1
|
Li Z, Yang K, Xu T, Wang L, Wang X, Wen X, Zhang C, Wang J, Zheng X, Wu T, Zheng Q. Activity of trametinib as maintenance therapy after allogeneic hematopoietic stem cell transplantation in patients with relapsed or refractory RAS pathway-mutated hematologic malignancies. Ann Hematol 2024:10.1007/s00277-024-06046-7. [PMID: 39425789 DOI: 10.1007/s00277-024-06046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Affiliation(s)
- Zhihui Li
- Department of Bone Marrow Transplantation, Beijing Gaobo Boren Hospital, Beijing, China
| | - Keyan Yang
- Department of Medical Laboratory, Beijing Gaobo Boren Hospital, Beijing, China
| | - Teng Xu
- International Operations Department, Beijing Gaobo Boren Hospital, Beijing, China
| | - Lei Wang
- Department of Bone Marrow Transplantation, Beijing Gaobo Boren Hospital, Beijing, China
| | - Xianxuan Wang
- Department of Bone Marrow Transplantation, Beijing Gaobo Boren Hospital, Beijing, China
| | - Xiaopei Wen
- Department of Bone Marrow Transplantation, Beijing Gaobo Boren Hospital, Beijing, China
| | - Caiyan Zhang
- Department of Medical Laboratory, Beijing Gaobo Boren Hospital, Beijing, China
| | - Jingjing Wang
- Department of Bone Marrow Transplantation, Beijing Gaobo Boren Hospital, Beijing, China
| | - Xiaoyu Zheng
- Department of Bone Marrow Transplantation, Beijing Gaobo Boren Hospital, Beijing, China
| | - Tong Wu
- Department of Bone Marrow Transplantation, Beijing Gaobo Boren Hospital, Beijing, China.
| | - Qinlong Zheng
- Department of Medical Laboratory, Beijing Gaobo Boren Hospital, Beijing, China.
| |
Collapse
|
2
|
Boët E, Saland E, Skuli S, Griessinger E, Sarry JE. [ Mitohormesis: a key driver of the therapy resistance in cancer cells]. C R Biol 2024; 347:59-75. [PMID: 39171610 DOI: 10.5802/crbiol.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 08/23/2024]
Abstract
A large body of literature highlights the importance of energy metabolism in the response of haematological malignancies to therapy. In this review, we are particularly interested in acute myeloid leukaemia, where mitochondrial metabolism plays a key role in response and resistance to treatment. We describe the new concept of mitohormesis in the response to therapy-induced stress and in the initiation of relapse in this disease.
Collapse
|
3
|
Abulimiti M, Jia ZY, Wu Y, Yu J, Gong YH, Guan N, Xiong DQ, Ding N, Uddin N, Wang J. Exploring and clinical validation of prognostic significance and therapeutic implications of copper homeostasis-related gene dysregulation in acute myeloid leukemia. Ann Hematol 2024; 103:2797-2826. [PMID: 38879648 DOI: 10.1007/s00277-024-05841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024]
Abstract
The patterns and biological functions of copper homeostasis-related genes (CHRGs) in acute myeloid leukemia (AML) remain unclear. We explored the patterns and biological functions of CHRGs in AML. Using independent cohorts, including TCGA-GTEx, GSE114868, GSE37642, and clinical samples, we identified 826 common differentially expressed genes. Specifically, 12 cuproptosis-related genes (e.g., ATP7A, ATP7B) were upregulated, while 17 cuproplasia-associated genes (e.g., ATOX1, ATP7A) were downregulated in AML. We used LASSO-Cox, Kaplan-Meier, and Nomogram analyses to establish prognostic risk models, effectively stratifying patients with AML into high- and low-risk groups. Subgroup analysis revealed that high-risk patients exhibited poorer overall survival and involvement in fatty acid metabolism, apoptosis, and glycolysis. Immune infiltration analysis indicated differences in immune cell composition, with notable increases in B cells, cytotoxic T cells, and memory T cells in the low-risk group, and increased monocytes and neutrophils in the high-risk group. Single-cell sequencing analysis corroborated the expression characteristics of critical CHRGs, such as MAPK1 and ATOX1, associated with the function of T, B, and NK cells. Drug sensitivity analysis suggested potential therapeutic agents targeting copper homeostasis, including Bicalutamide and Sorafenib. PCR validation confirmed the differential expression of 4 cuproptosis-related genes (LIPT1, SLC31A1, GCSH, and PDHA1) and 9 cuproplasia-associated genes (ATOX1, CCS, CP, MAPK1, SOD1, COA6, PDK1, DBH, and PDE3B) in AML cell line. Importantly, these genes serve as potential biomarkers for patient stratification and treatment. In conclusion, we shed light on the expression patterns and biological functions of CHRGs in AML. The developed risk models provided prognostic implications for patient survival, offering valuable information on the regulatory characteristics of CHRGs and potential avenues for personalized treatment in AML.
Collapse
Affiliation(s)
| | - Zheng-Yi Jia
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yun Wu
- Department of General Medicine, The First Affiliated Hospital of the Xinjiang Medical University, Urumqi, 830011, China
| | - Jing Yu
- Department of Teaching and Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Yue-Hong Gong
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Na Guan
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Dai-Qin Xiong
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Nan Ding
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Jie Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China.
| |
Collapse
|
4
|
Huang D, Yu Z, Lu H, Jiang P, Qian X, Han Y, Qian P. Adhesion GPCR ADGRE2 Maintains Proteostasis to Promote Progression in Acute Myeloid Leukemia. Cancer Res 2024; 84:2090-2108. [PMID: 39082681 DOI: 10.1158/0008-5472.can-23-2314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/19/2024] [Accepted: 03/28/2024] [Indexed: 08/15/2024]
Abstract
Acute myeloid leukemia (AML) is an aggressive and heterogeneous hematologic malignancy. In elderly patients, AML incidence is high and has a poor prognosis due to a lack of effective therapies. G protein-coupled receptors (GPCR) play integral roles in physiologic processes and human diseases. Particularly, one third of adhesion GPCRs, the second largest group of GPCRs, are highly expressed in hematopoietic stem and progenitor cells or lineage cells. Here, we investigate the role of adhesion GPCRs in AML and whether they could be harnessed as antileukemia targets. Systematic screening of the impact of adhesion GPCRs on AML functionality by bioinformatic and functional analyses revealed high expression of ADGRE2 in AML, particularly in leukemic stem cells, which is associated with poor patient outcomes. Silencing ADGRE2 not only exerts antileukemic effects in AML cell lines and cells derived from patients with AML in vitro, but also delays AML progression in xenograft models in vivo. Mechanistically, ADGRE2 activates phospholipase Cβ/protein kinase C/MEK/ERK signaling to enhance the expression of AP1 and transcriptionally drive the expression of DUSP1, a protein phosphatase. DUSP1 dephosphorylates Ser16 in the J-domain of the co-chaperone DNAJB1, which facilitates the DNAJB1-HSP70 interaction and maintenance of proteostasis in AML. Finally, combined inhibition of MEK, AP1, and DUSP1 exhibits robust therapeutic efficacy in AML xenograft mouse models. Collectively, this study deciphers the roles and mechanisms of ADGRE2 in AML and provides a promising therapeutic strategy for treating AML. Significance: Increased expression of the adhesion GPCR member ADGRE2 in AML supports leukemia stem cell self-renewal and leukemogenesis by modulating proteostasis via an MEK/AP1/DUSP1 axis, which can be targeted to suppress AML progression.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Cell Proliferation
- Disease Progression
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Mice, Inbred NOD
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Proteostasis
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Deyu Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zebin Yu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Huan Lu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Penglei Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xinyue Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yingli Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| |
Collapse
|
5
|
Konopleva MY, Dail M, Daver NG, Garcia JS, Jonas BA, Yee KWL, Kelly KR, Vey N, Assouline S, Roboz GJ, Paolini S, Pollyea DA, Tafuri A, Brandwein JM, Pigneux A, Powell BL, Fenaux P, Olin RL, Visani G, Martinelli G, Onishi M, Wang J, Huang W, Dunshee DR, Hamidi H, Ott MG, Hong WJ, Andreeff M. Venetoclax and Cobimetinib in Relapsed/Refractory AML: A Phase 1b Trial. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:364-374. [PMID: 38378362 DOI: 10.1016/j.clml.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Therapies for relapsed/refractory acute myeloid leukemia remain limited and outcomes poor, especially amongst patients who are ineligible for cytotoxic chemotherapy or targeted therapies. PATIENTS AND METHODS This phase 1b trial evaluated venetoclax, a B-cell lymphoma-2 (BCL-2) inhibitor, plus cobimetinib, a MEK1/2 inhibitor, in patients with relapsed/refractory acute myeloid leukemia, ineligible for cytotoxic chemotherapy. Two-dimensional dose-escalation was performed for venetoclax dosed daily, and for cobimetinib dosed on days 1-21 of each 28-day cycle. RESULTS Thirty patients (median [range] age: 71.5 years [60-84]) received venetoclax-cobimetinib. The most common adverse events (AEs; in ≥40.0% of patients) were diarrhea (80.0%), nausea (60.0%), vomiting (40.0%), febrile neutropenia (40.0%), and fatigue (40.0%). Overall, 66.7% and 23.3% of patients experienced AEs leading to dose modification/interruption or treatment withdrawal, respectively. The composite complete remission (CRc) rate (complete remission [CR] + CR with incomplete blood count recovery + CR with incomplete platelet recovery) was 15.6%; antileukemic response rate (CRc + morphologic leukemia-free state/partial remission) was 18.8%. For the recommended phase 2 dose (venetoclax: 600 mg; cobimetinib: 40 mg), CRc and antileukemic response rates were both 12.5%. Failure to achieve an antileukemic response was associated with elevated baseline phosphorylated ERK and MCL-1 levels, but not BCL-xL. Baseline mutations in ≥1 signaling gene or TP53 were noted in nonresponders and emerged on treatment. Pharmacodynamic biomarkers revealed inconsistent, transient inhibition of the mitogen-activated protein kinase (MAPK) pathway. CONCLUSION Venetoclax-cobimetinib showed limited preliminary efficacy similar to single-agent venetoclax, but with added toxicity. Our findings will inform future trials of BCL-2/MAPK pathway inhibitor combinations.
Collapse
Affiliation(s)
| | | | - Naval G Daver
- University of Texas, MD Anderson Cancer Center, Houston, TX
| | | | - Brian A Jonas
- University of California Davis Comprehensive Cancer Center, Sacramento, CA
| | - Karen W L Yee
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | - Norbert Vey
- Hematologie Clinique, Institut Paoli Calmettes, Marseille, France
| | | | - Gail J Roboz
- Weill-Cornell Medical College, New York Presbyterian, New York, NY
| | - Stefania Paolini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | | | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, University Hospital Sant'Andrea-Sapienza, Rome, Italy
| | | | - Arnaud Pigneux
- Bordeaux Haut-Leveque University Hospital, Pessac, France
| | - Bayard L Powell
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - Pierre Fenaux
- Hôpital Saint-Louis, Université Paris Diderot, Paris, France
| | - Rebecca L Olin
- University of California San Francisco, San Francisco, CA
| | | | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Jue Wang
- Genentech, Inc., South San Francisco, CA
| | | | | | | | | | | | | |
Collapse
|
6
|
Alawieh D, Cysique-Foinlan L, Willekens C, Renneville A. RAS mutations in myeloid malignancies: revisiting old questions with novel insights and therapeutic perspectives. Blood Cancer J 2024; 14:72. [PMID: 38658558 PMCID: PMC11043080 DOI: 10.1038/s41408-024-01054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
NRAS and KRAS activating point mutations are present in 10-30% of myeloid malignancies and are often associated with a proliferative phenotype. RAS mutations harbor allele-specific structural and biochemical properties depending on the hotspot mutation, contributing to variable biological consequences. Given their subclonal nature in most myeloid malignancies, their clonal architecture, and patterns of cooperativity with other driver genetic alterations may potentially have a direct, causal influence on the prognosis and treatment of myeloid malignancies. RAS mutations overall tend to be associated with poor clinical outcome in both chronic and acute myeloid malignancies. Several recent prognostic scoring systems have incorporated RAS mutational status. While RAS mutations do not always act as independent prognostic factors, they significantly influence disease progression and survival. However, their clinical significance depends on the type of mutation, disease context, and treatment administered. Recent evidence also indicates that RAS mutations drive resistance to targeted therapies, particularly FLT3, IDH1/2, or JAK2 inhibitors, as well as the venetoclax-azacitidine combination. The investigation of novel therapeutic strategies and combinations that target multiple axes within the RAS pathway, encompassing both upstream and downstream components, is an active field of research. The success of direct RAS inhibitors in patients with solid tumors has brought renewed optimism that this progress will be translated to patients with hematologic malignancies. In this review, we highlight key insights on RAS mutations across myeloid malignancies from the past decade, including their prevalence and distribution, cooperative genetic events, clonal architecture and dynamics, prognostic implications, and therapeutic targeting.
Collapse
Affiliation(s)
- Dana Alawieh
- INSERM U1287, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Leila Cysique-Foinlan
- INSERM U1287, Gustave Roussy, Paris-Saclay University, Villejuif, France
- Department of Hematology, Gustave Roussy, Villejuif, France
| | - Christophe Willekens
- INSERM U1287, Gustave Roussy, Paris-Saclay University, Villejuif, France
- Department of Hematology, Gustave Roussy, Villejuif, France
| | - Aline Renneville
- INSERM U1287, Gustave Roussy, Paris-Saclay University, Villejuif, France.
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France.
| |
Collapse
|
7
|
Pereira-Vieira J, Weber DD, Silva S, Barbosa-Matos C, Granja S, Reis RM, Queirós O, Ko YH, Kofler B, Casal M, Baltazar F. Glucose Metabolism as a Potential Therapeutic Target in Cytarabine-Resistant Acute Myeloid Leukemia. Pharmaceutics 2024; 16:442. [PMID: 38675105 PMCID: PMC11055074 DOI: 10.3390/pharmaceutics16040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Altered glycolytic metabolism has been associated with chemoresistance in acute myeloid leukemia (AML). However, there are still aspects that need clarification, as well as how to explore these metabolic alterations in therapy. In the present study, we aimed to elucidate the role of glucose metabolism in the acquired resistance of AML cells to cytarabine (Ara-C) and to explore it as a therapeutic target. Resistance was induced by stepwise exposure of AML cells to increasing concentrations of Ara-C. Ara-C-resistant cells were characterized for their growth capacity, genetic alterations, metabolic profile, and sensitivity to different metabolic inhibitors. Ara-C-resistant AML cell lines, KG-1 Ara-R, and MOLM13 Ara-R presented different metabolic profiles. KG-1 Ara-R cells exhibited a more pronounced glycolytic phenotype than parental cells, with a weaker acute response to 3-bromopyruvate (3-BP) but higher sensitivity after 48 h. KG-1 Ara-R cells also display increased respiration rates and are more sensitive to phenformin than parental cells. On the other hand, MOLM13 Ara-R cells display a glucose metabolism profile similar to parental cells, as well as sensitivity to glycolytic inhibitors. These results indicate that acquired resistance to Ara-C in AML may involve metabolic adaptations, which can be explored therapeutically in the AML patient setting who developed resistance to therapy.
Collapse
Affiliation(s)
- Joana Pereira-Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (D.D.W.); (B.K.)
| | - Sâmia Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil;
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, ESS|P.PORTO, 4200-072 Porto, Portugal
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil;
| | - Odília Queirós
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Young H. Ko
- KoDiscovery, LLC, Institute of Marine and Environmental Technology (IMET) Center, 701 East Pratt Street, Baltimore, MD 21202, USA;
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (D.D.W.); (B.K.)
| | - Margarida Casal
- Center of Molecular and Environmental Biology (CBMA), University of Minho, 4710-057 Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Kim H, Jang B, Zhang C, Caldwell B, Park DJ, Kong SH, Lee HJ, Yang HK, Goldenring JR, Choi E. Targeting Stem Cells and Dysplastic Features With Dual MEK/ERK and STAT3 Suppression in Gastric Carcinogenesis. Gastroenterology 2024; 166:117-131. [PMID: 37802423 PMCID: PMC10841458 DOI: 10.1053/j.gastro.2023.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUNDS & AIMS Precancerous metaplasia progression to dysplasia can increase the risk of gastric cancers. However, effective strategies to specifically target these precancerous lesions are currently lacking. To address this, we aimed to identify key signaling pathways that are upregulated during metaplasia progression and critical for stem cell survival and function in dysplasia. METHODS To assess the response to chemotherapeutic drugs, we used metaplastic and dysplastic organoids derived from Mist1-Kras mice and 20 human precancerous organoid lines established from patients with gastric cancer. Phospho-antibody array analysis and single-cell RNA-sequencing were performed to identify target cell populations and signaling pathways affected by pyrvinium, a putative anticancer drug. Pyrvinium was administered to Mist1-Kras mice to evaluate drug effectiveness in vivo. RESULTS Although pyrvinium treatment resulted in growth arrest in metaplastic organoids, it induced cell death in dysplastic organoids. Pyrvinium treatment significantly downregulated phosphorylation of ERK and signal transducer and activator of transcription 3 (STAT3) as well as STAT3-target genes. Single-cell RNA-sequencing data analyses revealed that pyrvinium specifically targeted CD133+/CD166+ stem cell populations, as well as proliferating cells in dysplastic organoids. Pyrvinium inhibited metaplasia progression and facilitated the restoration of normal oxyntic glands in Mist1-Kras mice. Furthermore, pyrvinium exhibited suppressive effects on the growth and survival of human organoids with dysplastic features, through simultaneous blocking of the MEK/ERK and STAT3 signaling pathways. CONCLUSIONS Through its dual blockade of MEK/ERK and STAT3 signaling pathways, pyrvinium can effectively induce growth arrest in metaplasia and cell death in dysplasia. Therefore, our findings suggest that pyrvinium is a promising chemotherapeutic agent for reprogramming the precancerous milieu to prevent gastric cancer development.
Collapse
Affiliation(s)
- Hyesung Kim
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Bogun Jang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Changqing Zhang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brianna Caldwell
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Do-Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - James R Goldenring
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
9
|
Tamburini J, Mouche S, Larrue C, Duployez N, Bidet A, Salotti A, Hirsch P, Rigolot L, Carras S, Templé M, Favale F, Flandrin-Gresta P, Le Bris Y, Alary AS, Mauvieux L, Tondeur S, Delabesse E, Delhommeau F, Sujobert P, Kosmider O. Very short insertions in the FLT3 gene are of therapeutic significance in acute myeloid leukemia. Blood Adv 2023; 7:7576-7580. [PMID: 37987760 PMCID: PMC10733105 DOI: 10.1182/bloodadvances.2023011916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Affiliation(s)
- Jerome Tamburini
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva and Swiss Cancer Center Leman, Geneva, Switzerland
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) U8104, INSERM U1016, Paris, France
| | - Sarah Mouche
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Clement Larrue
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Nicolas Duployez
- Laboratory of Hematology, Centre Hospitalier Universitaire Lille, Lille, France
| | - Audrey Bidet
- Department of Hematology Biology, Molecular Hematology, Bordeaux University Hospital, Haut-Levêque Hospital, Pessac, France
| | - Auriane Salotti
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d’Hématologie Biologique, Lyon, France
| | - Pierre Hirsch
- Centre de Recherche Saint Antoine (CRSA), Assistance Publique Hôpitaux de Paris (AP-HP), Sites de Recherche Intégrée sur le Cancer (SIRIC) Cancer United Research Associating Medicine University and Society (CURAMUS), Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
| | - Lucie Rigolot
- Hematology Laboratory, CHU Toulouse, INSERM 1037, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Sylvain Carras
- Hematology Molecular Biology Department, Grenoble Alpes University, Institute for Advanced Biosciences (INSERM U1209, CNRS UMR 5309), University Hospital, , Grenoble, France
| | - Marie Templé
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) U8104, INSERM U1016, Paris, France
| | - Fabrizia Favale
- Centre de Recherche Saint Antoine (CRSA), Assistance Publique Hôpitaux de Paris (AP-HP), Sites de Recherche Intégrée sur le Cancer (SIRIC) Cancer United Research Associating Medicine University and Society (CURAMUS), Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
| | | | - Yannick Le Bris
- Hematology Biology, Nantes Université, Centre Hospitalier Universitaire de Nantes, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Anne-Sophie Alary
- Department of Oncogenetics, Paoli-Calmette Institute, Marseille, France
| | - Laurent Mauvieux
- Laboratoire d'Hématologie, CHRU Strasbourg, INSERM U1113, Strasbourg, France
| | - Sylvie Tondeur
- Hematology Molecular Biology Department, Grenoble Alpes University, Institute for Advanced Biosciences (INSERM U1209, CNRS UMR 5309), University Hospital, , Grenoble, France
| | - Eric Delabesse
- Hematology Laboratory, CHU Toulouse, INSERM 1037, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - François Delhommeau
- Centre de Recherche Saint Antoine (CRSA), Assistance Publique Hôpitaux de Paris (AP-HP), Sites de Recherche Intégrée sur le Cancer (SIRIC) Cancer United Research Associating Medicine University and Society (CURAMUS), Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
| | - Pierre Sujobert
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d’Hématologie Biologique, Lyon, France
| | - Olivier Kosmider
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) U8104, INSERM U1016, Paris, France
| |
Collapse
|
10
|
Alshamleh I, Kurrle N, Makowka P, Bhayadia R, Kumar R, Süsser S, Seibert M, Ludig D, Wolf S, Koschade SE, Stoschek K, Kreitz J, Fuhrmann DC, Toenges R, Notaro M, Comoglio F, Schuringa JJ, Berg T, Brüne B, Krause DS, Klusmann JH, Oellerich T, Schnütgen F, Schwalbe H, Serve H. PDP1 is a key metabolic gatekeeper and modulator of drug resistance in FLT3-ITD-positive acute myeloid leukemia. Leukemia 2023; 37:2367-2382. [PMID: 37935978 PMCID: PMC10681906 DOI: 10.1038/s41375-023-02041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 11/09/2023]
Abstract
High metabolic flexibility is pivotal for the persistence and therapy resistance of acute myeloid leukemia (AML). In 20-30% of AML patients, activating mutations of FLT3, specifically FLT3-ITD, are key therapeutic targets. Here, we investigated the influence of FLT3-ITD on AML metabolism. Nuclear Magnetic Resonance (NMR) profiling showed enhanced reshuffling of pyruvate towards the tricarboxylic acid (TCA) cycle, suggesting an increased activity of the pyruvate dehydrogenase complex (PDC). Consistently, FLT3-ITD-positive cells expressed high levels of PDP1, an activator of the PDC. Combining endogenous tagging of PDP1 with genome-wide CRISPR screens revealed that FLT3-ITD induces PDP1 expression through the RAS signaling axis. PDP1 knockdown resulted in reduced cellular respiration thereby impairing the proliferation of only FLT3-ITD cells. These cells continued to depend on PDP1, even in hypoxic conditions, and unlike FLT3-ITD-negative cells, they exhibited a rapid, PDP1-dependent revival of their respiratory capacity during reoxygenation. Moreover, we show that PDP1 modifies the response to FLT3 inhibition. Upon incubation with the FLT3 tyrosine kinase inhibitor quizartinib (AC220), PDP1 persisted or was upregulated, resulting in a further shift of glucose/pyruvate metabolism towards the TCA cycle. Overexpression of PDP1 enhanced, while PDP1 depletion diminished AC220 resistance in cell lines and peripheral blasts from an AC220-resistant AML patient in vivo. In conclusion, FLT3-ITD assures the expression of PDP1, a pivotal metabolic regulator that enhances oxidative glucose metabolism and drug resistance. Hence, PDP1 emerges as a potentially targetable vulnerability in the management of AML.
Collapse
Affiliation(s)
- Islam Alshamleh
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Nina Kurrle
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Philipp Makowka
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Raj Bhayadia
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
- Department of Pediatrics, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Sebastian Süsser
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Marcel Seibert
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Damian Ludig
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Sebastian Wolf
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Sebastian E Koschade
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Karoline Stoschek
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Johanna Kreitz
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Rosa Toenges
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | | | | | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tobias Berg
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Centre for Discovery in Cancer Research and Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Bernhard Brüne
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596, Frankfurt am Main, Germany
| | - Daniela S Krause
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
- Georg-Speyer-Haus; German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan-Henning Klusmann
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
- Department of Pediatrics, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Thomas Oellerich
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Frank Schnütgen
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany.
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany.
| | - Hubert Serve
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany.
| |
Collapse
|
11
|
Lui K, Huang Y, Sheikh MS, Cheung KK, Tam WY, Sun KT, Cheng KM, Ng WWM, Loh AWK. The oncogenic potential of Rab-like protein 1A (RBEL1A) GTPase: The first review of RBEL1A research with future research directions and challenges. J Cancer 2023; 14:3214-3226. [PMID: 37928422 PMCID: PMC10622986 DOI: 10.7150/jca.84267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
Research on Rab-like protein 1A (RBEL1A) in the past two decades highlighted the oncogenic properties of this gene. Despite the emerging evidence, its importance in cancer biology was underrated. This is the first RBEL1A critical review covering its discovery, biochemistry, physiological functions, and clinical insights. RBEL1A expression at the appropriate levels appears essential in normal cells and tissues to maintain chromosomal stability; however, its overexpression is linked to tumorigenesis. Furthermore, the upstream and downstream targets of the RBEL1A signaling pathways will be discussed. Mechanistically, RBEL1A promotes cell proliferation signals by enhancing the Erk1/2, Akt, c-Myc, and CDK pathways while blunting the apoptotic signals via inhibitions on p53, Rb, and caspase pathways. More importantly, this review covers the clinical relevance of RBEL1A in the cancer field, such as drug resistance and poor overall survival rate. Also, this review points out the bottle-necks of the RBEL1A research and its future research directions. It is becoming clear that RBEL1A could potentially serve as a valuable target of anticancer therapy. Genetic and pharmacological researches are expected to facilitate the identification and development of RBEL1A inhibitors as cancer therapeutics in the future, which could undoubtedly improve the management of human malignancy.
Collapse
Affiliation(s)
- Ki Lui
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong
| | - Ying Huang
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - M. Saeed Sheikh
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Wing Yip Tam
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keng-Ting Sun
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, United Kingdom
| | - Ka Ming Cheng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | | | - Anthony Wai-Keung Loh
- Division of Science, Engineering and Health Studies (SEHS), College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
12
|
Kuhn E, Natacci F, Corbo M, Pisani L, Ferrero S, Bulfamante G, Gambini D. The Contribution of Oxidative Stress to NF1-Altered Tumors. Antioxidants (Basel) 2023; 12:1557. [PMID: 37627552 PMCID: PMC10451967 DOI: 10.3390/antiox12081557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The neurofibromatosis-1 gene (NF1) was initially characterized because its germline mutation is responsible for an inherited syndromic disease predisposing tumor development, in particular neurofibromas but also various malignancies. Recently, large-scale tumor sequencing efforts have demonstrated NF1 as one of the most frequently mutated genes in human cancer, being mutated in approximately 5-10% of all tumors, especially in malignant peripheral nerve sheath tumors and different skin tumors. NF1 acts as a tumor suppressor gene that encodes neurofibromin, a large protein that controls neoplastic transformation through several molecular mechanisms. On the other hand, neurofibromin loss due to NF1 biallelic inactivation induces tumorigenic hyperactivation of Ras and mTOR signaling pathways. Moreover, neurofibromin controls actin cytoskeleton structure and the metaphase-anaphase transition. Consequently, neurofibromin deficiency favors cell mobility and proliferation as well as chromosomal instability and aneuploidy, respectively. Growing evidence supports the role of oxidative stress in NF1-related tumorigenesis. Neurofibromin loss induces oxidative stress both directly and through Ras and mTOR signaling activation. Notably, innovative therapeutic approaches explore drug combinations that further increase reactive oxygen species to boost the oxidative unbalance of NF1-altered cancer cells. In our paper, we review NF1-related tumors and their pathogenesis, highlighting the twofold contribution of oxidative stress, both tumorigenic and therapeutic.
Collapse
Affiliation(s)
- Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Pathology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Federica Natacci
- Medical Genetics Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| | - Luigi Pisani
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Pathology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Human Pathology and Molecular Pathology, TOMA Advanced Biomedical Assays S.p.A., 21052 Busto Arsizio, Italy
| | - Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| |
Collapse
|
13
|
Sabatier M, Birsen R, Lauture L, Mouche S, Angelino P, Dehairs J, Goupille L, Boussaid I, Heiblig M, Boet E, Sahal A, Saland E, Santos JC, Armengol M, Fernández-Serrano M, Farge T, Cognet G, Simonetta F, Pignon C, Graffeuil A, Mazzotti C, Avet-Loiseau H, Delos O, Bertrand-Michel J, Chedru A, Dembitz V, Gallipoli P, Anstee NS, Loo S, Wei AH, Carroll M, Goubard A, Castellano R, Collette Y, Vergez F, Mansat-De Mas V, Bertoli S, Tavitian S, Picard M, Récher C, Bourges-Abella N, Granat F, Kosmider O, Sujobert P, Colsch B, Joffre C, Stuani L, Swinnen JV, Guillou H, Roué G, Hakim N, Dejean AS, Tsantoulis P, Larrue C, Bouscary D, Tamburini J, Sarry JE. C/EBPα Confers Dependence to Fatty Acid Anabolic Pathways and Vulnerability to Lipid Oxidative Stress-Induced Ferroptosis in FLT3-Mutant Leukemia. Cancer Discov 2023; 13:1720-1747. [PMID: 37012202 DOI: 10.1158/2159-8290.cd-22-0411] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/19/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Although transcription factor CCAAT-enhancer binding protein α (C/EBPα) is critical for normal and leukemic differentiation, its role in cell and metabolic homeostasis is largely unknown in cancer. Here, multiomics analyses uncovered a coordinated activation of C/EBPα and Fms-like tyrosine kinase 3 (FLT3) that increased lipid anabolism in vivo and in patients with FLT3-mutant acute myeloid leukemia (AML). Mechanistically, C/EBPα regulated the fatty acid synthase (FASN)-stearoyl-CoA desaturase (SCD) axis to promote fatty acid (FA) biosynthesis and desaturation. We further demonstrated that FLT3 or C/EBPα inactivation decreased monounsaturated FA incorporation to membrane phospholipids through SCD downregulation. Consequently, SCD inhibition enhanced susceptibility to lipid redox stress that was exploited by combining FLT3 and glutathione peroxidase 4 inhibition to trigger lipid oxidative stress, enhancing ferroptotic death of FLT3-mutant AML cells. Altogether, our study reveals a C/EBPα function in lipid homeostasis and adaptation to redox stress, and a previously unreported vulnerability of FLT3-mutant AML to ferroptosis with promising therapeutic application. SIGNIFICANCE FLT3 mutations are found in 30% of AML cases and are actionable by tyrosine kinase inhibitors. Here, we discovered that C/EBPα regulates FA biosynthesis and protection from lipid redox stress downstream mutant-FLT3 signaling, which confers a vulnerability to ferroptosis upon FLT3 inhibition with therapeutic potential in AML. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Rudy Birsen
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| | - Laura Lauture
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Sarah Mouche
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Paolo Angelino
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI-Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Léa Goupille
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Ismael Boussaid
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Maël Heiblig
- Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
- CIRI, Inserm U1111 CNRS 5308, Université Lyon 1, Lyon, France
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Ambrine Sahal
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Juliana C Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Marc Armengol
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Guillaume Cognet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Federico Simonetta
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Corentin Pignon
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Antoine Graffeuil
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Céline Mazzotti
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Hervé Avet-Loiseau
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Océane Delos
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, University Paul Sabatier, Toulouse, France
| | - Justine Bertrand-Michel
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, University Paul Sabatier, Toulouse, France
| | - Amélie Chedru
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Vilma Dembitz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Natasha S Anstee
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Sun Loo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Andrew H Wei
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Martin Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Armelle Goubard
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Rémy Castellano
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Yves Collette
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - François Vergez
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Véronique Mansat-De Mas
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Sarah Bertoli
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Suzanne Tavitian
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Muriel Picard
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service de Réanimation, Toulouse, France
| | - Christian Récher
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | | | - Fanny Granat
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Olivier Kosmider
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Pierre Sujobert
- Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
- CIRI, Inserm U1111 CNRS 5308, Université Lyon 1, Lyon, France
| | - Benoit Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Carine Joffre
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI-Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, University Paul Sabatier, Toulouse, France
| | - Gael Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Nawad Hakim
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITy), Inserm UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse, France
| | - Anne S Dejean
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITy), Inserm UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse, France
| | - Petros Tsantoulis
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Clément Larrue
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Didier Bouscary
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| | - Jerome Tamburini
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| |
Collapse
|
14
|
Mitochondrial fusion is a therapeutic vulnerability of acute myeloid leukemia. Leukemia 2023; 37:765-775. [PMID: 36739349 PMCID: PMC10079528 DOI: 10.1038/s41375-023-01835-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Mitochondrial metabolism recently emerged as a critical dependency in acute myeloid leukemia (AML). The shape of mitochondria is tightly regulated by dynamin GTPase proteins, which drive opposing fusion and fission forces to consistently adapt bioenergetics to the cellular context. Here, we showed that targeting mitochondrial fusion was a new vulnerability of AML cells, when assayed in patient-derived xenograft (PDX) models. Genetic depletion of mitofusin 2 (MFN2) or optic atrophy 1 (OPA1) or pharmacological inhibition of OPA1 (MYLS22) blocked mitochondrial fusion and had significant anti-leukemic activity, while having limited impact on normal hematopoietic cells ex vivo and in vivo. Mechanistically, inhibition of mitochondrial fusion disrupted mitochondrial respiration and reactive oxygen species production, leading to cell cycle arrest at the G0/G1 transition. These results nominate the inhibition of mitochondrial fusion as a promising therapeutic approach for AML.
Collapse
|
15
|
Chen T, Wei N, Lv W, Qu L, Liu H. Analysis of RAS gene mutations in adverse events during first induction chemotherapy in childhood acute lymphoblastic leukemia. Transl Pediatr 2023; 12:56-67. [PMID: 36798932 PMCID: PMC9926126 DOI: 10.21037/tp-22-683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Background The rat sarcoma virus (RAS) pathway controls cell proliferation, differentiation, and apoptosis, which have been implicated in the pathogenesis of various hematological malignancies. Prognostic importance of RAS gene mutation, relatively frequently in childhood acute lymphoblastic leukemia (ALL), has been debated. We aimed to study RAS gene mutation profile and prognosis in 93 children with newly diagnosed ALL. Methods We retrospectively analyzed clinical characteristics, treatment, and outcomes of 93 ALL children during first induction chemotherapy in Anhui Provincial Children's Hospital under the Chinese Children's Leukemia Group-acute lymphoblastic leukemia 2018 (CCLG-ALL-2018). All genomic DNA samples were obtained from bone marrow mononuclear cells upon new diagnosis. RAS gene mutation was performed by polymerase chain reaction (PCR). All children were stratified into standard-, medium-, and high-risk groups, and then treated with risk-based regimens according to CCLG-ALL-2018 protocol. Results Of 93 ALL children, 26 (27.9%) were positive for RAS mutation, among whom 19 had N-RAS mutation, 8 had K-RAS mutation, and 1 had a double mutation. The ETV6/RUNX1 fusion gene was the most common genetic alteration (n=16, 17.2%). The most common adverse events during first induction chemotherapy were coagulation abnormalities (n=76, 81.7%), followed by fever (n=71, 76.3%) and alanine transaminase (ALT) elevation (n=34, 36.6%). Compared with negative RAS mutation group, the risk of hyperbilirubinemia was significantly reduced in RAS mutation group (P=0.018), and there was no significant difference in any other adverse events. The average duration of agranulocytosis during first induction chemotherapy was 6 days, and the average duration of agranulocytosis in RAS mutation group and RAS negative group was 6 and 5 days, with no significant difference. Multivariate linear regression analysis showed that in RAS mutation group, when body mass index (BMI) exceeded the median value of this ALL population (BMI >15.38), the risk of agranulocytosis was significantly increased (P=0.003). Conclusions Newly diagnosed ALL in children with RAS mutation is less likely to be associated with fusion gene expression. RAS mutation increases the risk of agranulocytosis duration during first induction chemotherapy, lowers BMI and reduces the risk of hyperbilirubinemia in ALL children.
Collapse
Affiliation(s)
- Tianping Chen
- Department of Hematology and Oncology, Anhui Provincial Children's Hospital (Anhui Hospital, Pediatric Hospital of Fudan University), Hefei, China
| | - Nan Wei
- Department of Hematology and Oncology, Anhui Provincial Children's Hospital (Anhui Hospital, Pediatric Hospital of Fudan University), Hefei, China
| | - Wenxiu Lv
- Department of Hematology and Oncology, Anhui Provincial Children's Hospital (Anhui Hospital, Pediatric Hospital of Fudan University), Hefei, China
| | - Lijun Qu
- Department of Hematology and Oncology, Anhui Provincial Children's Hospital (Anhui Hospital, Pediatric Hospital of Fudan University), Hefei, China
| | - Hongjun Liu
- Department of Hematology and Oncology, Anhui Provincial Children's Hospital (Anhui Hospital, Pediatric Hospital of Fudan University), Hefei, China
| |
Collapse
|
16
|
Rivera D, Kim K, Kanagal-Shamanna R, Borthakur G, Montalban-Bravo G, Daver N, Dinardo C, Short NJ, Yilmaz M, Pemmaraju N, Takahashi K, Jabbour EJ, Pierce S, Konopleva M, Bhalla K, Garcia-Manero G, Ravandi F, Kantarjian H, Kadia TM. Implications of RAS mutational status in subsets of patients with newly diagnosed acute myeloid leukemia across therapy subtypes. Am J Hematol 2022; 97:1599-1606. [PMID: 36117258 DOI: 10.1002/ajh.26731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 01/31/2023]
Abstract
Activating mutations in RAS have been reported in about 10-15% of patients with AML; previous studies have not identified a prognostic significance. However, RAS mutations have emerged as a potential resistance mechanism to treatment with inhibitors of FLT3, IDH, and BCL2. We aimed to determine the characteristics and outcomes of patients with RAS-mutated (RAS-mut) AML across therapy subsets of 1410 patients newly diagnosed (ND AML). RAS-mut was observed in 273 (20%) patients. Overall, patients with RAS-mut AML had an estimated 3-year survival rate of 38% vs. 28% in those with RAS wild type (RAS-wt), p = .01. Among patients with RAS-mut, favorable karyotype and concomitant NPM1 mutations were associated with a higher CR/CRi rate, OR 23.2 (95% CI: 2.7-192.7; p < .001) and OR 2.8 (95% CI: 1.1-6.9; p = .02), respectively, while secondary and treated secondary (ts)-AML were associated with low response rates, OR 0.34 (95% CI: 0.1-0.9; p = .04) and OR 0.22 (95% CI: 0.09-0.5; p = .001), respectively. Intensive chemotherapy was associated with high response rates OR 5.9 (95% CI: 2.9-12.2; p < .001). Better median OS was observed among those with favorable karyotype, HR 0.28 (95% CI: 0.1-0.6; p = .002), and those treated with intensive chemotherapy, HR 0.42 (95% CI: 0.2-0.6 p < .001). Conversely, ts- AML and co-occurrence of mutations in TP53 were associated with poor median OS; HR 2.3 (95% CI: 1.4-3.9; p = .001) and HR 1.7 (95% CI: 0.9-3.1; p = .06), respectively. The addition of venetoclax was associated with a non-significant improvement in CR/CRi and OS.
Collapse
Affiliation(s)
- Daniel Rivera
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kunhwa Kim
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney Dinardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kapil Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
17
|
Zhou M, Gao X, Zheng X, Luo J. Functions and clinical significance of circular RNAs in acute myeloid leukemia. Front Pharmacol 2022; 13:1010579. [PMID: 36506538 PMCID: PMC9729264 DOI: 10.3389/fphar.2022.1010579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed single-stranded RNA molecules. Four types of circRNAs have been reported in animal cells, and they have typical characteristics in their biogenesis, nuclear export and degradation. Advances in our understanding of the molecular functions of circRNAs in sponging microRNAs, modulating transcription, regulating RNA-binding proteins, as well as encoding proteins have been made very recently. Dysregulated circRNAs are associated with human diseases such as acute myeloid leukemia (AML). In this review, we focus on the recently described mechanisms, role and clinical significance of circRNAs in AML. Although great progress of circRNAs in AML has been achieved, substantial efforts are still required to explore whether circRNAs exert their biological function by other mechanisms such as regulation of gene transcription or serving as translation template in AML. It is also urgent that researchers study the machineries regulating circRNAs fate, the downstream effectors of circRNAs modulatory networks, and the clinical application of circRNAs in AML.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China,*Correspondence: Min Zhou, ; Jing Luo,
| | - Xianling Gao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Zheng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Luo
- Department of Anesthesiology, The First People’s Hospital of Yunnan Province, Kunming, China,Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China,*Correspondence: Min Zhou, ; Jing Luo,
| |
Collapse
|
18
|
Zhang S, Liu J, Lu ZY, Xue YT, Mu XR, Liu Y, Cao J, Li ZY, Li F, Xu KL, Wu QY. Combination of RSK inhibitor LJH-685 and FLT3 inhibitor FF-10101 promoted apoptosis and proliferation inhibition of AML cell lines. Cell Oncol (Dordr) 2022; 45:1005-1018. [PMID: 36036884 DOI: 10.1007/s13402-022-00703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE FLT3 mutations occurred in approximately one third of patients with acute myeloid leukemia (AML). FLT3-ITD mutations caused the constitutive activation of the RAS/MAPK signaling pathway. Ribosomal S6 Kinases (RSKs) were serine/threonine kinases that function downstream of the Ras/Raf/MEK/ERK signaling pathway. However, roles and mechanisms of RSKs inhibitor LJH-685, and combinational effects of LJH-685 and FLT3 inhibitor FF-10101 on AML cells were till unclear. METHODS Cell viability assay, CFSE assay, RT-qPCR, Colony formation assay, PI stain, Annexin-V/7-AAD double stain, Western blot, and Xenogeneic transplantation methods were used to used to investigate roles and mechanisms of LJH-685 in the leukemogenesis of AML. RESULTS LJH-685 inhibited the proliferation and clone formation of AML cells, caused cell cycle arrest and induced the apoptosis of AML cells via inhibiting the RSK-YB-1 signaling pathway. MV4-11 and MOLM-13 cells carrying FLT3-ITD mutations were more sensitive to LJH-685 than that of other AML cell lines. Further studies suggested that LJH-685 combined with Daunorubicin or FF- 10101 synergistically inhibited the cell viability, promoted the apoptosis and caused cycle arrest of AML cells carrying FLT3-ITD mutations. Moreover, in vivo experiments also indicated that LJH-685 combined with FF-10101 or Daunorubicin prolonged the survival time of NSG mice and reduced the leukemogenesis of AML. CONCLUSION Thus, these observations demonstrated combination of RSK inhibitor LJH-685 and FLT3 inhibitor FF-10101 showed synergism anti-leukemia effects in AML cell lines with FLT3-ITD mutations via inhibiting MAPK-RSKs-YB-1 pathway and provided new targets for therapeutic intervention especially for AML with FLT3-ITD mutations and Daunorubicin-resistant AML.
Collapse
Affiliation(s)
- Sen Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zi-Yi Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Tong Xue
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing-Ru Mu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|