1
|
Pu J, Liu T, Sharma A, Jiang L, Wei F, Ren X, Schmidt-Wolf IGH, Hou J. Advances in adoptive cellular immunotherapy and therapeutic breakthroughs in multiple myeloma. Exp Hematol Oncol 2024; 13:105. [PMID: 39468695 PMCID: PMC11514856 DOI: 10.1186/s40164-024-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The basic idea of modulating the immune system to better recognize and fight tumor cells has led to the successful introduction of adoptive cellular immunotherapy (ACT). ACT-based treatment regimens, in which the patient's own immune cells are isolated and subsequently expanded (ex vivo) and reinfused, have also contributed significantly to the development of a personalized treatment strategy. Complementing this, the unprecedented advances in ACTs as chimeric antigen receptor (CAR)-T cell therapies and their derivatives such as CAR-NK, CAR-macrophages, CAR-γδT and CAR-NKT have further maximized the therapeutic outcomes. Herein, we provide a comprehensive overview of the development of ACTs in multiple myeloma (MM) and outline how they have evolved from an experimental form to a mainstay of standard clinical settings. Besides, we provide insights into cytokine-induced killer cell (CIK) therapy, an alternative form of ACT that (as CIK or CAR-CIK) has enormous potential in the clinical spectrum of MM. We also summarize the results of the major preclinical and clinical studies of adoptive cell therapy in MM and address the current challenges (such as cytokine release syndrome (CRS) and neurotoxicity) that limit its complete success in the cancer landscape.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China.
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
2
|
Mishra R, Thunuguntla P, Perkin A, Duraiyan D, Bagwill K, Gonzales S, Brizuela V, Daly S, Chang YJ, Abebe M, Rajana Y, Wichmann K, Bolick C, King J, Fiala M, Fortier J, Jayasinghe R, Schroeder M, Ding L, Vij R, Silva-Fisher J. LINC01432 binds to CELF2 in newly diagnosed multiple myeloma promoting short progression-free survival to standard therapy. RESEARCH SQUARE 2024:rs.3.rs-4888379. [PMID: 39483883 PMCID: PMC11527149 DOI: 10.21203/rs.3.rs-4888379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Multiple Myeloma (MM) is an incurable form of cancer that arises from malignant plasma cells, with over 35,000 new cases diagnosed annually in the United States. While there are a growing number of approved therapies, MM remains incurable and nearly all patients will relapse and exhaust available treatments. Mechanisms for disease progression are unclear and little is known regarding the role of long non-coding RNAs (lncRNA) in mediating disease progression and response to treatment. Here, we used transcriptome sequencing to compare newly diagnosed MM (NDMM) patients who had short progression-free survival (PFS) to standard first-line treatment (PFS < 24 months) to patients who had prolonged PFS (PFS > 24 months). We identified 157 differentially upregulated lncRNAs with short PFS and focused our efforts on characterizing the most upregulated lncRNA, LINC01432. We investigated LINC01432 to show that its overexpression significantly increases cell viability and reduces apoptosis, while knockdown significantly reduces viability and increases apoptosis. Next, we show that LINC01432 directly interacts with the RNA binding protein, CELF2. Lastly, we showed that LINC01432-targeted locked nucleic acid antisense oligonucleotides reduce viability and increases apoptosis. In summary, this fundamental study identified lncRNAs associated with short PFS to standard NDMM treatment and further characterized LINC01432.
Collapse
Affiliation(s)
- Richa Mishra
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Prasanth Thunuguntla
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Alani Perkin
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Dhanusha Duraiyan
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Katelyn Bagwill
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Savannah Gonzales
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Vanessa Brizuela
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Steve Daly
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Yoon Jae Chang
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Mahdote Abebe
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Yash Rajana
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Kelly Wichmann
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Catheryn Bolick
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Jaiyana King
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Mark Fiala
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
- Siteman Cancer Center, Washington University in St. Louis, MO, 631102
| | - Julie Fortier
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Reyka Jayasinghe
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
| | - Mark Schroeder
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
- Siteman Cancer Center, Washington University in St. Louis, MO, 631102
| | - Li Ding
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
- Siteman Cancer Center, Washington University in St. Louis, MO, 631102
| | - Ravi Vij
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
- Siteman Cancer Center, Washington University in St. Louis, MO, 631102
| | - Jessica Silva-Fisher
- Department of Internal Medicine, Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 631101
- Siteman Cancer Center, Washington University in St. Louis, MO, 631102
| |
Collapse
|
3
|
Gagelmann N, Merz M. Fast and furious: Changing gears on the road to cure with chimeric antigen receptor T cells in multiple myeloma. Semin Hematol 2024; 61:306-313. [PMID: 39095225 DOI: 10.1053/j.seminhematol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Based on the pivotal KarMMa-1 and CARTITUDE-1 studies, Idecabtagene vicleucel (Ide-cel) and Ciltacabtagene autoleucel (Cilta-cel) have been approved to treat multiple myeloma patients, who have been exposed to at least 1 proteasome inhibitor, immunomodulatory drug and anti-CD38 antibody after 4 or 3 lines of therapy, respectively. The unprecedented rates of deep and long-lasting remissions have been meanwhile confirmed in multiple real-world analyses and more recently, the KarMMa-3 and CARTITUDE-4 studies lead to the approval in earlier lines of therapy. It is currently believed that ultimately all patients with relapsed/refractory multiple myeloma experience relapse after anti-BCMA CAR T-cell therapies. There is a plethora of CAR T-cell therapies targeting novel antigens, with the aim to overcome current CAR T-cell resistance. In this review, we will summarize current evidence of novel antigens and their clinical potential. Together with current CAR T-cell therapy and T-cell engagers, these approaches might lead us to the next frontier in multiple myeloma: total immunotherapy and the road to chemotherapy-free cure.
Collapse
Affiliation(s)
- Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Hamburg, Germany.
| | - Maximilian Merz
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectiology, University Hospital of Leipzig, Leipzig, Saxony, Germany
| |
Collapse
|
4
|
Zhou S, Yang Y, Jing Y, Zhu X. Generating advanced CAR-based therapy for hematological malignancies in clinical practice: targets to cell sources to combinational strategies. Front Immunol 2024; 15:1435635. [PMID: 39372412 PMCID: PMC11449748 DOI: 10.3389/fimmu.2024.1435635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has been a milestone breakthrough in the treatment of hematological malignancies, offering an effective therapeutic option for multi-line therapy-refractory patients. So far, abundant CAR-T products have been approved by the United States Food and Drug Administration or China National Medical Products Administration to treat relapsed or refractory hematological malignancies and exhibited unprecedented clinical efficiency. However, there were still several significant unmet needs to be progressed, such as the life-threatening toxicities, the high cost, the labor-intensive manufacturing process and the poor long-term therapeutic efficacy. According to the demands, many researches, relating to notable technical progress and the replenishment of alternative targets or cells, have been performed with promising results. In this review, we will summarize the current research progress in CAR-T eras from the "targets" to "alternative cells", to "combinational drugs" in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Shu Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yuhang Yang
- The First Clinical Medical College, Wuhan University, Wuhan, China
| | - Yulu Jing
- The Second Clinical Medical College, Wuhan University, Wuhan, China
| | - Xiaoying Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Hamadeh IS, Friend R, Mailankody S, Atrash S. Chimeric antigen receptor T-cells: a review on current status and future directions for relapsed/refractory multiple myeloma. Front Oncol 2024; 14:1455464. [PMID: 39175472 PMCID: PMC11338754 DOI: 10.3389/fonc.2024.1455464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Although multiple myeloma is an incurable disease, the past decade has witnessed significant improvement in patient outcomes. This was brought about by the development of T-cell redirection therapies such as chimeric antigen receptor (CAR) T-cells, which can leverage the natural ability of the immune system to fight myeloma cells. The approval of the B-cell maturation antigen (BCMA)-directed CAR T, idecabtagene vicleucel (ide-cel), and ciltacabtagene autoleucel (cilta-cel) has resulted in a paradigm shift in the treatment of relapsed/refractory multiple myeloma. Overall response rates ranging from 73 to 97% are currently achievable. However, the limitations of KarMMa-1 and CARTITUDE-1 studies spurred the generation of real-world data to provide some insights into the effectiveness of ide-cel and cilta-cel among patients who were excluded from clinical trials, particularly those who received prior BCMA-targeted or other T-cell redirection therapies. Despite their unprecedented clinical efficacy in heavily pretreated patients, responses to CAR T remain non-durable. Although the underlying mechanisms of resistance to these agents haven't been fully elucidated, studies have suggested that resistance patterns could be multifaceted, implicating T-cell exhaustion and tumor intrinsic mechanisms such as BCMA target loss, upregulation of gamma-secretase, and others. Herein, we provide a succinct overview of the development of CAR T-cells, manufacturing process, and associated toxicities/complications. In this review, we also recapitulate the existing literature pertaining MM CAR-T as well as emerging data from some of the ongoing clinical trials designed to mitigate the shortcomings of these agents, and improve the clinical efficacy of CAR T, especially in the relapsed/refractory setting.
Collapse
Affiliation(s)
- Issam S. Hamadeh
- Clinical Pharmacy Services, Pharmacy Department, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Reed Friend
- Plasma Cell Disorders Division, Department of Hematologic Oncology & Blood Disorders Levine Cancer Institute, Atrium Health, Charlotte, NC, United States
| | - Sham Mailankody
- Myeloma Service, Division of Hematologic Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Shebli Atrash
- Plasma Cell Disorders Division, Department of Hematologic Oncology & Blood Disorders Levine Cancer Institute, Atrium Health, Charlotte, NC, United States
| |
Collapse
|
6
|
Korst CLBM, O’Neill C, Bruins WSC, Cosovic M, Twickler I, Verkleij CPM, Le Clerre D, Themeli M, Chion-Sotinel I, Zweegman S, Galetto R, Mutis T, van de Donk NWCJ. Preclinical activity of allogeneic SLAMF7-specific CAR T-cells (UCARTCS1) in multiple myeloma. J Immunother Cancer 2024; 12:e008769. [PMID: 39060023 PMCID: PMC11284884 DOI: 10.1136/jitc-2023-008769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Autologous BCMA-specific CAR T-cell therapies have substantial activity in multiple myeloma (MM). However, due to logistical limitations and BCMAlow relapses, there is a need for alternatives. UCARTCS1 cells are 'off-the-shelf' allogeneic CAR T-cells derived from healthy donors targeting SLAMF7 (CS1), which is highly expressed in MM cells. In this study, we evaluated the preclinical activity of UCARTCS1 in MM cell lines, in bone marrow (BM) samples obtained from MM patients and in an MM mouse model. METHODS Luciferase-transduced MM cell lines were incubated with UCARTCS1 cells or control (non-transduced, SLAMF7/TCRαβ double knock-out) T-cells at different effector to target ratios for 24 hours. MM cell lysis was assessed by bioluminescence. Anti-MM activity of UCARTCS1 was also evaluated in 29 BM samples obtained from newly diagnosed patients (n=10), daratumumab-naïve relapsed/refractory patients (n=10) and daratumumab-refractory patients (n=9) in 24-hour flow cytometry-based cytotoxicity assays. Finally, UCARTCS1 activity was assessed in mouse xenograft models. RESULTS UCARTCS1 cells induced potent CAR-mediated, and dose-dependent lysis of both MM cell lines and primary MM cells. There was no difference in ex vivo activity of UCARTCS1 between heavily pretreated and newly diagnosed patients. In addition, efficacy of UCARTCS1 was not affected by SLAMF7 expression level on MM cells, proportion of tumor cells, or frequency of regulatory T-cells in BM samples obtained from MM patients. UCARTCS1 treatment eliminated SLAMF7+ non-malignant immune cells in a dose-dependent manner, however lysis of normal cells was less pronounced compared to that of MM cells. Additionally, durable anti-MM responses were observed with UCARTCS1 in an MM xenograft model. CONCLUSIONS These results demonstrate that UCARTCS1 has potent anti-MM activity against MM cell lines and primary MM cells, as well as in an MM xenograft model and support the evaluation of UCARTCS1 in patients with advanced MM.
Collapse
Affiliation(s)
- Charlotte L B M Korst
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | - Chloe O’Neill
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | - Wassilis S C Bruins
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | - Meliha Cosovic
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | - Inoka Twickler
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | - Christie P M Verkleij
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | | | - Maria Themeli
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | | | - Sonja Zweegman
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | | | - Tuna Mutis
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Lu Q, Yang D, Li H, Niu T, Tong A. Multiple myeloma: signaling pathways and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:25. [PMID: 38961036 PMCID: PMC11222366 DOI: 10.1186/s43556-024-00188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy of plasma cells, characterized by osteolytic bone lesions, anemia, hypercalcemia, renal failure, and the accumulation of malignant plasma cells. The pathogenesis of MM involves the interaction between MM cells and the bone marrow microenvironment through soluble cytokines and cell adhesion molecules, which activate various signaling pathways such as PI3K/AKT/mTOR, RAS/MAPK, JAK/STAT, Wnt/β-catenin, and NF-κB pathways. Aberrant activation of these pathways contributes to the proliferation, survival, migration, and drug resistance of myeloma cells, making them attractive targets for therapeutic intervention. Currently, approved drugs targeting these signaling pathways in MM are limited, with many inhibitors and inducers still in preclinical or clinical research stages. Therapeutic options for MM include non-targeted drugs like alkylating agents, corticosteroids, immunomodulatory drugs, proteasome inhibitors, and histone deacetylase inhibitors. Additionally, targeted drugs such as monoclonal antibodies, chimeric antigen receptor T cells, bispecific T-cell engagers, and bispecific antibodies are being used in MM treatment. Despite significant advancements in MM treatment, the disease remains incurable, emphasizing the need for the development of novel or combined targeted therapies based on emerging theoretical knowledge, technologies, and platforms. In this review, we highlight the key role of signaling pathways in the malignant progression and treatment of MM, exploring advances in targeted therapy and potential treatments to offer further insights for improving MM management and outcomes.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hexian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
8
|
Xiao L, Zhang L, Guo C, Xin Q, Gu X, Jiang C, Wu J. "Find Me" and "Eat Me" signals: tools to drive phagocytic processes for modulating antitumor immunity. Cancer Commun (Lond) 2024; 44:791-832. [PMID: 38923737 PMCID: PMC11260773 DOI: 10.1002/cac2.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Phagocytosis, a vital defense mechanism, involves the recognition and elimination of foreign substances by cells. Phagocytes, such as neutrophils and macrophages, rapidly respond to invaders; macrophages are especially important in later stages of the immune response. They detect "find me" signals to locate apoptotic cells and migrate toward them. Apoptotic cells then send "eat me" signals that are recognized by phagocytes via specific receptors. "Find me" and "eat me" signals can be strategically harnessed to modulate antitumor immunity in support of cancer therapy. These signals, such as calreticulin and phosphatidylserine, mediate potent pro-phagocytic effects, thereby promoting the engulfment of dying cells or their remnants by macrophages, neutrophils, and dendritic cells and inducing tumor cell death. This review summarizes the phagocytic "find me" and "eat me" signals, including their concepts, signaling mechanisms, involved ligands, and functions. Furthermore, we delineate the relationships between "find me" and "eat me" signaling molecules and tumors, especially the roles of these molecules in tumor initiation, progression, diagnosis, and patient prognosis. The interplay of these signals with tumor biology is elucidated, and specific approaches to modulate "find me" and "eat me" signals and enhance antitumor immunity are explored. Additionally, novel therapeutic strategies that combine "find me" and "eat me" signals to better bridge innate and adaptive immunity in the treatment of cancer patients are discussed.
Collapse
Affiliation(s)
- Lingjun Xiao
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Louqian Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Ciliang Guo
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| |
Collapse
|
9
|
Mishra R, Thunuguntla P, Perkin A, Duraiyan D, Bagwill K, Gonzales S, Brizuela V, Daly S, Chang YJ, Abebe M, Rajana Y, Wichmann K, Bolick C, King J, Fiala M, Fortier J, Jayasinghe R, Schroeder M, Ding L, Vij R, Silva-Fisher J. LINC01432 binds to CELF2 in newly diagnosed multiple myeloma promoting short progression-free survival to standard therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600975. [PMID: 38979159 PMCID: PMC11230414 DOI: 10.1101/2024.06.27.600975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Multiple Myeloma (MM) is a highly prevalent and incurable form of cancer that arises from malignant plasma cells, with over 35,000 new cases diagnosed annually in the United States. While there are a growing number of approved therapies, MM remains incurable and nearly all patients will relapse and exhaust all available treatment options. Mechanisms for disease progression are unclear and in particular, little is known regarding the role of long non-coding RNAs (lncRNA) in mediating disease progression and response to treatment. In this study, we used transcriptome sequencing to compare newly diagnosed MM patients who had short progression-free survival (PFS) to standard first-line treatment (PFS < 24 months) to patients who had prolonged PFS (PFS > 24 months). We identified 157 differentially upregulated lncRNAs with short PFS and focused our efforts on characterizing the most upregulated lncRNA, LINC01432. We investigated LINC01432 overexpression and CRISPR/Cas9 knockdown in MM cell lines to show that LINC01432 overexpression significantly increases cell viability and reduces apoptosis, while knockdown significantly reduces viability and increases apoptosis, supporting the clinical relevance of this lncRNA. Next, we used individual-nucleotide resolution cross-linking immunoprecipitation with RT-qPCR to show that LINC01432 directly interacts with the RNA binding protein, CELF2. Lastly, we showed that LINC01432-targeted locked nucleic acid antisense oligonucleotides reduce viability and increases apoptosis. In summary, this fundamental study identified lncRNAs associated with short PFS to standard NDMM treatment and further characterized LINC01432, which inhibits apoptosis.
Collapse
|
10
|
Lin CHT, Tariq MJ, Ullah F, Sannareddy A, Khalid F, Abbas H, Bader A, Samaras C, Valent J, Khouri J, Anwer F, Raza S, Dima D. Current Novel Targeted Therapeutic Strategies in Multiple Myeloma. Int J Mol Sci 2024; 25:6192. [PMID: 38892379 PMCID: PMC11172591 DOI: 10.3390/ijms25116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy caused by the clonal expansion of immunoglobulin-producing plasma cells in the bone marrow and/or extramedullary sites. Common manifestations of MM include anemia, renal dysfunction, infection, bone pain, hypercalcemia, and fatigue. Despite numerous recent advancements in the MM treatment paradigm, current therapies demonstrate limited long-term effectiveness and eventual disease relapse remains exceedingly common. Myeloma cells often develop drug resistance through clonal evolution and alterations of cellular signaling pathways. Therefore, continued research of new targets in MM is crucial to circumvent cumulative drug resistance, overcome treatment-limiting toxicities, and improve outcomes in this incurable disease. This article provides a comprehensive overview of the landscape of novel treatments and emerging therapies for MM grouped by molecular target. Molecular targets outlined include BCMA, GPRC5D, FcRH5, CD38, SLAMF7, BCL-2, kinesin spindle protein, protein disulfide isomerase 1, peptidylprolyl isomerase A, Sec61 translocon, and cyclin-dependent kinase 6. Immunomodulatory drugs, NK cell therapy, and proteolysis-targeting chimera are described as well.
Collapse
Affiliation(s)
- Cindy Hsin-Ti Lin
- Department of Internal Medicine, Case Western Reserve University, MetroHealth Campus, Cleveland, OH 44109, USA
| | - Muhammad Junaid Tariq
- Department of Hematology-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Fauzia Ullah
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195, USA; (F.U.); (C.S.); (J.V.); (J.K.); (F.A.); (S.R.); (D.D.)
| | | | - Farhan Khalid
- Department of Internal Medicine, Monmouth Medical Center, Long Branch, NJ 07740, USA;
| | - Hasan Abbas
- Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Abbas Bader
- School of Medicine, University of Missouri–Kansas City, Kansas City, MO 64110, USA;
| | - Christy Samaras
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195, USA; (F.U.); (C.S.); (J.V.); (J.K.); (F.A.); (S.R.); (D.D.)
| | - Jason Valent
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195, USA; (F.U.); (C.S.); (J.V.); (J.K.); (F.A.); (S.R.); (D.D.)
| | - Jack Khouri
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195, USA; (F.U.); (C.S.); (J.V.); (J.K.); (F.A.); (S.R.); (D.D.)
| | - Faiz Anwer
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195, USA; (F.U.); (C.S.); (J.V.); (J.K.); (F.A.); (S.R.); (D.D.)
| | - Shahzad Raza
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195, USA; (F.U.); (C.S.); (J.V.); (J.K.); (F.A.); (S.R.); (D.D.)
| | - Danai Dima
- Department of Hematology-Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH 44195, USA; (F.U.); (C.S.); (J.V.); (J.K.); (F.A.); (S.R.); (D.D.)
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
11
|
Lu Q, Li H, Wu Z, Zhu Z, Zhang Z, Yang D, Tong A. BCMA/CD47-directed universal CAR-T cells exhibit excellent antitumor activity in multiple myeloma. J Nanobiotechnology 2024; 22:279. [PMID: 38783333 PMCID: PMC11112799 DOI: 10.1186/s12951-024-02512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND BCMA-directed autologous chimeric antigen receptor T (CAR-T) cells have shown excellent clinical efficacy in relapsed or refractory multiple myeloma (RRMM), however, the current preparation process for autologous CAR-T cells is complicated and costly. Moreover, the upregulation of CD47 expression has been observed in multiple myeloma, and anti-CD47 antibodies have shown remarkable results in clinical trials. Therefore, we focus on the development of BCMA/CD47-directed universal CAR-T (UCAR-T) cells to improve these limitations. METHODS In this study, we employed phage display technology to screen nanobodies against BCMA and CD47 protein, and determined the characterization of nanobodies. Furthermore, we simultaneously disrupted the endogenous TRAC and B2M genes of T cells using CRISPR/Cas9 system to generate TCR and HLA double knock-out T cells, and developed BCMA/CD47-directed UCAR-T cells and detected the antitumor activity in vitro and in vivo. RESULTS We obtained fourteen and one specific nanobodies against BCMA and CD47 protein from the immunized VHH library, respectively. BCMA/CD47-directed UCAR-T cells exhibited superior CAR expression (89.13-98.03%), and effectively killing primary human MM cells and MM cell lines. BCMA/CD47-directed UCAR-T cells demonstrated excellent antitumor activity against MM and prolonged the survival of tumor-engrafted NCG mice in vivo. CONCLUSIONS This work demonstrated that BCMA/CD47-directed UCAR-T cells exhibited potent antitumor activity against MM in vitro and in vivo, which provides a potential strategy for the development of a novel "off-the-shelf" cellular immunotherapies for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hexian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiguo Wu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhixiong Zhu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongliang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, China
| | - Aiping Tong
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
12
|
Miller K, Hashmi H, Rajeeve S. Beyond BCMA: the next wave of CAR T cell therapy in multiple myeloma. Front Oncol 2024; 14:1398902. [PMID: 38800372 PMCID: PMC11116580 DOI: 10.3389/fonc.2024.1398902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment landscape of relapsed/refractory multiple myeloma. The current Food and Drug Administration approved CAR T cell therapies idecabtagene vicleucel and ciltacabtagene autoleucel both target B cell maturation antigen (BCMA), which is expressed on the surface of malignant plasma cells. Despite deep initial responses in most patients, relapse after anti-BCMA CAR T cell therapy is common. Investigations of acquired resistance to anti-BCMA CAR T cell therapy are underway. Meanwhile, other viable antigenic targets are being pursued, including G protein-coupled receptor class C group 5 member D (GPRC5D), signaling lymphocytic activation molecule family member 7 (SLAMF7), and CD38, among others. CAR T cells targeting these antigens, alone or in combination with anti-BCMA approaches, appear to be highly promising as they move from preclinical studies to early phase clinical trials. This review summarizes the current data with novel CAR T cell targets beyond BCMA that have the potential to enter the treatment landscape in the near future.
Collapse
Affiliation(s)
| | | | - Sridevi Rajeeve
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
13
|
Li C, Wang D, Xu Y, Mao X, Que Y, Li Z, Yu Q, Xu M, An N, Long X, Li C. CS1 Expression Pattern in NK Cells and Correlated Factors in Plasma Cell dyscrasias: Implications for Elotuzumab Therapy and CAR-T Efficacy. J Cancer 2024; 15:3065-3075. [PMID: 38706917 PMCID: PMC11064268 DOI: 10.7150/jca.93637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Treatment with elotuzumab alone has no discernible antitumor effect and progress in chimeric antigen receptor T cells (CAR-T) therapy targeting CS1 is relatively slow. A retrospective analysis was performed on 236 patients with multiple myeloma (MM) and 30 patients with other plasma cell dyscrasias (PCDs). CS1 expression in NK cells, lymphocytes, and monoclonal plasma cells was assessed using multiparameter flow cytometry. Furthermore, new explorations were undertaken regarding the antitumor applications of elotuzumab. Patients with MM had significantly higher CS1 expression levels in plasma cells than other patients with PCDs, with no significant differences between lymphocytes and NK cells. In both patients with MM and other PCDs, CS1 expression was significantly higher in plasma cells than in NK cells and lymphocytes. Univariate and multivariate analyses revealed a significant correlation between CS1 expression in plasma (r = 0.60; P < 0.001) and NK (r = 0.79; P < 0.001) cells. Factors such as cytogenetic abnormalities, disease progression, and survival were not associated with CS1 expression in NK cells. Moreover, this study showed that elotuzumab strongly increases the cytotoxicity of NK cells against non-plasma and plasma tumor cells independent of their CS1 expression level. This underscores the potential of elotuzumab in combination with NK cells as an effective therapeutic strategy against a broad spectrum of tumor types.
Collapse
Affiliation(s)
- Chunhui Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Di Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Yanjie Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yimei Que
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhe Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qiuxia Yu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Menglei Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ning An
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaolu Long
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chunrui Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| |
Collapse
|
14
|
Yuan F, Wei J, Cheng Y, Wang F, Gu M, Li Y, Zhao X, Sun H, Ban R, Zhou J, Xia Z. SLAMF7 Promotes Foam Cell Formation of Macrophage by Suppressing NR4A1 Expression During Carotid Atherosclerosis. Inflammation 2024; 47:530-542. [PMID: 37971565 DOI: 10.1007/s10753-023-01926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Macrophage-derived lipid-laden foam cells from the subendothelium play a crucial role in the initiation and progression of atherosclerosis. However, the molecule mechanism that regulates the formation of foam cells is not completely understood. Here, we found that SLAMF7 was upregulated in mice bone marrow-derived macrophages and RAW264.7 cells stimulated with oxidized low-density lipoprotein (ox-LDL). SLAMF7 promoted ox-LDL-mediated macrophage lipid accumulation and M1-type polarization. SLAMF7 deficiency reduced serum lipid levels and improved the lesions area of carotid plaque and aortic arch in high-fat diet-fed ApoE-/- mice. In response to ox-LDL, SLAMF7 downregulated NR4A1 and upregulated RUNX3 through transcriptome sequencing analysis. Overexpression NR4A1 reversed SLAMF7-induced lipid uptake and M1 polarization via inhibiting RUNX3 expression. Furthermore, RUNX3 enhanced foam cell formation and M1-type polarization. Taken together, the study suggested that SLAMF7 play contributing roles in the pro-atherogenic effects by regulating NR4A1-RUNX3.
Collapse
Affiliation(s)
- Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
- Department of Neurology, Liaocheng People's Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Jianmei Wei
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Yan Cheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Feifei Wang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Mingliang Gu
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Yanhui Li
- Department of Rehabilitation Medicine, Liaocheng Chinese Medicine Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Xin Zhao
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, 252000, People's Republic of China
| | - Hao Sun
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, 252000, People's Republic of China
| | - Ru Ban
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, 252000, People's Republic of China
| | - Jing Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China.
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, 252000, People's Republic of China.
| |
Collapse
|
15
|
Hasanali ZS, Razzo B, Susanibar-Adaniya SP, Garfall AL, Stadtmauer EA, Cohen AD. Chimeric Antigen Receptor T Cells in the Treatment of Multiple Myeloma. Hematol Oncol Clin North Am 2024; 38:383-406. [PMID: 38158242 PMCID: PMC11000527 DOI: 10.1016/j.hoc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Chimeric antigen receptor T cells (CARTs) represent another powerful way to leverage the immune system to fight malignancy. Indeed, in multiple myeloma, the high response rate and duration of response to B cell maturation antigen-targeted therapies in later lines of disease has led to 2 Food and Drug Administration (FDA) drug approvals and opened the door to the development of this drug class. This review aims to provide an update on the 2 FDA-approved products, summarize the data for the most promising next-generation multiple myeloma CARTs, and outline current challenges in the field and potential solutions.
Collapse
Affiliation(s)
- Zainul S Hasanali
- Division of Hematology/Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, 3400 Civic Center Boulevard, 12th Floor South Tower, Philadelphia, PA 19104, USA
| | - Beatrice Razzo
- Division of Hematology/Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, 3400 Civic Center Boulevard, 12th Floor South Tower, Philadelphia, PA 19104, USA
| | - Sandra P Susanibar-Adaniya
- Division of Hematology/Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, 3400 Civic Center Boulevard, 12th Floor South Tower, Philadelphia, PA 19104, USA
| | - Alfred L Garfall
- Division of Hematology/Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, 3400 Civic Center Boulevard, 12th Floor South Tower, Philadelphia, PA 19104, USA
| | - Edward A Stadtmauer
- Division of Hematology/Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, 3400 Civic Center Boulevard, 12th Floor South Tower, Philadelphia, PA 19104, USA
| | - Adam D Cohen
- Division of Hematology/Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, 3400 Civic Center Boulevard, 12th Floor South Tower, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Yu Z, Li H, Lu Q, Zhang Z, Tong A, Niu T. Fc receptor-like 5 (FCRL5)-directed CAR-T cells exhibit antitumor activity against multiple myeloma. Signal Transduct Target Ther 2024; 9:16. [PMID: 38212320 PMCID: PMC10784595 DOI: 10.1038/s41392-023-01702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple myeloma (MM) remains a challenging hematologic malignancy despite advancements in chimeric antigen receptor T-cell (CAR-T) therapy. Current targets of CAR-T cells used in MM immunotherapy have limitations, with a subset of patients experiencing antigen loss resulting in relapse. Therefore, novel targets for enhancing CAR-T cell therapy in MM remain needed. Fc receptor-like 5 (FCRL5) is a protein marker with considerably upregulated expression in MM and has emerged as a promising target for CAR-T cell therapeutic interventions, offering an alternative treatment for MM. To further explore this option, we designed FCRL5-directed CAR-T cells and assessed their cytotoxicity in vitro using a co-culture system and in vivo using MM cell-derived xenograft models, specifically focusing on MM with gain of chromosome 1q21. Given the challenges in CAR-T therapies arising from limited T cell persistence, our approach incorporates interleukin-15 (IL-15), which enhances the functionality of central memory T (TCM) cells, into the design of FCRL5-directed CAR-T cells, to improve cytotoxicity and reduce T-cell dysfunction, thereby promoting greater CAR-T cell survival and efficacy. Both in vitro and xenograft models displayed that FCRL5 CAR-T cells incorporating IL-15 exhibited potent antitumor efficacy, effectively inhibiting the proliferation of MM cells and leading to remarkable tumor suppression. Our results highlight the capacity of FCRL5-specific CAR-T cells with the integration of IL-15 to improve the therapeutic potency, suggesting a potential novel immunotherapeutic strategy for MM treatment.
Collapse
Affiliation(s)
- Zhengyu Yu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hexian Li
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qizhong Lu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongliang Zhang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Aiping Tong
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Ding H, Wu Y. CAR-T Therapy in Relapsed Refractory Multiple Myeloma. Curr Med Chem 2024; 31:4362-4382. [PMID: 37779413 PMCID: PMC11340289 DOI: 10.2174/0109298673268932230920063933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023]
Abstract
Multiple myeloma is a plasma cell neoplasm. The emergence of proteasome inhibitors, immunomodulatory drugs, and anti-CD38 monoclonal antibodies has improved the prognosis of multiple myeloma patients. However, some patients are still insensitive to conventional therapy or frequently relapse after remission. Chemotherapy based on proteasome inhibitors or immunomodulatory drugs is ineffective in controlling the progression of relapsed refractory multiple myeloma. No consensus has been reached on treating relapsed refractory multiple myeloma to date. Recently chimeric antigen receptor T cells therapy has shown promising results that could achieve rapid remissions of patients and improve their prognoses. Additionally, most patients in chimeric antigen receptor T cell clinical trials were triple-refractory multiple myeloma patients, indicating that chimeric antigen receptor T cell immunotherapy could overcome drug resistance to new drugs. Since single immunotherapies are prone to acquired resistance, combination immunotherapies based on emerging immunotherapies may solve this issue. Achieving complete remission and minimal residual disease negative status as soon as possible is beneficial to patients. This paper reviewed the main chimeric antigen receptor T cell products in relapsed refractory multiple myeloma, and it explained the drug resistance mechanism and improvement methods of chimeric antigen receptor T cells therapy. This review summarized the best beneficiaries of chimeric antigen receptor T cell therapy and the salvage treatment of disease recurrence after chimeric antigen receptor T cell therapy, providing some ideas for the clinical application of chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Hong Ding
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University, China
| |
Collapse
|
18
|
Li C, Xu J, Luo W, Liao D, Xie W, Wei Q, Zhang Y, Wang X, Wu Z, Kang Y, Zheng J, Xiong W, Deng J, Hu Y, Mei H. Bispecific CS1-BCMA CAR-T cells are clinically active in relapsed or refractory multiple myeloma. Leukemia 2024; 38:149-159. [PMID: 37848634 PMCID: PMC10776387 DOI: 10.1038/s41375-023-02065-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Multiple myeloma (MM) bears heterogeneous cells that poses a challenge for single-target immunotherapies. Here we constructed bispecific CS1-BCMA CAR-T cells aiming to augment BCMA targeting with CS1. Sixteen patients with relapsed or refractory (RR) MM received CS1-BCMA CAR-T infusion. Six patients (38%) had cytokine release syndrome, which was of grade 1-2 in 31%. No neurological toxicities were observed. The most common severe adverse events were hematological, including leukopenia (100%), neutropenia (94%), lymphopenia (100%) and thrombocytopenia (31%). Three patients with solitary extramedullary disease (sEMD) did not respond. At a median follow-up of 246 days, 13 patients (81%) had an overall response and attained minimal residual disease-negativity, and six (38%) reached a stringent complete response (sCR). Among the 13 responders, 1-year overall survival and progression-free survival were 72.73% and 56.26%, respectively. Four patients maintained sCR with a median duration of 17 months. Four patients experienced BCMA+ and CS1+ relapse or progression. One patient responded after anti-BCMA CAR-T treatment failure. Lenalidomide maintenance after CAR-T infusion and the resistance mechanism of sEMD were preliminarily explored in three patients. CAR-T cells persisted at a median of 406 days. Soluble BCMA could serve as an ideal biomarker for efficacy monitoring. CS1-BCMA CAR-T cells were clinically active with good safety profiles in patients with RRMM. Clinical trial registration: This study was registered on ClinicalTrials.gov, number NCT04662099.
Collapse
Affiliation(s)
- Chenggong Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Jia Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Wenjing Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Danying Liao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Wei Xie
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Qiuzhe Wei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Yinqiang Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Xindi Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Zhuolin Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Yun Kang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Jin'e Zheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Xiong
- Wuhan Sian Medical Technology Co., Ltd Wuhan, Wuhan, 430022, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
| |
Collapse
|
19
|
Vu SH, Pham HH, Pham TTP, Le TT, Vo MC, Jung SH, Lee JJ, Nguyen XH. Adoptive NK Cell Therapy - a Beacon of Hope in Multiple Myeloma Treatment. Front Oncol 2023; 13:1275076. [PMID: 38023191 PMCID: PMC10656693 DOI: 10.3389/fonc.2023.1275076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Major advances in the treatment of multiple myeloma (MM) have been achieved by effective new agents such as proteasome inhibitors, immunomodulatory drugs, or monoclonal antibodies. Despite significant progress, MM remains still incurable and, recently, cellular immunotherapy has emerged as a promising treatment for relapsed/refractory MM. The emergence of chimeric antigen receptor (CAR) technology has transformed immunotherapy by enhancing the antitumor functions of T cells and natural killer (NK) cells, leading to effective control of hematologic malignancies. Recent advancements in gene delivery to NK cells have paved the way for the clinical application of CAR-NK cell therapy. CAR-NK cell therapy strategies have demonstrated safety, tolerability, and substantial efficacy in treating B cell malignancies in various clinical settings. However, their effectiveness in eliminating MM remains to be established. This review explores multiple approaches to enhance NK cell cytotoxicity, persistence, expansion, and manufacturing processes, and highlights the challenges and opportunities associated with CAR-NK cell therapy against MM. By shedding light on these aspects, this review aims to provide valuable insights into the potential of CAR-NK cell therapy as a promising approach for improving the treatment outcomes of MM patients.
Collapse
Affiliation(s)
- Son Hai Vu
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Ha Hong Pham
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Thao Thi Phuong Pham
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Thanh Thien Le
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Xuan-Hung Nguyen
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| |
Collapse
|
20
|
O’Neal J, Cooper ML, Ritchey JK, Gladney S, Niswonger J, González LS, Street E, Haas GJ, Carter A, Amayta PN, Gao F, Lee BH, Choi D, Berrien-Elliott M, Zhou A, Fehniger TA, Rettig MP, DiPersio JF. Anti-myeloma efficacy of CAR-iNKT is enhanced with a long-acting IL-7, rhIL-7-hyFc. Blood Adv 2023; 7:6009-6022. [PMID: 37399471 PMCID: PMC10582278 DOI: 10.1182/bloodadvances.2023010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
Multiple myeloma (MM), a malignancy of mature plasma cells, remains incurable. B-cell maturation antigen (BCMA) is the lead protein target for chimeric antigen receptor (CAR) therapy because of its high expression in most MM, with limited expression in other cell types, resulting in favorable on-target, off tumor toxicity. The response rate to autologous BCMA CAR-T therapy is high; however, it is not curative and is associated with risks of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome. Outcomes in patients treated with BCMA CAR-T cells (CAR-Ts) may improve with allogeneic CAR T-cell therapy, which offer higher cell fitness and reduced time to treatment. However, to prevent the risk of graft-versus-host disease (GVHD), allogenic BCMA CAR-Ts require genetic deletion of the T-cell receptor (TCR), which has potential for unexpected functional or phenotype changes. Invariant natural killer T cells (iNKTs) have an invariant TCR that does not cause GVHD and, as a result, can be used in an allogeneic setting without the need for TCR gene editing. We demonstrate significant anti-myeloma activity of BCMA CAR-iNKTs in a xenograft mouse model of myeloma. We found that a long-acting interleukin-7 (IL-7), rhIL-7-hyFc, significantly prolonged survival and reduced tumor burden in BCMA CAR-iNKT-treated mice in both primary and re-challenge settings. Furthermore, in CRS in vitro assays, CAR-iNKTs induced less IL-6 than CAR-Ts, suggesting a reduced likelihood of CAR-iNKT therapy to induce CRS in patients. These data suggest that BCMA CAR-iNKTs are potentially a safer, effective alternative to BCMA CAR-Ts and that BCMA CAR-iNKT efficacy is further potentiated with rhIL-7-hyFc.
Collapse
Affiliation(s)
- Julie O’Neal
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO
| | - Matthew L. Cooper
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Julie K. Ritchey
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Susan Gladney
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Jessica Niswonger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - L. Sofía González
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Emily Street
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Gabriel J. Haas
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Alun Carter
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Parmeshwar N. Amayta
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | | | | | - Melissa Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO
| | - Alice Zhou
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO
| | - Todd A. Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO
| | - Mike P. Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
21
|
Wang JY, Wang L. CAR-T cell therapy: Where are we now, and where are we heading? BLOOD SCIENCE 2023; 5:237-248. [PMID: 37941917 PMCID: PMC10629745 DOI: 10.1097/bs9.0000000000000173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapies have exhibited remarkable efficacy in the treatment of hematologic malignancies, with 9 CAR-T-cell products currently available. Furthermore, CAR-T cells have shown promising potential for expanding their therapeutic applications to diverse areas, including solid tumors, myocardial fibrosis, and autoimmune and infectious diseases. Despite these advancements, significant challenges pertaining to treatment-related toxic reactions and relapses persist. Consequently, current research efforts are focused on addressing these issues to enhance the safety and efficacy of CAR-T cells and reduce the relapse rate. This article provides a comprehensive overview of the present state of CAR-T-cell therapies, including their achievements, existing challenges, and potential future developments.
Collapse
Affiliation(s)
- Jia-Yi Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
22
|
Chu E, Wu J, Kang SS, Kang Y. SLAMF7 as a Promising Immunotherapeutic Target in Multiple Myeloma Treatments. Curr Oncol 2023; 30:7891-7903. [PMID: 37754488 PMCID: PMC10529721 DOI: 10.3390/curroncol30090573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Multiple myeloma (MM) is a common hematological malignancy that has fostered several new therapeutic approaches to combat newly diagnosed or relapsed MM. While the field has advanced over the past 2 decades, the majority of patients will develop resistance to these treatments, causing the need for new therapeutic targets. SLAMF7 is an attractive therapeutic target in multiple myeloma, and a monoclonal antibody that targets SLAMF7 has shown consistent beneficial outcomes in clinical trials to date. In this review, we will focus on the structure and regulation of SLAMF7 and its mechanism of action. The most recent clinical trials will be reviewed to further understand the clinical implications and improve the prognosis of MM. Furthermore, the efficacy of anti-SLAMF7 monoclonal antibodies combined with standard therapies and possible resistance mechanisms will be discussed. This review aimed to provide a detailed summary of the role of SLAMF7 in the pathogenesis of patients with MM and the rationale for further investigation into SLAMF7-mediated molecular pathways associated with MM development.
Collapse
Affiliation(s)
- Emily Chu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (E.C.); (J.W.)
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA
| | - Jian Wu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (E.C.); (J.W.)
| | - Stacey S. Kang
- College of Arts and Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (E.C.); (J.W.)
| |
Collapse
|
23
|
Awuah D, Minnix M, Caserta E, Tandoh T, Adhikarla V, Poku E, Rockne R, Pichiorri F, Shively JE, Wang X. Sequential CAR T cell and targeted alpha immunotherapy in disseminated multiple myeloma. Cancer Immunol Immunother 2023:10.1007/s00262-023-03461-z. [PMID: 37209218 PMCID: PMC10361855 DOI: 10.1007/s00262-023-03461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023]
Abstract
Multiple myeloma (MM) is still an incurable disorder despite improved antibody and cellular therapies against different MM antigens. Single targeted antigens have so far been ineffective against MM with most patients relapsing after initial response. Hence, sequential immunotherapies directed at different targets are expected to perform better than monotherapy alone. Here, we optimized and established in preclinical studies the therapeutic rationale of using targeted alpha therapy (TAT) directed against CD38 antigen (225Ac-DOTA-daratumumab) with CAR T cell therapy directed at CS1 antigen in a systemic MM model. The sequential therapies compared CAR T therapy followed by TAT to TAT followed by CAR T therapy. CAR T cell monotherapy increased median survival from 49 days (d) in untreated controls to 71d with a modest improvement to 89d for 3.7 kBq of TAT given 14d later. When CAR T was followed by 7.4 kBq of TAT 29d later, sequential therapy increased median survival from 47d in untreated controls to 106d, compared to 68d for CAR T monotherapy. When CAR T therapy was followed by untargeted alpha immunotherapy using 7.4 kBq of 225Ac-DOTA-trastuzumab (anti-HER2) antibody 29d later, there was only a slight improvement in response over CAR T monotherapy demonstrating the role of tumor targeting. TAT (7.4 kBq) followed by CAR T therapy was also effective when CAR T therapy was delayed for 21d vs 14d or 28d post TAT, highlighting the importance of timing sequential therapies. Sequential targeted therapies using CS1 CAR T or 225Ac-DOTA-CD38 TAT in either order shows promise over monotherapies alone.
Collapse
Affiliation(s)
- Dennis Awuah
- Department of Hematology, City of Hope Medical Center, Beckman Research Institute, Duarte, CA, 91010, USA
| | - Megan Minnix
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Enrico Caserta
- Department of Hematologic Malignancies Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Theophilus Tandoh
- Department of Hematologic Malignancies Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Vikram Adhikarla
- Division of Mathematical Oncology and Computational Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Erasmus Poku
- City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Russell Rockne
- Division of Mathematical Oncology and Computational Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA.
| | - John E Shively
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA.
| | - Xiuli Wang
- Department of Hematology, City of Hope Medical Center, Beckman Research Institute, Duarte, CA, 91010, USA.
| |
Collapse
|
24
|
Farhangnia P, Ghomi SM, Mollazadehghomi S, Nickho H, Akbarpour M, Delbandi AA. SLAM-family receptors come of age as a potential molecular target in cancer immunotherapy. Front Immunol 2023; 14:1174138. [PMID: 37251372 PMCID: PMC10213746 DOI: 10.3389/fimmu.2023.1174138] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) family receptors were discovered in immune cells for the first time. The SLAM-family receptors are a significant player in cytotoxicity, humoral immune responses, autoimmune diseases, lymphocyte development, cell survival, and cell adhesion. There is growing evidence that SLAM-family receptors have been involved in cancer progression and heralded as a novel immune checkpoint on T cells. Previous studies have reported the role of SLAMs in tumor immunity in various cancers, including chronic lymphocytic leukemia, lymphoma, multiple myeloma, acute myeloid leukemia, hepatocellular carcinoma, head and neck squamous cell carcinoma, pancreas, lung, and melanoma. Evidence has deciphered that the SLAM-family receptors may be targeted for cancer immunotherapy. However, our understanding in this regard is not complete. This review will discuss the role of SLAM-family receptors in cancer immunotherapy. It will also provide an update on recent advances in SLAM-based targeted immunotherapies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shamim Mollazadeh Ghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shabnam Mollazadehghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Duane C, O'Dwyer M, Glavey S. Adoptive Immunotherapy and High-Risk Myeloma. Cancers (Basel) 2023; 15:cancers15092633. [PMID: 37174099 PMCID: PMC10177276 DOI: 10.3390/cancers15092633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Despite significant improvements in the treatment of multiple myeloma (MM), it remains mostly incurable, highlighting a need for new therapeutic approaches. Patients with high-risk disease characteristics have a particularly poor prognosis and limited response to current frontline therapies. The recent development of immunotherapeutic strategies, particularly T cell-based agents have changed the treatment landscape for patients with relapsed and refractory disease. Adoptive cellular therapies include chimeric antigen receptor (CAR) T cells, which have emerged as a highly promising therapy, particularly for patients with refractory disease. Other adoptive cellular approaches currently in trials include T cell receptor-based therapy (TCR), and the expansion of CAR technology to natural killer (NK) cells. In this review we explore the emerging therapeutic field of adoptive cellular therapy for MM, with a particular focus on the clinical impact of these therapies for patients with high-risk myeloma.
Collapse
Affiliation(s)
- Catherine Duane
- Department of Haematology, Beaumont Hospital, D09 V2N0 Dublin, Ireland
| | - Michael O'Dwyer
- Department of Haematology, University of Galway, H91 TK33 Galway, Ireland
| | - Siobhan Glavey
- Department of Haematology, Beaumont Hospital, D09 V2N0 Dublin, Ireland
- Department of Pathology, Royal College of Surgeons in Ireland, D09 V2N0 Dublin, Ireland
| |
Collapse
|
26
|
Zhang X, Zhang H, Lan H, Wu J, Xiao Y. CAR-T cell therapy in multiple myeloma: Current limitations and potential strategies. Front Immunol 2023; 14:1101495. [PMID: 36891310 PMCID: PMC9986336 DOI: 10.3389/fimmu.2023.1101495] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Over the last decade, the survival outcome of patients with multiple myeloma (MM) has been substantially improved with the emergence of novel therapeutic agents, such as proteasome inhibitors, immunomodulatory drugs, anti-CD38 monoclonal antibodies, selective inhibitors of nuclear export (SINEs), and T cell redirecting bispecific antibodies. However, MM remains an incurable neoplastic plasma cell disorder, and almost all MM patients inevitably relapse due to drug resistance. Encouragingly, B cell maturation antigen (BCMA)-targeted chimeric antigen receptor T (CAR-T) cell therapy has achieved impressive success in the treatment of relapsed/refractory (R/R) MM and brought new hopes for R/R MM patients in recent years. Due to antigen escape, the poor persistence of CAR-T cells, and the complicated tumor microenvironment, a significant population of MM patients still experience relapse after anti-BCMA CAR-T cell therapy. Additionally, the high manufacturing costs and time-consuming manufacturing processes caused by the personalized manufacturing procedures also limit the broad clinical application of CAR-T cell therapy. Therefore, in this review, we discuss current limitations of CAR-T cell therapy in MM, such as the resistance to CAR-T cell therapy and the limited accessibility of CAR-T cell therapy, and summarize some optimization strategies to overcome these challenges, including optimizing CAR structure, such as utilizing dual-targeted/multi-targeted CAR-T cells and armored CAR-T cells, optimizing manufacturing processes, combing CAR-T cell therapy with existing or emerging therapeutic approaches, and performing subsequent anti-myeloma therapy after CAR-T cell therapy as salvage therapy or maintenance/consolidation therapy.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Hematology, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Zhang
- School of Medicine, Jishou University, Jishou, China
| | - Huixuan Lan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jinming Wu
- Department of Hematology, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Xiao
- Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, China
| |
Collapse
|
27
|
Banerjee R, Lee SS, Cowan AJ. Innovation in BCMA CAR-T therapy: Building beyond the Model T. Front Oncol 2022; 12:1070353. [PMID: 36505779 PMCID: PMC9729952 DOI: 10.3389/fonc.2022.1070353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Autologous chimeric antigen receptor T-cell (CAR-T) therapies targeting B-cell maturation antigen (BCMA) have revolutionized the field of multiple myeloma in the same way that the Ford Model T revolutionized the original CAR world a century ago. However, we are only beginning to understand how to improve the efficacy and usability of these cellular therapies. In this review, we explore three automotive analogies for innovation with BCMA CAR-T therapies: stronger engines, better mileage, and hassle-free delivery. Firstly, we can build stronger engines in terms of BCMA targeting: improved antigen binding, tools to modulate antigen density, and armoring to better reach the antigen itself. Secondly, we can improve "mileage" in terms of response durability through ex vivo CAR design and in vivo immune manipulation. Thirdly, we can implement hassle-free delivery through rapid manufacturing protocols and off-the-shelf products. Just as the Model T set a benchmark for car manufacturing over 100 years ago, idecabtagene vicleucel and ciltacabtagene autoleucel have now set the starting point for BCMA CAR-T therapy with their approvals. As with any emerging technology, whether automotive or cellular, the best in innovation and optimization is yet to come.
Collapse
Affiliation(s)
- Rahul Banerjee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Sarah S. Lee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Andrew J. Cowan
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
28
|
Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, Zhang L, Yi Z, Long L, Yan L, Wang Z, Zhang N, Luo P, Zhang J, Liu Z, Ye W, Liu Z, Cheng Q. Tumor buster - where will the CAR-T cell therapy 'missile' go? Mol Cancer 2022; 21:201. [PMID: 36261831 PMCID: PMC9580202 DOI: 10.1186/s12943-022-01669-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T cell) therapy based on gene editing technology represents a significant breakthrough in personalized immunotherapy for human cancer. This strategy uses genetic modification to enable T cells to target tumor-specific antigens, attack specific cancer cells, and bypass tumor cell apoptosis avoidance mechanisms to some extent. This method has been extensively used to treat hematologic diseases, but the therapeutic effect in solid tumors is not ideal. Tumor antigen escape, treatment-related toxicity, and the immunosuppressive tumor microenvironment (TME) limit their use of it. Target selection is the most critical aspect in determining the prognosis of patients receiving this treatment. This review provides a comprehensive summary of all therapeutic targets used in the clinic or shown promising potential. We summarize CAR-T cell therapies’ clinical trials, applications, research frontiers, and limitations in treating different cancers. We also explore coping strategies when encountering sub-optimal tumor-associated antigens (TAA) or TAA loss. Moreover, the importance of CAR-T cell therapy in cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifu Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luzhe Yan
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Rendo MJ, Joseph JJ, Phan LM, DeStefano CB. CAR T-Cell Therapy for Patients with Multiple Myeloma: Current Evidence and Challenges. Blood Lymphat Cancer 2022; 12:119-136. [PMID: 36060553 PMCID: PMC9439649 DOI: 10.2147/blctt.s327016] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
Abstract
The therapeutic landscape of multiple myeloma (MM) has benefited from an emergence of novel therapies over the last decade. By inducing T-cell kill of target cancer cells, chimeric antigen receptor (CAR) T-cell therapies have improved outcomes of patients with hematologic malignancies. B-cell maturation antigen (BCMA) is the current target antigen of choice for most CAR T-cell products under investigation for MM. However, their shortcomings deal with logistical and clinical challenges, including limited availability, manufacturing times, and toxicities. This article provides an overview of recently developed and investigational CAR T-cell therapies for MM, highlighting current evidence and challenges.
Collapse
Affiliation(s)
- Matthew J Rendo
- Department of Hematology/Oncology, Brooke Army Medical Center, San Antonio, TX, USA
| | - Jacinth J Joseph
- Blood and Marrow Transplant Center, Methodist Le Bonheur Healthcare, Memphis, TN, USA
| | - Liem Minh Phan
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, CA, USA
| | - Christin B DeStefano
- Department of Hematology/Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|