1
|
Vittayawacharin P, Kongtim P, Ciurea SO. Future directions in haploidentical hematopoietic stem cell transplantation. Hematology 2024; 29:2366718. [PMID: 38889342 DOI: 10.1080/16078454.2024.2366718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Outcomes of haploidentical hematopoietic stem cell transplantation (haplo-SCT) have improved over time. Graft failure and graft-versus-host disease (GVHD), which were important complications in major human leukocyte antigen (HLA)-disparity stem cell transplantation, have significantly decreased. These improvements have led to an exponential increase in the use of haploidentical donors for transplantation, as well as in the number of publications evaluating haplo-SCT outcomes. Many studies focused on factors important in donor selection, novel conditioning regimens or GVHD prophylaxis, the impact of donor-specific anti-HLA antibodies (DSA), as well as strategies to prevent disease relapse post-transplant. DSA represents an important limitation and multimodality desensitization protocols, including plasma exchange, rituximab, intravenous immunoglobulin and donor buffy coat infusion, can contribute to the successful engraftment in patients with high DSA levels and is currently the standard therapy for highly allosensitized individuals. With regards to donor selection, younger donors are preferred due to lower risk of complications and better transplant outcomes. Moreover, recent studies also showed that younger haploidentical donors may be a better choice than older-matched unrelated donors. Improvement of disease relapse remains a top priority, and several studies have demonstrated that higher natural killer (NK) cell numbers early post-transplant are associated with improved outcomes. Prospective studies have started to assess the role of NK cell administration in decreasing post-transplant relapse. These studies suggest that the incorporation of other cell products post-transplant, including the administration of chimeric antigen receptor T-cells, should be explored in the future.
Collapse
Affiliation(s)
- Pongthep Vittayawacharin
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Piyanuch Kongtim
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA
| | - Stefan O Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
2
|
Jahan F, Penna L, Luostarinen A, Veltman L, Hongisto H, Lähteenmäki K, Müller S, Ylä-Herttuala S, Korhonen M, Vettenranta K, Laitinen A, Salmenniemi U, Kerkelä E. Automated and closed clinical-grade manufacturing protocol produces potent NK cells against neuroblastoma cells and AML blasts. Sci Rep 2024; 14:26678. [PMID: 39496674 PMCID: PMC11535237 DOI: 10.1038/s41598-024-76791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Natural killer (NK) cells are a promising allogeneic immunotherapy option due to their natural ability to kill tumor cells, and due to their apparent safety. This study describes the development of a GMP-compliant manufacturing protocol for the local production of functionally potent NK cells tailored for high-risk acute myeloid leukemia (AML) and neuroblastoma (NBL) patients. Moreover, the quality control strategy and considerations for product batch specifications in early clinical development are described. The protocol is based on the CliniMACS Prodigy platform and Natural Killer Cell Transduction (NKCT) (Miltenyi Biotec). NK cells are isolated from leukapheresis through CD3 depletion and CD56 enrichment, followed by a 12-hour activation with IL-2 and IL-15 cytokines. Three CliniMACS Prodigy processes demonstrated the feasibility and consistency of the modified NKCT process. A three-step process without expansion, however, compromised the NK cell yield. T cells were depleted effectively, indicating excellent safety of the product. Characterization of the NK cells before and after cytokine activation revealed a notable increase in the expression of activation markers, particularly CD69, consistent with enhanced functionality. Intriguingly, the NK cells exhibited increased killing efficacy against patient-derived CD33 + AML blasts and NBL cells in vitro, suggesting a potential therapeutic benefit in AML and NBL.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Neuroblastoma/pathology
- Neuroblastoma/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Interleukin-15/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Interleukin-2/metabolism
- Leukapheresis/methods
- Cytokines/metabolism
Collapse
Affiliation(s)
- Farhana Jahan
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Leena Penna
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | - Annu Luostarinen
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | - Laurens Veltman
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Heidi Hongisto
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | | | - Sabine Müller
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, Germany
| | - Seppo Ylä-Herttuala
- Translational Cancer Medicine Research Program, University of Eastern Finland, Kuopio, Finland
| | - Matti Korhonen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Kim Vettenranta
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
- University of Helsinki and the Children's Hospital, Helsinki, Finland
| | - Anita Laitinen
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | - Urpu Salmenniemi
- Stem Cell Transplantation Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Erja Kerkelä
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland.
| |
Collapse
|
3
|
Rambaldi B, Rizzuto G, Rambaldi A, Introna M. Genetically modified and unmodified cellular approaches to enhance graft versus leukemia effect, without increasing graft versus host disease: the use of allogeneic cytokine-induced killer cells. Front Immunol 2024; 15:1459175. [PMID: 39512351 PMCID: PMC11540647 DOI: 10.3389/fimmu.2024.1459175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Although allogeneic hematopoietic cell transplantation (HCT) represents a curative approach for many patients with hematological diseases, post-transplantation relapse occurs in 20-50% of cases, representing the primary cause of treatment failure and mortality. Alloreactive donor T cells are responsible for the graft versus leukemia (GvL) effect, which represents the key mechanism for the long-term curative effect of HCT. However, the downside is represented by graft versus host disease (GvHD), largely contributing to transplant-related mortality (TRM). Multiple factors play a role in regulating the delicate balance between GvL and GvHD, such as the optimization of the donor HLA and KIR match, the type of graft source, and the adaptive use of post-transplant cellular therapy. In addition to the standard donor lymphocyte infusion (DLI), several attempts were made to favor the GvL effect without increasing the GvHD risk. Selected DLI, NK DLI, activated DLI and more sophisticated genetically engineered cells can be employed. In this scenario, cytokine-induced killer (CIK) cells represent a suitable tool to boost GvL while minimizing GvHD. CIK cells are T lymphocytes activated in culture in the presence of monoclonal antibodies against CD3 (OKT3), interferon-gamma (IFN-g), and interleukin-2 (IL-2), characterized by the expression of markers typical of NK cells and T cells (CD3+, CD56+, with a prevalent CD8+ phenotype). CIK cells can mediate cytotoxicity through both MHC and non-MHC restricted recognition, which is the so-called "dual-functional capability" and display minimum alloreactivity. Allogeneic CIK cells showed a favorable rate of response, especially in the setting of minimal residual disease, with a rate of GvHD not exceeding 25%. Finally, the CIK cell platform can be adapted for chimeric antigen receptor (CAR) cell strategy, showing promising results in both preclinical and clinical settings. In this review, we describe the main immunological basis for the development of the GvL and the possible cellular therapy approaches used to boost it, with a particular focus on the use of CIK cells.
Collapse
Affiliation(s)
- Benedetta Rambaldi
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Giuliana Rizzuto
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Molecular and Translational Medicine Doctoral Program (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Alessandro Rambaldi
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Department of Oncology and Hematology, Università degli Studi di Milano, Milan, Italy
| | - Martino Introna
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
4
|
Wang K, Wang L, Wang Y, Xiao L, Wei J, Hu Y, Wang D, Huang H. Reprogramming natural killer cells for cancer therapy. Mol Ther 2024; 32:2835-2855. [PMID: 38273655 PMCID: PMC11403237 DOI: 10.1016/j.ymthe.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The last decade has seen rapid development in the field of cellular immunotherapy, particularly in regard to chimeric antigen receptor (CAR)-modified T cells. However, challenges, such as severe treatment-related toxicities and inconsistent quality of autologous products, have hindered the broader use of CAR-T cell therapy, highlighting the need to explore alternative immune cells for cancer targeting. In this regard, natural killer (NK) cells have been extensively studied in cellular immunotherapy and were found to exert cytotoxic effects without being restricted by human leukocyte antigen and have a lower risk of causing graft-versus-host disease; making them favorable for the development of readily available "off-the-shelf" products. Clinical trials utilizing unedited NK cells or reprogrammed NK cells have shown early signs of their effectiveness against tumors. However, limitations, including limited in vivo persistence and expansion potential, remained. To enhance the antitumor function of NK cells, advanced gene-editing technologies and combination approaches have been explored. In this review, we summarize current clinical trials of antitumor NK cell therapy, provide an overview of innovative strategies for reprogramming NK cells, which include improvements in persistence, cytotoxicity, trafficking and the ability to counteract the immunosuppressive tumor microenvironment, and also discuss some potential combination therapies.
Collapse
Affiliation(s)
- Kexin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Linqin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yiyun Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Lu Xiao
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jieping Wei
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - Dongrui Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Vittayawacharin P, Kongtim P, Chu Y, June CH, Bollard CM, Ciurea SO. Adoptive cellular therapy after hematopoietic stem cell transplantation. Am J Hematol 2024; 99:910-921. [PMID: 38269484 DOI: 10.1002/ajh.27204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Effective cellular therapy using CD19 chimeric antigen receptor T-cells for the treatment of advanced B-cell malignancies raises the question of whether the administration of adoptive cellular therapy (ACT) posttransplant could reduce relapse and improve survival. Moreover, several early phase clinical studies have shown the potential beneficial effects of administration of tumor-associated antigen-specific T-cells and natural killer cells posttransplant for high-risk patients, aiming to decrease relapse and possibly improve survival. In this article, we present an in-depth review of ACT after transplantation, which has the potential to significantly improve the efficacy of this procedure and revolutionize this field.
Collapse
Affiliation(s)
- Pongthep Vittayawacharin
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, California, USA
| | - Piyanuch Kongtim
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, California, USA
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital and The George Washington University, Washington, DC, USA
| | - Stefan O Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, California, USA
| |
Collapse
|
6
|
Pei XY, Huang XJ. The role of immune reconstitution in relapse after allogeneic hematopoietic stem cell transplantation. Expert Rev Clin Immunol 2024; 20:513-524. [PMID: 38599237 DOI: 10.1080/1744666x.2023.2299728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/22/2023] [Indexed: 04/12/2024]
Abstract
INTRODUCTION Leukemia relapse following stem cell transplantation remains a significant barrier to long-term remission. Timely and balanced immune recovery after transplantation is crucial for preventing leukemia relapse. AREAS COVERED After an extensive literature search of PubMed and Web of Science through October 2023, we provide an overview of the dynamics of immune reconstitution and its role in controlling leukemia relapse. We also discuss strategies to promote immune reconstitution and reduce disease recurrence following allogeneic hematopoietic stem cell transplantation. EXPERT OPINION Immune reconstitution after transplantation has substantial potential to prevent relapse and might predict disease recurrence and prognosis. High dimensional cytometry, multi-omics, and T cell repertoire analysis allow for a more comprehensive and detailed understanding of the immune system's dynamics post-transplantation, and contribute to the identification of rare immune cell subsets or potential biomarkers associated with successful immune reconstitution or increased risk of complications. Strategies to enhance the immune system, such as adoptive immunotherapy and cytokine-based therapy, have great potential for reducing leukemia relapse after transplantation. Future research directions should focus on refining patient selection for these therapies, implementing appropriate and timely treatment, investigating combination approaches to maximize therapeutic outcomes, and achieving a robust graft-versus-leukemia (GVL) effect while minimizing graft-versus-host disease (GVHD) for optimal results.
Collapse
Affiliation(s)
- Xu-Ying Pei
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Jun Huang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
7
|
Shang J, Hu S, Wang X. Targeting natural killer cells: from basic biology to clinical application in hematologic malignancies. Exp Hematol Oncol 2024; 13:21. [PMID: 38396050 PMCID: PMC10885621 DOI: 10.1186/s40164-024-00481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Natural killer (NK) cell belongs to innate lymphoid cell family that contributes to host immunosurveillance and defense without pre-immunization. Emerging studies have sought to understand the underlying mechanism behind NK cell dysfunction in tumor environments, and provide numerous novel therapeutic targets for tumor treatment. Strategies to enhance functional activities of NK cell have exhibited promising efficacy and favorable tolerance in clinical treatment of tumor patients, such as immune checkpoint blockade (ICB), chimeric antigen receptor NK (CAR-NK) cell, and bi/trispecific killer cell engager (BiKE/TriKE). Immunotherapy targeting NK cell provides remarkable advantages compared to T cell therapy, including a decreased rate of graft versus-host disease (GvHD) and neurotoxicity. Nevertheless, advanced details on how to support the maintenance and function of NK cell to obtain better response rate and longer duration still remain to be elucidated. This review systematically summarizes the profound role of NK cells in tumor development, highlights up-to-date advances and current challenges of therapy targeting NK cell in the clinical treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Juanjuan Shang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Taishan Scholars Program of Shandong Province, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
8
|
Lee KH, Lee S, Park YH, Mun YC, Choi EJ, Choi Y, Park HS, Lee JH, Lee JH, Park SY, Yoon SR, Choi I. Interleukin-15 and -21-activated, donor-derived NK cell infusion after haploidentical HCT in high-risk AML and MDS-a cohort analysis. Leukemia 2024; 38:451-454. [PMID: 38135760 DOI: 10.1038/s41375-023-02121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Kyoo-Hyung Lee
- Ewha Womans University Medical Center, Mokdong Hospital, Seoul, Republic of Korea.
| | - Sewon Lee
- Ewha Womans University Medical Center, Mokdong Hospital, Seoul, Republic of Korea
| | - Young Hoon Park
- Ewha Womans University Medical Center, Mokdong Hospital, Seoul, Republic of Korea
| | - Yeung-Chul Mun
- Ewha Womans University Medical Center, Mokdong Hospital, Seoul, Republic of Korea
| | - Eun-Ji Choi
- University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | - Yunsuk Choi
- University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | - Han-Seung Park
- University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | - Jung-Hee Lee
- University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | - Je-Hwan Lee
- University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | | | - Suk Ran Yoon
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Inpyo Choi
- Ingenium Therapeutics, Daejeon, Republic of Korea.
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Zhang X, Yang X, Ma L, Zhang Y, Wei J. Immune dysregulation and potential targeted therapy in myelodysplastic syndrome. Ther Adv Hematol 2023; 14:20406207231183330. [PMID: 37547364 PMCID: PMC10399277 DOI: 10.1177/20406207231183330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 06/02/2023] [Indexed: 08/08/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematological diseases and a high risk for transformation to acute myeloid leukemia (AML). The identification of key genetic alterations in MDS has enhanced our understanding of the pathogenesis and evolution. In recent years, it has been found that both innate and adaptive immune signaling are activated in the hematopoietic niche of MDS with aberrant cytokine secretion in the bone marrow microenvironment. It is also clear that immune dysregulation plays an important role in the occurrence and progression of MDS, especially the destruction of the bone marrow microenvironment, including hematopoiesis and stromal components. The purpose of this review is to explore the role of immune cells, the immune microenvironment, and cytokines in the pathogenesis of MDS. Insights into the mechanisms of these variants may facilitate the development of novel effective treatments to prevent disease progression.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education
- National Health Commission (NHC)
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education
- National Health Commission (NHC)
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, and Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, China
| |
Collapse
|
10
|
Spillane DR, Assouline S. Immunotherapy for myelodysplastic syndrome and acute myeloid leukemia: where do we stand? Expert Rev Hematol 2023; 16:819-834. [PMID: 37819154 DOI: 10.1080/17474086.2023.2268273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are generally characterized by a poor prognosis with currently available therapies. Immunotherapies have already seen success in treating a variety of malignant disorders, and their role in managing myeloid cancers is evolving rapidly. AREAS COVERED This is a review of the immunotherapies tested in MDS and AML, including immune checkpoint inhibitors, bispecific antibodies, and cell therapies such as chimeric antigen receptor (CAR) T cell therapy, T cell receptor (TCR) engineered T cells, and natural killer (NK) cells, with a focus on clinical trials conducted to date and future directions. EXPERT OPINION Initial clinical trials exploring checkpoint inhibitors in MDS and AML have demonstrated high toxicity and disappointing efficacy. However, ongoing trials adding novel checkpoint inhibitors to standard therapy are more promising. Technological advances are improving the outlook for bispecific antibodies, and cellular therapies like adoptive NK cell infusion have favorable efficacy and tolerability in early trials. As our understanding of the immune microenvironment in MDS and AML improves, the role for immunotherapy in the treatment of these diseases will become clearer.
Collapse
Affiliation(s)
- David R Spillane
- Jewish General Hospital, McGill University, Montreal, Québec, Canada
| | - Sarit Assouline
- Jewish General Hospital, McGill University, Montreal, Québec, Canada
| |
Collapse
|