicated a potential interaction between ZNF169 and CDK19 promoter. Additionally, our data showed that CDK19 expression levels were elevated in HCC tissues, and patients with higher CDK19 expression faced a poorer prognosis. Furthermore, recovery experiments demonstrated that CDK19 could reverse the impact of ZNF169 on HCC cell amplification. Our findings indicate that ZNF169 promotes HCC progression by upregulating CDK19, highlighting its role as a therapeutic target or prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Chaoquan Hu
- Division of HPB Surgery, Kweichow Moutai Hospital, Renhuai, Guizhou, China
- Division of HPB Surgery, Affiliated Hospital to Guizhou Medical University, Guiyang, Guizhou, China
| | - Aizier Ainiwaer
- Senior Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Lu
- Senior Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiaxing Li
- Guizhou Cancer Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yongmei Fu
- Guizhou Cancer Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jun Luo
- Division of HPB Surgery, Affiliated Hospital to Guizhou Medical University, Guiyang, Guizhou, China
| | - Baijun Wu
- Division of HPB Surgery, Affiliated Hospital to Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Yin
- Division of HPB Surgery, Affiliated Hospital to Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiao Hu
- Division of HPB Surgery, Affiliated Hospital to Guizhou Medical University, Guiyang, Guizhou, China
| | - Yao Sun
- Senior Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hong Li
- INSERM U1234/Rouen University Normandie, UFR Santé, Rouen, France
| | - He Lu
- National Institute of Health and Medical Research, Medical Research Unit 942/université Sorbonne Paris Nord and Université Paris Cité, Avicenne Hospital, Bobigny, France
| | - Zheng Dong
- Senior Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Li T, Chao TC, Tsai KL. Structures and compositional dynamics of Mediator in transcription regulation. Curr Opin Struct Biol 2024; 88:102892. [PMID: 39067114 PMCID: PMC11779508 DOI: 10.1016/j.sbi.2024.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
The eukaryotic Mediator, comprising a large Core (cMED) and a dissociable CDK8 kinase module (CKM), functions as a critical coregulator during RNA polymerase II (RNAPII) transcription. cMED recruits RNAPII and facilitates the assembly of the pre-initiation complex (PIC) at promoters. In contrast, CKM prevents RNAPII binding to cMED while simultaneously exerting positive or negative influence on gene transcription through its kinase function. Recent structural studies on cMED and CKM have revealed their intricate architectures and subunit interactions. Here, we explore these structures, providing a comprehensive insight into Mediator (cMED-CKM) architecture and its potential mechanism in regulating RNAPII transcription. Additionally, we discuss the remaining puzzles that require further investigation to fully understand how cMED coordinates with CKM to regulate transcription in various events.
Collapse
Affiliation(s)
- Tao Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston TX, USA
| | - Ti-Chun Chao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston TX, USA
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston TX, USA.
| |
Collapse
|
3
|
Wu J, Ma L, Gong Q, Chen Y, Chen L, Shi C. NEAR-INFRARED DYE IR-780 ALLEVIATES HEMATOPOIETIC SYSTEM DAMAGE BY PROMOTING HEMATOPOIETIC STEM CELLS INTO QUIESCENCE. Shock 2024; 61:442-453. [PMID: 38411611 DOI: 10.1097/shk.0000000000002317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
ABSTRACT Potential radiation exposure is a general concern, but there still lacks radioprotective countermeasures. Here, we found a small molecular near-infrared dye IR-780, which promoted hematopoietic stem cells (HSCs) into quiescence to resist stress. When mice were treated with IR-780 before stress, increased HSC quiescence and better hematopoietic recovery were observed in mice in stress conditions. However, when given after radiation, IR-780 did not show obvious benefit. Transplantation assay and colony-forming assay were carried out to determine self-renewal ability and repopulation capacity of HSCs. Furthermore, IR-780 pretreatment reduced the generation of reactive oxygen species (ROS) and DNA damage in HSCs after radiation. In homeostasis, the percentage of Lineage - , Sca-1 + , and c-Kit + cells and long-term HSCs (LT-HSCs) were improved, and more HSCs were in G0 state after administration of IR-780. Further investigations showed that IR-780 selectively accumulated in mitochondria membrane potential high LT-HSCs (MMP-high LT-HSCs). Finally, IR-780 promoted human CD34 + HSC reconstruction ability in NOD-Prkdc scid Il2rg null mice after transplantation and improved repopulation capacity in vitro culture. Our research showed that IR-780 selectively entered MMP-high LT-HSCs and promoted them into dormancy, thus reducing hematopoietic injury and improving regeneration capacity. This novel approach might hold promise as a potential countermeasure for radiation injury.
Collapse
Affiliation(s)
- Jie Wu
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing, China
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| | - Long Chen
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key of Trauma and Chemical Poisoning Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
4
|
Horvath RM, Brumme ZL, Sadowski I. CDK8 inhibitors antagonize HIV-1 reactivation and promote provirus latency in T cells. J Virol 2023; 97:e0092323. [PMID: 37671866 PMCID: PMC10537590 DOI: 10.1128/jvi.00923-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/15/2023] [Indexed: 09/07/2023] Open
Abstract
Latent HIV-1 provirus represents the barrier toward a cure for infection and is dependent upon the host RNA Polymerase (Pol) II machinery for reemergence. Here, we find that inhibitors of the RNA Pol II mediator kinases CDK8/19, Senexin A and BRD6989, inhibit induction of HIV-1 expression in response to latency-reversing agents and T cell signaling agonists. These inhibitors were found to impair recruitment of RNA Pol II to the HIV-1 LTR. Furthermore, HIV-1 expression in response to several latency reversal agents was impaired upon disruption of CDK8 by shRNA or gene knockout. However, the effects of CDK8 depletion did not entirely mimic CDK8/19 kinase inhibition suggesting that the mediator kinases are not functionally redundant. Additionally, treatment of CD4+ peripheral blood mononuclear cells isolated from people living with HIV-1 and who are receiving antiretroviral therapy with Senexin A inhibited induction of viral replication in response to T cell stimulation by PMA and ionomycin. These observations indicate that the mediator kinases, CDK8 and CDK19, play a significant role for regulation of HIV-1 transcription and that small molecule inhibitors of these enzymes may contribute to therapies designed to promote deep latency involving the durable suppression of provirus expression. IMPORTANCE A cure for HIV-1 infection will require novel therapies that can force elimination of cells that contain copies of the virus genome inserted into the cell chromosome, but which is shut off, or silenced. These are known as latently-infected cells, which represent the main reason why current treatment for HIV/AIDS cannot cure the infection because the virus in these cells is unaffected by current drugs. Our results indicate that chemical inhibitors of Cdk8 also inhibit the expression of latent HIV provirus. Cdk8 is an important enzyme that regulates the expression of genes in response to signals to which cells need to respond and which is produced by a gene that is frequently mutated in cancers. Our observations indicate that Cdk8 inhibitors may be employed in novel therapies to prevent expression from latent provirus, which might eventually enable infected individuals to cease treatment with antiretroviral drugs.
Collapse
Affiliation(s)
- Riley M. Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Dai D, Yu J, Huang T, Li Y, Wang Z, Yang S, Li S, Li Y, Gou W, Li D, Hou W, Fan S, Li Y, Zhao Y. PET imaging of new target CDK19 in prostate cancer. Eur J Nucl Med Mol Imaging 2023; 50:3452-3464. [PMID: 37278941 DOI: 10.1007/s00259-023-06277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA)-positron emission tomography (PET) is a superior method to predict patients' risk of cancer progression and response to specific therapies. However, its performance is limited for neuroendocrine prostate cancer (NEPC) and PSMA-low prostate cancer cells, resulting in diagnostic blind spots. Hence, identifying novel specific targets is our aim for diagnosing those prostate cancers with low PSMA expression. METHODS The Cancer Genome Atlas (TCGA) database and our cohorts from men with biopsy-proven high-risk metastatic prostate cancer were used to identify CDK19 and PSMA expression. PDX lines neP-09 and P-16 primary cells were used for cellular uptake and imaging mass cytometry in vitro. To evaluate in vivo CDK19-specific uptake of gallium(Ga)-68-IRM-015-DOTA, xenograft mice models and blocking assays were used. PET/CT imaging data were obtained to estimate the absorbed dose in organs. RESULTS Our study group had reported the overexpression of a novel tissue-specific gene CDK19 in high-risk metastatic prostate cancer and CDK19 expression correlated with metastatic status and tumor staging, independently with PSMA and PSA levels. Following up on this new candidate for use in diagnostics, small molecules targeting CDK19 labeled with Ga-68 (68Ga-IRM-015-DOTA) were used for PET in this study. We found that the 68Ga-IRM-015-DOTA was specificity for prostate cancer cells, but the other cancer cells also took up little 68Ga-IRM-015-DOTA. Importantly, mouse imaging data showed that the NEPC and CRPC xenografts exhibited similar signal strength with 68Ga-IRM-015-DOTA, but 68Ga-PSMA-11 only stained the CRPC xenografts. Furthermore, target specificity was elucidated by a blocking experiment on a CDK19-bearing tumor xenograft. These data concluded that 68Ga-CDK19 PET/CT was an effective technology to detect lesions with or without PSMA in vitro, in vivo, and in the PDX model. CONCLUSION Thus, we have generated a novel PET small molecule with predictive value for prostate cancer. The findings indicate that 68Ga-CDK19 may merit further evaluation as a predictive biomarker for PET scans in prospective cohorts and may facilitate the identification of molecular types of prostate cancer independent of PSMA.
Collapse
Affiliation(s)
- Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300000, Tianjin, China
- Department of Molecular Medicine, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, 300308, Tianjin, China
| | - Jiang Yu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China
| | - Ting Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China
| | - Yansheng Li
- Department of PET-CT Diagnostic, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, 300020, Tianjin, China
| | - Ziyang Wang
- Department of Molecular Medicine, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, 300308, Tianjin, China
| | - Shuangmeng Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China
| | - Shuai Li
- Department of PET-CT Diagnostic, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, 300020, Tianjin, China
| | - Yanli Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China
| | - Wenbin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China.
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China.
| | - Yu Zhao
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300000, Tianjin, China.
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China.
| |
Collapse
|
6
|
Qi Y, Hu M, Han C, Wang J, Chen F, Guo H, She Y, Zhang M, Zhang J, Zhao Z, Xie H, Wang S, Chen M, Wang J, Zeng D. ARHGAP4 promotes leukemogenesis in acute myeloid leukemia by inhibiting DRAM1 signaling. Oncogene 2023; 42:2547-2557. [PMID: 37443303 DOI: 10.1038/s41388-023-02770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Rho GTPase-activating protein 4 (ARHGAP4) is an important Rho family GTPase-activating protein that is strongly associated with the onset and progression of some tumors. We found that ARHGAP4 mRNA and protein are overexpressed in human acute myeloid leukemia (AML) patients and are associated with a poor prognosis. ARHGAP4 knockdown significantly impairs viability and colony formation capacity and induces apoptosis in AML cells. Further results demonstrate that ARHGAP4 deletion impairs AML progression in vivo. Interestingly, DRAM1 signaling is significantly activated in AML cells with ARHGAP4 knockdown. Our results also indicated that ARHGAP4 might function in AML cells by binding with p53 to inhibit DRAM1. Moreover, knockdown of DRAM1 rescues the defects of ARHGAP4 in AML cells. This newly described role of the ARHGAP4/DRAM1 axis in regulating AML progression may have important therapeutic implications.
Collapse
Affiliation(s)
- Yan Qi
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | - Changhao Han
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Jin Wang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | - Hui Guo
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanting She
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Meijuan Zhang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Jing Zhang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Zhongyue Zhao
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Huan Xie
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China.
| | - Dongfeng Zeng
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
7
|
Chen N, Quan Y, Chen M, Lu Y, Yang L, Wang S, Chen F, Xu Y, Shen M, Zeng H, Chen S, Wang F, Wang J, Hu M. Melanocortin/MC5R axis regulates the proliferation of hematopoietic stem cells in mice after ionizing radiation injury. Blood Adv 2023; 7:3199-3212. [PMID: 36920787 PMCID: PMC10338215 DOI: 10.1182/bloodadvances.2022009249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/13/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Hematopoietic stem cells (HSCs) possess great self-renewal and multidirectional differentiation abilities, which contribute to the continuous generation of various blood cells. Although many intrinsic and extrinsic factors have been found to maintain HSC homeostasis, the precise regulation of hematopoiesis under stress conditions is poorly understood. In this study, we show that melanocortin receptor 5 (MC5R) is abundantly expressed in hematopoietic stem progenitor cells (HSPCs). Using an MC5R knockout mouse model, we observed that it is not essential for steady-state hematopoiesis. Interestingly, the levels of α-melanocyte stimulating hormone (α-MSH), an important subtype of melanocortin, were elevated in the serum and bone marrow, and the expression of MC5R was upregulated in HSPCs from mice after irradiation. MC5R deficiency aggravates irradiation-induced myelosuppression because of impaired proliferation and reconstitution of HSCs. Further investigation revealed that the melanocortin/MC5R axis regulates the proliferation of HSCs by activating the PI3K/AKT and MAPK pathways. More importantly, α-MSH treatment can significantly accelerate hematopoietic recovery in irradiated mice. In conclusion, our data demonstrate that the melanocortin/MC5R axis plays a crucial role in regulating HSC proliferation under stress, thus providing a promising strategy to promote hematopoietic regeneration when suffering from injury.
Collapse
Affiliation(s)
- Naicheng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yong Quan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yukai Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lijing Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Shilei Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Fengchao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
Testa U, Castelli G, Pelosi E. TP53-Mutated Myelodysplasia and Acute Myeloid Leukemia. Mediterr J Hematol Infect Dis 2023; 15:e2023038. [PMID: 37435040 PMCID: PMC10332352 DOI: 10.4084/mjhid.2023.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) form a distinct and heterogeneous group of myeloid malignancies associated with poor outcomes. Studies carried out in the last years have in part elucidated the complex role played by TP53 mutations in the pathogenesis of these myeloid disorders and in the mechanisms of drug resistance. A consistent number of studies has shown that some molecular parameters, such as the presence of a single or multiple TP53 mutations, the presence of concomitant TP53 deletions, the association with co-occurring mutations, the clonal size of TP53 mutations, the involvement of a single (monoallelic) or of both TP53 alleles (biallelic) and the cytogenetic architecture of concomitant chromosome abnormalities are major determinants of outcomes of patients. The limited response of these patients to standard treatments, including induction chemotherapy, hypomethylating agents and venetoclax-based therapies and the discovery of an immune dysregulation have induced a shift to new emerging therapies, some of which being associated with promising efficacy. The main aim of these novel immune and nonimmune strategies consists in improving survival and in increasing the number of TP53-mutated MDS/AML patients in remission amenable to allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| |
Collapse
|
9
|
Ilchuk LA, Kubekina MV, Okulova YD, Silaeva YY, Tatarskiy VV, Filatov MA, Bruter AV. Genetically Engineered Mice Unveil In Vivo Roles of the Mediator Complex. Int J Mol Sci 2023; 24:ijms24119330. [PMID: 37298278 DOI: 10.3390/ijms24119330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The Mediator complex is a multi-subunit protein complex which plays a significant role in the regulation of eukaryotic gene transcription. It provides a platform for the interaction of transcriptional factors and RNA polymerase II, thus coupling external and internal stimuli with transcriptional programs. Molecular mechanisms underlying Mediator functioning are intensively studied, although most often using simple models such as tumor cell lines and yeast. Transgenic mouse models are required to study the role of Mediator components in physiological processes, disease, and development. As constitutive knockouts of most of the Mediator protein coding genes are embryonically lethal, conditional knockouts and corresponding activator strains are needed for these studies. Recently, they have become more easily available with the development of modern genetic engineering techniques. Here, we review existing mouse models for studying the Mediator, and data obtained in corresponding experiments.
Collapse
Affiliation(s)
- Leonid A Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina V Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia Yu Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology", Ministry of Health of the Russian Federation, Kashirskoe Sh. 24, 115478 Moscow, Russia
| |
Collapse
|
10
|
Lu Y, Yang L, Shen M, Zhang Z, Wang S, Chen F, Chen N, Xu Y, Zeng H, Chen M, Chen S, Wang F, Hu M, Wang J. Tespa1 facilitates hematopoietic and leukemic stem cell maintenance by restricting c-Myc degradation. Leukemia 2023; 37:1039-1047. [PMID: 36997676 PMCID: PMC10169665 DOI: 10.1038/s41375-023-01880-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/11/2023]
Abstract
Hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) have robust self-renewal potential, which is responsible for sustaining normal and malignant hematopoiesis, respectively. Although considerable efforts have been made to explore the regulation of HSC and LSC maintenance, the underlying molecular mechanism remains obscure. Here, we observe that the expression of thymocyte-expressed, positive selection-associated 1 (Tespa1) is markedly increased in HSCs after stresses exposure. Of note, deletion of Tespa1 results in short-term expansion but long-term exhaustion of HSCs in mice under stress conditions due to impaired quiescence. Mechanistically, Tespa1 can interact with CSN subunit 6 (CSN6), a subunit of COP9 signalosome, to prevent ubiquitination-mediated degradation of c-Myc protein in HSCs. As a consequence, forcing c-Myc expression improves the functional defect of Tespa1-null HSCs. On the other hand, Tespa1 is identified to be highly enriched in human acute myeloid leukemia (AML) cells and is essential for AML cell growth. Furthermore, using MLL-AF9-induced AML model, we find that Tespa1 deficiency suppresses leukemogenesis and LSC maintenance. In summary, our findings reveal the important role of Tespa1 in promoting HSC and LSC maintenance and therefore provide new insights on the feasibility of hematopoietic regeneration and AML treatment.
Collapse
Affiliation(s)
- Yukai Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
- Frontier Medical Training Brigade, Third Military Medical University, Xinjiang, 831200, China
| | - Lijing Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Zihao Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Naicheng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hao Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fengchao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
11
|
Hu M, Chen N, Chen M, Chen F, Lu Y, Xu Y, Yang L, Zeng H, Shen M, Chen X, Chen S, Wang F, Wang S, Wang J. Transcription factor Nkx2-3 maintains the self-renewal of hematopoietic stem cells by regulating mitophagy. Leukemia 2023:10.1038/s41375-023-01907-y. [PMID: 37095209 DOI: 10.1038/s41375-023-01907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
Hematopoietic stem cells (HSCs) reside at the top of the hematopoietic hierarchy, exhibiting a unique capacity to self-renew and differentiate into all blood cells throughout the lifetime. However, how to prevent HSC exhaustion during long-term hematopoietic output is not fully understood. Here, we show that the homeobox transcription factor Nkx2-3 is required for HSC self-renewal by preserving metabolic fitness. We found that Nkx2-3 is preferentially expressed in HSCs with excessive regenerative potential. Mice with conditional deletion of Nkx2-3 displayed a reduced HSC pool and long-term repopulating capacity as well as increased sensitivity to irradiation and 5-flurouracil treatment due to impaired HSC quiescence. In contrast, overexpression of Nkx2-3 improved HSC function both in vitro and in vivo. Furthermore, mechanistic studies revealed that Nkx2-3 can directly control the transcription of the critical mitophagy regulator ULK1, which is essential for sustaining metabolic homeostasis in HSCs by clearing activated mitochondria. More importantly, a similar regulatory role of NKX2-3 was observed in human cord blood-derived HSCs. In conclusion, our data demonstrate an important role of the Nkx2-3/ULK1/mitophagy axis in regulating the self-renewal of HSCs, therefore providing a promising strategy to improve the function of HSCs in the clinic.
Collapse
Affiliation(s)
- Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Naicheng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yukai Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Lijing Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hao Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xuehong Chen
- Department of Obstetrics and Gynecology, Liangping District Maternal and Child Health Care Hospital, Chongqing, 405200, China
| | - Shilei Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fengchao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
12
|
Yang L, Lu Y, Zhang Z, Chen Y, Chen N, Chen F, Qi Y, Han C, Xu Y, Chen M, Shen M, Wang S, Zeng H, Su Y, Hu M, Wang J. Oxymatrine boosts hematopoietic regeneration by modulating MAPK/ERK phosphorylation after irradiation-induced hematopoietic injury. Exp Cell Res 2023; 427:113603. [PMID: 37075826 DOI: 10.1016/j.yexcr.2023.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Hematopoietic toxicity due to ionizing radiation (IR) is a leading cause of death in nuclear incidents, occupational hazards, and cancer therapy. Oxymatrine (OM), an extract originating from the root of Sophora flavescens (Kushen), possesses extensive pharmacological properties. In this study, we demonstrate that OM treatment accelerates hematological recovery and increases the survival rate of mice subjected to irradiation. This outcome is accompanied by an increase in functional hematopoietic stem cells (HSCs), resulting in an enhanced hematopoietic reconstitution ability. Mechanistically, we observed significant activation of the MAPK signaling pathway, accelerated cellular proliferation, and decreased cell apoptosis. Notably, we identified marked increases in the cell cycle transcriptional regulator Cyclin D1 (Ccnd1) and the anti-apoptotic protein BCL2 in HSC after OM treatment. Further investigation revealed that the expression of Ccnd1 transcript and BCL2 levels were reversed upon specific inhibition of ERK1/2 phosphorylation, effectively negating the rescuing effect of OM. Moreover, we determined that targeted inhibition of ERK1/2 activation significantly counteracted the regenerative effect of OM on human HSCs. Taken together, our results suggest a crucial role for OM in hematopoietic reconstitution following IR via MAPK signaling pathway-mediated mechanisms, providing theoretical support for innovative therapeutic applications of OM in addressing IR-induced injuries in humans.
Collapse
Affiliation(s)
- Lijing Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yukai Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Zihao Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yin Chen
- Department of Gynaecology and Obstetrics, 958 Hospital of PLA Army, Chongqing, 400038, China.
| | - Naicheng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yan Qi
- Department of Hematology, Daping Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Changhao Han
- Department of Hematology, Daping Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Mingqiang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Hao Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; Chinese PLA Center for Disease Control and Prevention, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
13
|
Feng Y, Han Y, Hu A, Qu Y, Hu Y, Wu H, Wang X, He L. Heliangin acts as a covalent ligand of RPS2 that disrupts pre-rRNA metabolic processes in NPM1-mutated acute myeloid leukemia. Acta Pharm Sin B 2023; 13:598-617. [PMID: 36873185 PMCID: PMC9979090 DOI: 10.1016/j.apsb.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/05/2022] [Accepted: 09/23/2022] [Indexed: 11/01/2022] Open
Abstract
Although NPM1 mutations are frequently found in acute myeloid leukemia patients, therapeutic strategies are scarce and unsuitable for those who cannot tolerate intensive chemotherapy. Here we demonstrated that heliangin, a natural sesquiterpene lactone, exerts favorable therapeutic responses in NPM1 mutant acute myeloid leukemia cells, with no apparent toxicity to normal hematogenous cells, by inhibiting their proliferation, inducing apoptosis, causing cell cycle arrest, and promoting differentiation. In-depth studies on its mode of action using quantitative thiol reactivity platform screening and subsequent molecular biology validation showed that the ribosomal protein S2 (RPS2) is the main target of heliangin in treating NPM1 mutant AML. Upon covalent binding to the C222 site of RPS2, the electrophilic moieties of heliangin disrupt pre-rRNA metabolic processes, leading to nucleolar stress, which in turn regulates the ribosomal proteins-MDM2-p53 pathway and stabilizes p53. Clinical data shows that the pre-rRNA metabolic pathway is dysregulated in acute myeloid leukemia patients with the NPM1 mutation, leading to a poor prognosis. We found that RPS2 plays a critical role in regulating this pathway and may be a novel treatment target. Our findings suggest a novel treatment strategy and lead compound for acute myeloid leukemia patients, especially those with NPM1 mutations.
Collapse
Affiliation(s)
- Yin Feng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China.,China Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing 210046, China
| | - Yefan Han
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China.,China Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing 210046, China
| | - Anni Hu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China.,China Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing 210046, China
| | - Yi Qu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China.,China Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing 210046, China
| | - Yili Hu
- Experiment Center for Science and Technology, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Hao Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xinzhi Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China.,China Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing 210046, China
| | - Li He
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
14
|
Cell-intrinsic factors governing quiescence vis-à-vis activation of adult hematopoietic stem cells. Mol Cell Biochem 2022; 478:1361-1382. [PMID: 36309884 DOI: 10.1007/s11010-022-04594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
Hematopoiesis is a highly complex process, regulated by both intrinsic and extrinsic factors. Often, these two regulatory arms work in tandem to maintain the steady-state condition of hematopoiesis. However, at times, certain intrinsic attributes of hematopoietic stem cells (HSCs) override the external stimuli and dominate the outcome. These could be genetic events like mutations or environmentally induced epigenetic or transcriptomic changes. Since leukemic stem cells (LSCs) share molecular pathways that also regulate normal HSCs, identifying specific, dominantly acting intrinsic factors could help in the development of novel therapeutic approaches. Here we have reviewed such dominantly acting intrinsic factors governing quiescence vis-à-vis activation of the HSCs in the face of external forces acting on them. For brevity, we have restricted our review to the articles dealing with adult HSCs of human and mouse origin that have been published in the last 10 years. Hematopoietic stem cells (HSCs) are closely associated with various stromal cells in their microenvironment and, thus, constantly receive signaling cues from them. The illustration depicts some dominantly acting intrinsic or cell-autonomous factors operative in the HSCs. These fall into various categories, such as epigenetic regulators, transcription factors, cell cycle regulators, tumor suppressor genes, signaling pathways, and metabolic regulators, which counteract the outcome of extrinsic signaling exerted by the HSC niche.
Collapse
|