1
|
Li Y, Lin S, Zhang C, Chen Y, Zhou S, Wang L, Chen S, Ding T. Charge Transfer Plasmons Enabled by Supramolecular Plug: From Optoelectronic Switching to Enhanced Chiral Sensing. J Am Chem Soc 2024; 146:28739-28747. [PMID: 39385556 DOI: 10.1021/jacs.4c07322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Miniaturization and integration of plasmonic nanodevices are fundamentally limited by quantum tunneling, which leads to quantum plasmonics with reduced local E-field intensity. Despite significant efforts devoted to modeling and deterring the detrimental effect of quantum plasmonics, the modulation and application of electron transport through the subnanometer gaps seems rarely exploited due to the limited tunability of conventional quantum materials. Here, we establish a supramolecular plasmonic system made of pillar[5]arene complexes and plasmonic resonators (nanoparticle-on-mirror, NPoM). The supramolecular assemblies significantly enhance the gap conductance of NPoM, which results in a blue-shift of the coupled plasmons. Plasmonic hot-electron transport with laser excitation further modulates the gap plasmons, which are fully reversible and beneficial for enhanced chiroptic sensing. Such a conductive supramolecular plasmonic system not only suggests an optoelectronic switching strategy for charge transfer plasmons but also provides a superior sensing platform for single molecules.
Collapse
Affiliation(s)
- Yawen Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072 Wuhan, China
| | - Siyi Lin
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Chi Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072 Wuhan, China
| | - Yi Chen
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Siyuan Zhou
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Lu Wang
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Shigui Chen
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072 Wuhan, China
| |
Collapse
|
2
|
Lu Z, Ji J, Ye H, Zhang H, Zhang S, Xu H. Quantifying the ultimate limit of plasmonic near-field enhancement. Nat Commun 2024; 15:8803. [PMID: 39394215 PMCID: PMC11470092 DOI: 10.1038/s41467-024-53210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
Quantitatively probing the ultimate limit of near-field enhancement around plasmonic nanostructures remains elusive, despite more than five decades since the discovery of surface-enhanced Raman scattering. Theoretical calculations have predicted an ultimate near-field enhancement exceeding 1000 using the best plasmonic material silver, but experimental estimations disperse by orders of magnitude. Here, we design a high-quality silver plasmonic nanocavity with atomic precision and precisely quantify the upper limit of near-field enhancement in ~1 nm junctions. A hot-spot averaged Raman enhancement of 4.27 × 1010 is recorded with a small fluctuation, corresponding to an averaged electric field enhancement larger than 1000 times. This result quantitatively delineates the ultimate limit of plasmonic field enhancement around plasmonic nanostructures, establishing a foundation for diverse plasmon-enhanced processes and strong light-matter interactions at the atomic scale.
Collapse
Affiliation(s)
- Zhengyi Lu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Jiamin Ji
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Haiming Ye
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Hao Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Shunping Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
- Wuhan Institute of Quantum Technology, Wuhan, China.
| | - Hongxing Xu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
- Wuhan Institute of Quantum Technology, Wuhan, China
- School of Microelectronics, Wuhan University, Wuhan, China
- Henan Academy of Sciences, Zhengzhou, China
| |
Collapse
|
3
|
Huang J, Ojambati OS, Climent C, Cuartero-Gonzalez A, Elliott E, Feist J, Fernández-Domínguez AI, Baumberg JJ. Influence of Quadrupolar Molecular Transitions within Plasmonic Cavities. ACS NANO 2024; 18:14487-14495. [PMID: 38787356 PMCID: PMC11155255 DOI: 10.1021/acsnano.4c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Optical nanocavities have revolutionized the manipulation of radiative properties of molecular and semiconductor emitters. Here, we investigate the amplified photoluminescence arising from exciting a dark transition of β-carotene molecules embedded within plasmonic nanocavities. Integrating a molecular monolayer into nanoparticle-on-mirror nanostructures unveils enhancements surpassing 4 orders of magnitude in the initially light-forbidden excitation. Such pronounced enhancements transcend conventional dipolar mechanisms, underscoring the presence of alternative enhancement pathways. Notably, Fourier-plane scattering spectroscopy shows that the photoluminescence excitation resonance aligns with a higher-order plasmonic cavity mode, which supports strong field gradients. Combining quantum chemistry calculations with electromagnetic simulations reveals an important interplay between the Franck-Condon quadrupole and Herzberg-Teller dipole contributions in governing the absorption characteristics of this dark transition. In contrast to free space, the quadrupole moment plays a significant role in photoluminescence enhancement within nanoparticle-on-mirror cavities. These findings provide an approach to access optically inactive transitions, promising advancements in spectroscopy and sensing applications.
Collapse
Affiliation(s)
- Junyang Huang
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Oluwafemi S. Ojambati
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Clàudia Climent
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alvaro Cuartero-Gonzalez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
- Mechanical
Engineering Department, ICAI, Universidad
Pontificia Comillas, Madrid 28015, Spain
| | - Eoin Elliott
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Johannes Feist
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
| | - Antonio I. Fernández-Domínguez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
4
|
Huang Z, Lin X, Lu Z, Du R, Tang J, Zhou L, Zhang S. Identifying high-order plasmon modes in silver nanoparticle-over-mirror configuration. OPTICS EXPRESS 2024; 32:19746-19756. [PMID: 38859102 DOI: 10.1364/oe.522105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 06/12/2024]
Abstract
Metallic nanoparticle-over-mirror (NPOM) represents as a versatile plasmonic configuration for surface enhanced spectroscopy, sensing and light-emitting metasurfaces. However, experimentally identifying the high-order localized surface plasmon modes in NPOM, especially for the best plasmonic material silver, is often hindered by the small scattering cross-section of high-order plasmon modes and the poor reproducibility of the spectra across different NPOMs, resulted from the polyhedral morphology of the colloidal nanoparticles or the rough surface of deposited polycrystalline metals. In this study, we identify the high-order localized surface plasmon modes in silver NPOM by using differential reflection spectroscopy. We achieved reproducible single-particle absorption spectra by constructing uniform NPOM consisting of silver nanospheres, single-crystallized silver microplates, and a self-assembled monolayer of 1,10-decanedithiol. For comparison, silver NPOM created from typical polycrystalline films exhibits significant spectral fluctuations, even when employing template stripping methods to minimize the film roughness. Identifying high-order plasmon modes in the NPOM configuration offers a pathway to construct high-quality plasmonic substrates for applications such as colloidal metasurface, surface-enhanced Raman spectroscopy, fluorescence, or infrared absorption.
Collapse
|
5
|
Cheng M, Cao N, Wang Z, Wang K, Pu T, Li Y, Sun T, Yue X, Ni W, Dai W, He Y, Shi Y, Zhang P, Zhu Y, Xie P. Strain-Induced Self-Assembly at Interface of Two-Dimensional Heterostructures Boosts CO 2 Reduction to Methanol by H 2O. ACS NANO 2024; 18:10582-10595. [PMID: 38564712 DOI: 10.1021/acsnano.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
CO2 conversion with pure H2O into CH3OH and O2 driven by solar energy can supply fuels and life-essential substances for extraterrestrial exploration. However, the effective production of CH3OH is significantly challenging. Here we report an organozinc complex/MoS2 heterostructure linked by well-defined zinc-sulfur covalent bonds derived by the structural deformation and intensive coupling of dx2 - y2(Zn)-p(S) orbitals at the interface, resulting in distinctive charge transfer behaviors and excellent redox capabilities as revealed by experimental characterizations and first-principle calculations. The synthesis strategy is further generalized to more organometallic compounds, achieving various heterostructures for CO2 photoreduction. The optimal catalyst delivers a promising CH3OH yield of 2.57 mmol gcat-1 h-1 and selectivity of more than 99.5%. The reverse water gas shift mechanism is identified for methanol formation. Meanwhile, energy-unfavorable adsorption of methanol on MoS2, where the photogenerated holes accumulate, ensures the selective oxidation of water over methanol.
Collapse
Affiliation(s)
- Ming Cheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ning Cao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhi Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ke Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Tiancheng Pu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yukun Li
- State Center for International Cooperation on Designer Low-Carbon and Environmental Materials School of Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tulai Sun
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xuanyu Yue
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Wenkang Ni
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Wenxin Dai
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yao Shi
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Peng Zhang
- State Center for International Cooperation on Designer Low-Carbon and Environmental Materials School of Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Pengfei Xie
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China
| |
Collapse
|
6
|
Ouyang X, Du K, Zeng Y, Song Q, Xiao S. Nanostructure-based orbital angular momentum encryption and multiplexing. NANOSCALE 2024. [PMID: 38616650 DOI: 10.1039/d4nr00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The orthogonality among the OAM modes provides a new degree of freedom for optical multiplexing communications. So far, traditional Dammann gratings and spatial light modulators (SLMs) have been widely used to generate OAM beams by modulating electromagnetic waves at each pixel. However, such architectures suffer from limitations in terms of having a resolution of only a few microns and the bulkiness of the entire optical system. With the rapid development of the electromagnetic theory and advanced nanofabrication methods, artificial nanostructures, especially optical metasurfaces, have been introduced which greatly shrink the size of OAM multiplexing devices while increasing the level of integration. This review focuses on the study of encryption, multiplexing and demultiplexing of OAM beams based on nanostructure platforms. After introducing the focusing characteristics of OAM beams, the interaction mechanism between OAM beams and nanostructures is discussed. The physical phenomena of helical dichroism response and spatial separation of OAM beams achieved through nanostructures, setting the stage for OAM encryption and multiplexing, are reviewed. Afterward, the further advancements and potential applications of nanophotonics-based OAM multiplexing are deliberated. Finally, the challenges of conventional design methods and dynamic tunable techniques for nanostructure-based OAM multiplexing technology are addressed.
Collapse
Affiliation(s)
- Xu Ouyang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
| | - Kang Du
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
| | - Yixuan Zeng
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
| |
Collapse
|
7
|
Xu K, Zou Z, Li W, Zhang L, Ge M, Wang T, Du W. Strong Linearly Polarized Light Emission by Coupling Out-of-Plane Exciton to Anisotropic Gap Plasmon Nanocavity. NANO LETTERS 2024; 24:3647-3653. [PMID: 38488282 DOI: 10.1021/acs.nanolett.3c04899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
With exceptional quantum confinement, 2D monolayer semiconductors support a strong excitonic effect, making them an ideal platform for exploring light-matter interactions and as building blocks for novel optoelectronic devices. Different from the well-known in-plane excitons in transition metal dichalcogenides (TMD), the out-of-plane excitons in indium selenide (InSe) usually show weak emission, which limits their applications as light sources. Here, by embedding InSe in an anisotropic gap plasmon nanocavity, we have realized plasmon-enhanced linearly polarized photoluminescence with an anisotropic ratio up to ∼140, corresponding to degree of polarization (DoP) of ∼98.6%. Such polarization selectivity, originating from the polarization-dependent plasmonic enhancement supported by the "nanowire-on-mirror" nanocavity, can be well tuned by the InSe thickness. Moreover, we have also realized an InSe-based light-emitting diode with polarized electroluminescence. Our research highlights the role of excitonic dipole orientation in designing nanophotonic devices and paves the way for developing InSe-based optoelectronic devices with polarization control.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Zhen Zou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Wenfei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Lan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Maowen Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Tao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Wei Du
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
8
|
Moon T, Joo H, Das B, Koo Y, Kang M, Lee H, Kim S, Chen C, Suh YD, Kim DS, Park KD. Adaptive Gap-Tunable Surface-Enhanced Raman Spectroscopy. NANO LETTERS 2024; 24:3777-3784. [PMID: 38497654 DOI: 10.1021/acs.nanolett.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Gap plasmon (GP) resonance in static surface-enhanced Raman spectroscopy (SERS) structures is generally too narrow and not tunable. Here, we present an adaptive gap-tunable SERS device to selectively enhance and modulate different vibrational modes via active flexible Au nanogaps, with adaptive optical control. The tunability of GP resonance is up to ∼1200 cm-1 by engineering gap width, facilitated by mechanical bending of a polyethylene terephthalate substrate. We confirm that the tuned GP resonance selectively enhances different Raman spectral regions of the molecules. Additionally, we dynamically control the SERS intensity through the wavefront shaping of excitation beams. Furthermore, we demonstrate simulation results, exhibiting the mechanical and optical properties of a one-dimensional flexible nanogap and their advantage in high-speed biomedical sensing. Our work provides a unique approach for observing and controlling the enhanced chemical responses with dynamic tunability.
Collapse
Affiliation(s)
- Taeyoung Moon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Huitae Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Bamadev Das
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mingu Kang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sunghwan Kim
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Cheng Chen
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yung Doug Suh
- Department of Chemistry & School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
9
|
K A, C K A, B K. Enhancing saturable absorption in a Au-decorated MoS 2/PEDOT:PSS nanocomposite through plasmon resonance and Pauli blocking. Phys Chem Chem Phys 2024; 26:9645-9656. [PMID: 38469692 DOI: 10.1039/d3cp06153a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
We have effectively demonstrated a technique for substantial alteration of the nonlinear saturable absorption (SA) properties in nanocomposite films (NCF) composed of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT:PSS) and molybdenum disulfide (MoS2) decorated with gold nanoparticles (AuNPs). This control is achieved by adjusting the AuNP concentration on the MoS2 surface and varying the input pulse energy of the laser. The simple drop-casting method is used to create the nanocomposite films (NCFs) on a glass substrate with different amounts of Au-decorated MoS2. The Kramers-Kronig equations are employed for determining the refractive index and extinction coefficient values of the resulting NCFs. Nonlinear investigations reveal that adding Au-decorated MoS2 to pure PEDOT:PSS alters its optical nonlinearity. Surface plasmon resonance and Pauli blocking have been observed in Au-decorated MoS2/PEDOT:PSS NCFs. This increases NCF's saturable absorption. An open aperture Z-scan method is utilized to study nonlinear optics, with excitation achieved using a nanosecond (ns) pulsed laser operating at a 532 nm wavelength. The findings reveal the noteworthy saturable absorption characteristics of the NCFs.
Collapse
Affiliation(s)
- Arjun K
- Nanophotonics Laboratory, Department of Physics, National Institute of Technology, Thiruchirappalli-620 015, India.
| | - Amaljith C K
- Department of Electro Optics Engineering, Ben Gurion University of the Negev, Israel
| | - Karthikeyan B
- Nanophotonics Laboratory, Department of Physics, National Institute of Technology, Thiruchirappalli-620 015, India.
| |
Collapse
|
10
|
Zhang J, Qian D, Hu H, Wang K, Cao Y, Song Q, Yao J, Su X, Zhou L, Zhang S, Wang T, Rong Y, Liu C, Mao L, Ding T, Yi J, Zhang YJ, Li JF, Wang N, Wang J, Liu X. Enhancing Light Out-coupling in Perovskite Light-Emitting Diodes through Plasmonic Nanostructures. NANO LETTERS 2024; 24:2681-2688. [PMID: 38408023 DOI: 10.1021/acs.nanolett.3c03483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for lighting and display technologies owing to their high photoluminescence quantum efficiency and high carrier mobility. However, the performance of planar PeLEDs is limited by the out-coupling efficiency, predominantly governed by photonic losses at device interfaces. Most notably, the plasmonic loss at the metal electrode interfaces can account for up to 60% of the total loss. Here, we investigate the use of plasmonic nanostructures to improve the light out-coupling in PeLEDs. By integrating these nanostructures with PeLEDs, we have demonstrated an effectively reduced plasmonic loss and enhanced light out-coupling. As a result, the nanostructured PeLEDs exhibit an average 1.5-fold increase in external quantum efficiency and an ∼20-fold improvement in device lifetime. This finding offers a generic approach for enhancing light out-coupling, promising great potential to go beyond existing performance limitations.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Dongmin Qian
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Huatian Hu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano, Italy
| | - Kun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yu Cao
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Qianshan Song
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jiacheng Yao
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xi Su
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Li Zhou
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shunping Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, P. R. China
| | - Ti Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yaoguang Rong
- School of Chemistry, Chemical Engineering and life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Chang Liu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Li Mao
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jun Yi
- School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaoze Liu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
11
|
Tang J, Guo Q, Wu Y, Ge J, Zhang S, Xu H. Light-Emitting Plasmonic Tunneling Junctions: Current Status and Perspectives. ACS NANO 2024; 18:2541-2551. [PMID: 38227821 DOI: 10.1021/acsnano.3c08628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Quantum tunneling, in which electrons can tunnel through a finite potential barrier while simultaneously interacting with other matter excitation, is one of the most fascinating phenomena without classical correspondence. In an extremely thin metallic nanogap, the deep-subwavelength-confined plasmon modes can be directly excited by the inelastically tunneling electrons driven by an externally applied voltage. Light emission via inelastic tunneling possesses a great potential application for next-generation light sources, with great superiority of ultracompact integration, large bandwidth, and ultrafast response. In this Perspective, we first briefly introduce the mechanism of plasmon generation in the inelastic electron tunneling process. Then the state of the art in plasmonic tunneling junctions will be reviewed, particularly emphasizing efficiency improvement, precise construction, active control, and electrically driven optical antenna integration. Ultimately, we forecast some promising and critical prospects that require further investigation.
Collapse
Affiliation(s)
- Jibo Tang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Quanbing Guo
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Yu Wu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Junhao Ge
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Shunping Zhang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Henan Academy of Sciences, Zhengzhou, Henan 450046 China
| |
Collapse
|
12
|
Koo Y, Moon T, Kang M, Joo H, Lee C, Lee H, Kravtsov V, Park KD. Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:30. [PMID: 38272869 PMCID: PMC10810844 DOI: 10.1038/s41377-024-01380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Tip-enhanced nano-spectroscopy and -imaging have significantly advanced our understanding of low-dimensional quantum materials and their interactions with light, providing a rich insight into the underlying physics at their natural length scale. Recently, various functionalities of the plasmonic tip expand the capabilities of the nanoscopy, enabling dynamic manipulation of light-matter interactions at the nanoscale. In this review, we focus on a new paradigm of the nanoscopy, shifting from the conventional role of imaging and spectroscopy to the dynamical control approach of the tip-induced light-matter interactions. We present three different approaches of tip-induced control of light-matter interactions, such as cavity-gap control, pressure control, and near-field polarization control. Specifically, we discuss the nanoscale modifications of radiative emissions for various emitters from weak to strong coupling regime, achieved by the precise engineering of the cavity-gap. Furthermore, we introduce recent works on light-matter interactions controlled by tip-pressure and near-field polarization, especially tunability of the bandgap, crystal structure, photoluminescence quantum yield, exciton density, and energy transfer in a wide range of quantum materials. We envision that this comprehensive review not only contributes to a deeper understanding of the physics of nanoscale light-matter interactions but also offers a valuable resource to nanophotonics, plasmonics, and materials science for future technological advancements.
Collapse
Affiliation(s)
- Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taeyoung Moon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mingu Kang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Huitae Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Changjoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
13
|
Vento V, Roelli P, Verlekar S, Galland C. Mode-Specific Coupling of Nanoparticle-on-Mirror Cavities with Cylindrical Vector Beams. NANO LETTERS 2023. [PMID: 37205630 DOI: 10.1021/acs.nanolett.3c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanocavities formed by ultrathin metallic gaps permit the reproducible engineering and enhancement of light-matter interaction, with mode volumes reaching the smallest values allowed by quantum mechanics. While the enhanced vacuum field in metallic nanogaps has been firmly evidenced, fewer experimental reports have examined the far-field to near-field input coupling under strongly focused laser beam. Here, we experimentally demonstrate selective excitation of nanocavity modes controlled by the polarization and frequency of the laser beam. We reveal mode selectivity by recording confocal maps of Raman scattering excited by cylindrical vector beams, which are compared to the known excitation near-field patterns. Our measurements reveal the transverse vs longitudinal polarization of the excited antenna mode and how the input coupling rate depends on laser wavelength. The method introduced here is easily applicable to other experimental scenarios, and our results help connect far-field with near-field parameters in quantitative models of nanocavity-enhanced phenomena.
Collapse
Affiliation(s)
- Valeria Vento
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Philippe Roelli
- Nano-optics Group, CIC nanoGUNE, E-20018 Donostia-San Sebastián, Spain
| | - Sachin Verlekar
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christophe Galland
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Jo K, Marino E, Lynch J, Jiang Z, Gogotsi N, Darlington TP, Soroush M, Schuck PJ, Borys NJ, Murray CB, Jariwala D. Direct nano-imaging of light-matter interactions in nanoscale excitonic emitters. Nat Commun 2023; 14:2649. [PMID: 37156799 PMCID: PMC10167231 DOI: 10.1038/s41467-023-38189-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Strong light-matter interactions in localized nano-emitters placed near metallic mirrors have been widely reported via spectroscopic studies in the optical far-field. Here, we report a near-field nano-spectroscopic study of localized nanoscale emitters on a flat Au substrate. Using quasi 2-dimensional CdSe/CdxZn1-xS nanoplatelets, we observe directional propagation on the Au substrate of surface plasmon polaritons launched from the excitons of the nanoplatelets as wave-like fringe patterns in the near-field photoluminescence maps. These fringe patterns were confirmed via extensive electromagnetic wave simulations to be standing-waves formed between the tip and the edge-up assembled nano-emitters on the substrate plane. We further report that both light confinement and in-plane emission can be engineered by tuning the surrounding dielectric environment of the nanoplatelets. Our results lead to renewed understanding of in-plane, near-field electromagnetic signal transduction from the localized nano-emitters with profound implications in nano and quantum photonics as well as resonant optoelectronics.
Collapse
Affiliation(s)
- Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123, Palermo, Italy
| | - Jason Lynch
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhiqiao Jiang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalie Gogotsi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas P Darlington
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mohammad Soroush
- Departement of Physics, Montana State University, Bozeman, MT, 59717, USA
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nicholas J Borys
- Departement of Physics, Montana State University, Bozeman, MT, 59717, USA
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Wang Y, Jia J, Zhang J, Xiao R, Xu W, Feng Y. Modulating the Charge Transfer Plasmon in Bridged Au Core-Satellite Homometallic Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207907. [PMID: 37052515 DOI: 10.1002/smll.202207907] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
The localized surface plasmon resonance (LSPR) is one of the important properties for noble metal nanoparticles. Tuning the LSPR on demand thus has attracted tremendous interest. Beyond the size and shape control, manipulating intraparticle coupling is an effective way to tailor their LSPR. The charge transfer plasmon (CTP) is the most important mode of conductive coupling between subunits linked by conductive bridges that are well studied for structures prepared on substrates by lithography method. However, the colloidal synthesis of CTP structure remains a great challenge. This work reports the colloidal synthesis of extraordinary bridged Au core-satellite structures by exploiting the buffer effect of polydopamine shell on Au core for Au atom diffusion, in which the Au bridge is well controlled in terms of width and length. Benefiting from the tunable Au bridges, the resonance energy of the CTP can be readily controlled. As a result, the LSPR absorptions of the core-satellite structures are continuously tuned within the NIR spectral range (from 900 to >1300 nm), demonstrating their great potentials for ultrafast nano-optics and biomedical applications.
Collapse
Affiliation(s)
- Yun Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jia Jia
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jie Zhang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ruixue Xiao
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wenjia Xu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yuhua Feng
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
16
|
Yao L, Hao Q, Li M, Fan X, Li G, Tang X, Wei Y, Wang J, Qiu T. Flexible plasmonic nanocavities: a universal platform for the identification of molecular orientations. NANOSCALE 2023; 15:6588-6595. [PMID: 36961297 DOI: 10.1039/d3nr01059g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The molecular orientation provides fundamental images to understand molecular behaviors in chemistry. Herein, we propose and demonstrate sandwich plasmonic nanocavities as a surface-selection ruler to illustrate the molecular orientations by surface-enhanced Raman spectroscopy (SERS). The field vector in the plasmonic nanocavity presents a transverse spinning feature under specific excitations, allowing the facile modulation of the field polarizations to selectively amplify the Raman modes of the target molecules. It does not require the knowledge of the Raman spectrum of a bare molecule as a standard and thus can be extended as a universal ruler for the identification of molecular orientations. We investigated the most widely used Raman probe, Rhodamine 6G (R6G) on the Au surface and tried to clarify the arguments about its orientations from our perspectives. The experimental results suggest concentration-dependent adsorption configurations of R6G: it adsorbs on Au primarily via an ethylamine group with the xanthene ring lying flatly on the metal surface at low concentrations, and the molecular orientation gradually changes from "flat" to "upright" with the increase of molecular concentrations.
Collapse
Affiliation(s)
- Lei Yao
- School of physics, Southeast University, Nanjing 211189, P. R. China.
| | - Qi Hao
- School of physics, Southeast University, Nanjing 211189, P. R. China.
| | - Mingze Li
- School of physics, Southeast University, Nanjing 211189, P. R. China.
| | - Xingce Fan
- School of physics, Southeast University, Nanjing 211189, P. R. China.
| | - Guoqun Li
- School of physics, Southeast University, Nanjing 211189, P. R. China.
| | - Xiao Tang
- School of physics, Southeast University, Nanjing 211189, P. R. China.
| | - Yunjia Wei
- School of physics, Southeast University, Nanjing 211189, P. R. China.
| | - Jiawei Wang
- School of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Teng Qiu
- School of physics, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
17
|
Chen S, Li P, Zhang C, Wu W, Zhou G, Zhang C, Weng S, Ding T, Wu DY, Yang L. Extending Plasmonic Enhancement Limit with Blocked Electron Tunneling by Monolayer Hexagonal Boron Nitride. NANO LETTERS 2023. [PMID: 36995130 DOI: 10.1021/acs.nanolett.3c00404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fabricating ultrasmall nanogaps for significant electromagnetic enhancement is a long-standing goal of surface-enhanced Raman scattering (SERS) research. However, such electromagnetic enhancement is limited by quantum plasmonics as the gap size decreases below the quantum tunneling regime. Here, hexagonal boron nitride (h-BN) is sandwiched as a gap spacer in a nanoparticle-on-mirror (NPoM) structure, effectively blocking electron tunneling. Layer-dependent scattering spectra and theoretical modeling confirm that the electron tunneling effect is screened by monolayer h-BN in a nanocavity. The layer-dependent SERS enhancement factor of h-BN in the NPoM system monotonically increases as the number of layers decreases, which agrees with the prediction by the classical electromagnetic model but not the quantum-corrected model. The ultimate plasmonic enhancement limits are extended in the classical framework in a single-atom-layer gap. These results provide deep insights into the quantum mechanical effects in plasmonic systems, enabling the potential novel applications based on quantum plasmonic.
Collapse
Affiliation(s)
- Siyu Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chi Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Wenkai Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guoliang Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Changjin Zhang
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Shirui Weng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
18
|
Liu W, Li Y, Li Z, Du X, Xie S, Liu C, Jiang S, Li Z. 3D flexible compositing resonant cavity system for high-performance SERS sensing. OPTICS EXPRESS 2023; 31:6925-6937. [PMID: 36823938 DOI: 10.1364/oe.481784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Arrayed resonant cavity with outstanding optical trapping ability have received increasing attention in surface-enhanced Raman spectroscopy (SERS). Here, a three-dimensional (3D) composite AgNPs-Al2O3/Au/inverted patterned sapphire substrate PMMA (IPSSPMMA) flexible resonant cavity system is theoretically and experimentally investigated as a flexible SERS sensor. With the help of an effective plasma coupling (localized surface plasmons (LSPs) and surface plasmon polaritons (SPPs)), as shown by the Finite Element Method, a resonant cavity between IPSSPMMA and a particle-film nanostructure is created. Moreover, the proposed fabrication scheme can be easily used for large-scale fabrication. To measure the performance of IPSSPMMA, Rhodamine 6 G (R6G) and Crystalline violet (CV) were used as probe molecules with limit of detection (LOD) of 6.01 × 10-12 M and 5.36 × 10-10 M, respectively, and enhancement factors (EF) of R6G up to 8.6 × 109. Besides, in-situ detection of CV on the surface of aquatic products with a LOD of 3.96 × 10-5 M, enables highly sensitive in-situ detection of surface analytes. The Raman performance and in-situ detection results demonstrate that the proposed flexible compositing resonant cavity system has the advantages of ultra-sensitivity, stability, uniformity, and reproducibility, and has great potential for applications in the food safety field.
Collapse
|
19
|
Jose J, Schumacher L, Jalali M, Haberfehlner G, Svejda JT, Erni D, Schlücker S. Particle Size-Dependent Onset of the Tunneling Regime in Ideal Dimers of Gold Nanospheres. ACS NANO 2022; 16:21377-21387. [PMID: 36475629 DOI: 10.1021/acsnano.2c09680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report on the nanoparticle-size-dependent onset of quantum tunneling of electrons across the subnanometer gaps in three different sizes (30, 50, and 80 nm) of highly uniform gold nanosphere (AuNS) dimers. For precision plasmonics, the gap distance is systematically controlled at the level of single C-C bonds via a series of alkanedithiol linkers (C2-C16). Parallax-corrected high-resolution transmission electron microscope (HRTEM) imaging and subsequent tomographic reconstruction are employed to resolve the nm to subnm interparticle gap distances in AuNS dimers. Single-particle scattering experiments on three different sizes of AuNS dimers reveal that for the larger dimers the onset of quantum tunneling regime occurs at larger gap distances: 0.96 ± 0.04 nm (C6) for 80 nm, 0.83 ± 0.03 nm (C5) for 50 nm, and 0.72 ± 0.02 nm (C4) for 30 nm dimers. 2D nonlocal and quantum-corrected model (QCM) calculations qualitatively explain the physical origin for this experimental observation: the lower curvature of the larger particles leads to a higher tunneling current due to a larger effective conductivity volume in the gap. Our results have possible implications in scenarios where precise geometrical control over plasmonic properties is crucial such as in hybrid (molecule-metal) and/or quantum plasmonic devices. More importantly, this study constitutes the closest experimental results to the theory for a 3D sphere dimer system and offers a reference data set for comparison with theory/simulations.
Collapse
Affiliation(s)
- Jesil Jose
- Physical Chemistry I, Department of Chemistry and Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141Essen, Germany
| | - Ludmilla Schumacher
- Physical Chemistry I, Department of Chemistry and Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141Essen, Germany
| | - Mandana Jalali
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and Center for Nanointegration Duisburg-Essen (CENIDE), D-47048Duisburg, Germany
| | - Georg Haberfehlner
- Institute of Electron Microscopy and Nanoanalysis, NAWI Graz, Graz University of Technology, Steyrergasse 17, 8010Graz, Austria
| | - Jan Taro Svejda
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and Center for Nanointegration Duisburg-Essen (CENIDE), D-47048Duisburg, Germany
| | - Daniel Erni
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and Center for Nanointegration Duisburg-Essen (CENIDE), D-47048Duisburg, Germany
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry and Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141Essen, Germany
| |
Collapse
|
20
|
Zhu W, Satterthwaite PF, Jastrzebska-Perfect P, Brenes R, Niroui F. Nanoparticle contact printing with interfacial engineering for deterministic integration into functional structures. SCIENCE ADVANCES 2022; 8:eabq4869. [PMID: 36288303 PMCID: PMC9604533 DOI: 10.1126/sciadv.abq4869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Deterministic, pristine, and scalable integration of individual nanoparticles onto arbitrary surfaces is an ongoing challenge, yet essential for harnessing their unique properties for functional nanoscale devices. To address this challenge, we present a versatile technique where spatially arranged nanoparticles assembled in a topographical template are printed onto diverse surfaces, through a single contact-and-release step, with >95% transfer yield and <50-nanometer placement accuracy. Through engineering of interfacial interactions, our approach uniquely promotes high-yield transfer of individual particles without needing solvents, surface treatments, and polymer sacrificial layers, which are conventionally inevitable. By avoiding these mediation steps, surfaces can remain damage and contamination free and accessible to integrate into functional structures. We demonstrate this in a particle-on-mirror model system, where >2000 precisely defined nanocavities display a consistent plasmonic response with minimized interstructure variability. Through fabricating arrays of emitter-coupled nanocavities, we further highlight the integration opportunities offered by our contact printing.
Collapse
Affiliation(s)
- Weikun Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter F. Satterthwaite
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patricia Jastrzebska-Perfect
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roberto Brenes
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Farnaz Niroui
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Zheng X. Dedicated Boundary Element Modeling for Nanoparticle‐on‐Mirror Structures Incorporating Nonlocal Hydrodynamic Effects. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuezhi Zheng
- The WaveCore Division Department of Electrical Engineering (ESAT) KU Leuven Leuven B‐3001 Belgium
| |
Collapse
|
22
|
Plasmonic phenomena in molecular junctions: principles and applications. Nat Rev Chem 2022; 6:681-704. [PMID: 37117494 DOI: 10.1038/s41570-022-00423-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Molecular junctions are building blocks for constructing future nanoelectronic devices that enable the investigation of a broad range of electronic transport properties within nanoscale regions. Crossing both the nanoscopic and mesoscopic length scales, plasmonics lies at the intersection of the macroscopic photonics and nanoelectronics, owing to their capability of confining light to dimensions far below the diffraction limit. Research activities on plasmonic phenomena in molecular electronics started around 2010, and feedback between plasmons and molecular junctions has increased over the past years. These efforts can provide new insights into the near-field interaction and the corresponding tunability in properties, as well as resultant plasmon-based molecular devices. This Review presents the latest advancements of plasmonic resonances in molecular junctions and details the progress in plasmon excitation and plasmon coupling. We also highlight emerging experimental approaches to unravel the mechanisms behind the various types of light-matter interactions at molecular length scales, where quantum effects come into play. Finally, we discuss the potential of these plasmonic-electronic hybrid systems across various future applications, including sensing, photocatalysis, molecular trapping and active control of molecular switches.
Collapse
|
23
|
Xu Y, Hu H, Chen W, Suo P, Zhang Y, Zhang S, Xu H. Phononic Cavity Optomechanics of Atomically Thin Crystal in Plasmonic Nanocavity. ACS NANO 2022; 16:12711-12719. [PMID: 35867404 DOI: 10.1021/acsnano.2c04478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the picture of molecular cavity optomechanics, surface-enhanced Raman scattering (SERS) can be understood as molecular oscillators parametrically coupled to plasmonic nanocavities supporting an extremely localized optical field. This enables SERS from conventional fingerprint detection toward quantum nanotechnologies associated with, e.g., frequency upconversion and optomechanically induced transparency. Here, we study a phononic cavity optomechanical system consisting of a monolayer MoS2 placed inside a plasmonic nanogap, where the coherent phonon-plasmon interaction involves the collective oscillation from tens of thousands of unit cells of the MoS2 crystal. We observe the selective nonlinear SERS enhancement of the system as determined by the laser-plasmon detuning, suggesting the dynamic backaction modification of the phonon populations. Anomalous superlinear power dependence of a second-order Raman-inactive phonon mode with respect to the first-order phonons is also observed, indicating the distinctive properties of the phononic nanodevice compared with the molecular system. Our results promote the development of robust phononic optomechanical nanocavities to further explore the related quantum correlation and nonlinear effects including parametric instabilities.
Collapse
Affiliation(s)
- Yuhao Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Huatian Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wen Chen
- Ecole Polytechnique Fédérale de Lausanne, Institute of Physics, Lausanne CH-1015, Switzerland
| | - Pengfei Suo
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yuan Zhang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shunping Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
| |
Collapse
|
24
|
Wang Q, Hou L, Li C, Zhou H, Gan X, Liu K, Xiao F, Zhao J. Toward high-performance refractive index sensor using single Au nanoplate-on-mirror nanocavity. NANOSCALE 2022; 14:10773-10779. [PMID: 35876278 DOI: 10.1039/d2nr02201j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Refractive index sensors based on the localized surface plasmon resonance (LSPR) have emerged as powerful tools in various chemosensing and biosensing applications. However, owing to their limited decay length and strong radiation damping, LSPR sensors always suffer from low sensitivity and small figure of merit (FOM). Here, we fabricate a plasmonic nanocavity sensor consisting of a hexagonal Au nanoplate positioned over an ultrasmooth Au film. The strong coupling between the nanoplate and the lower metal film allows for the formation of a plasmonic gap mode that enhances the interaction of the local field with the ambient glycerol solution to increase the sensitivity. Meanwhile, the plasmonic gap mode has a trait of an antiphase charge oscillation in the gap region, imparting a strongly reduced radiative damping and a subsequently promoted FOM. The performance of our proposed refractive index sensor is further boosted by decreasing the gap size of the nanocavity, yielding an outstanding FOM of 11.2 RIU-1 that is the highest yet reported for LSPR sensing in a single nanostructure.
Collapse
Affiliation(s)
- Qifa Wang
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Liping Hou
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Chenyang Li
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Hailin Zhou
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Xuetao Gan
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Centre of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Fajun Xiao
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Jianlin Zhao
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| |
Collapse
|
25
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
26
|
Chen S, Weng S, Xiao YH, Li P, Qin M, Zhou G, Dong R, Yang L, Wu DY, Tian ZQ. Insight into the Heterogeneity of Longitudinal Plasmonic Field in a Nanocavity Using an Intercalated Two-Dimensional Atomic Crystal Probe with a ∼7 Å Resolution. J Am Chem Soc 2022; 144:13174-13183. [PMID: 35723445 DOI: 10.1021/jacs.2c03081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantitative measurement of the plasmonic field distribution is of great significance for optimizing highly efficient optical nanodevices. However, the quantitative and precise measurement of the plasmonic field distribution is still an enormous challenge. In this work, we design a unique nanoruler with a ∼7 Å spatial resolution, which is based on a two-dimensional atomic crystal where the intercalated monolayer WS2 is a surface-enhanced Raman scattering (SERS) probe and four layers of MoS2 are a reference layer in a nanoparticle-on-mirror (NPoM) structure to quantitatively and directionally probe the longitudinal plasmonic field distribution at high permittivity by the quantitative SERS intensity of WS2 located in different layers. A subnanometer two-dimensional atomic crystal was used as a spacer layer to overcome the randomness of the molecular adsorption and Raman vibration direction. Combined with comprehensive theoretical derivation, numerical calculations, and spectroscopic measurements, it is shown that the longitudinal plasmonic field in an individual nanocavity is heterogeneously distributed with an unexpectedly large intensity gradient. We analyze the SERS enhancement factor on the horizontal component, which shows a great attenuation trend in the nanocavity and further provides precise insight into the horizontal component distribution of the longitudinal plasmonic field. We also provide a direct experimental verification that the longitudinal plasmonic field decays more slowly in high dielectric constant materials. These precise experimental insights into the plasmonic field using a two-dimensional atomic crystal itself as a Raman probe may propel understanding of the nanostructure optical response and applications based on the plasmonic field distribution.
Collapse
Affiliation(s)
- Siyu Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Shirui Weng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuan-Hui Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Miao Qin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Guoliang Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
27
|
Rahaman M, Zahn DRT. Plasmon-enhanced Raman spectroscopy of two-dimensional semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:333001. [PMID: 35671747 DOI: 10.1088/1361-648x/ac7689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) semiconductors have grown fast into an extraordinary research field due to their unique physical properties compared to other semiconducting materials. The class of materials proved extremely fertile for both fundamental studies and a wide range of applications from electronics/spintronics/optoelectronics to photocatalysis and CO2reduction. 2D materials are highly confined in the out-of-plane direction and often possess very good environmental stability. Therefore, they have also become a popular material system for the manipulation of optoelectronic properties via numerous external parameters. Being a versatile characterization technique, Raman spectroscopy is used extensively to study and characterize various physical properties of 2D materials. However, weak signals and low spatial resolution hinder its application in more advanced systems where decoding local information plays an important role in advancing our understanding of these materials for nanotechnology applications. In this regard, plasmon-enhanced Raman spectroscopy has been introduced in recent time to investigate local heterogeneous information of 2D semiconductors. In this review, we summarize the recent progress of plasmon-enhanced Raman spectroscopy of 2D semiconductors. We discuss the current state-of-art and provide future perspectives on this specific branch of Raman spectroscopy applied to 2D semiconductors.
Collapse
Affiliation(s)
- Mahfujur Rahaman
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, 19104 Pennsilvania, United States of America
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), 09126 Chemnitz, Germany
| |
Collapse
|
28
|
Guselnikova O, Lim H, Kim HJ, Kim SH, Gorbunova A, Eguchi M, Postnikov P, Nakanishi T, Asahi T, Na J, Yamauchi Y. New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107182. [PMID: 35570326 DOI: 10.1002/smll.202107182] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/23/2022] [Indexed: 06/15/2023]
Abstract
This article reviews recent fabrication methods for surface-enhanced Raman spectroscopy (SERS) substrates with a focus on advanced nanoarchitecture based on noble metals with special nanospaces (round tips, gaps, and porous spaces), nanolayered 2D materials, including hybridization with metallic nanostructures (NSs), and the contemporary repertoire of nanoarchitecturing with organic molecules. The use of SERS for multidisciplinary applications has been extensively investigated because the considerably enhanced signal intensity enables the detection of a very small number of molecules with molecular fingerprints. Nanoarchitecture strategies for the design of new NSs play a vital role in developing SERS substrates. In this review, recent achievements with respect to the special morphology of metallic NSs are discussed, and future directions are outlined for the development of available NSs with reproducible preparation and well-controlled nanoarchitecture. Nanolayered 2D materials are proposed for SERS applications as an alternative to the noble metals. The modern solutions to existing limitations for their applications are described together with the state-of-the-art in bio/environmental SERS sensing using 2D materials-based composites. To complement the existing toolbox of plasmonic inorganic NSs, hybridization with organic molecules is proposed to improve the stability of NSs and selectivity of SERS sensing by hybridizing with small or large organic molecules.
Collapse
Affiliation(s)
- Olga Guselnikova
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Hyunsoo Lim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Hyun-Jong Kim
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Sung Hyun Kim
- New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Alina Gorbunova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Miharu Eguchi
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Takuya Nakanishi
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Toru Asahi
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo, 58656, Republic of Korea
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| |
Collapse
|
29
|
Pan R, Kang J, Li Y, Zhang Z, Li R, Yang Y. Highly Enhanced Photoluminescence of Monolayer MoS 2 in Plasmonic Hybrids with Double-Layer Stacked Ag Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12495-12503. [PMID: 35175732 DOI: 10.1021/acsami.1c21960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a feasible method was proposed to prepare MoS2-based plasmonic hybrid systems with high photoluminescence (PL) emission enhancement. The enhancement effect of plasmonic hybrids on the PL emission of MoS2 has been systematically studied on MoS2/Ag spherical nanoparticle (SP) hybrid systems with different architectures by changing the stacking position of Ag SPs. It is demonstrated that the sandwich-like hybrid composed of monolayer MoS2 and dielectric Al2O3 layer between two layers of Ag SPs has the highest PL enhancement. Remarkably, after adding an Al2O3 layer under MoS2, the PL intensity enhancement up to 209 times was achieved in the sandwich-like hybrid system. Compared with the hybrid with single-layer SPs, the sandwich-like hybrid system with double-layer Ag SPs exhibited an obvious blue shift as a result of the selective enhancement of the A0 exciton in MoS2. These results demonstrate that MoS2/Ag SP hybrid nanosystems have significant implications for sensing and photoelectronic devices.
Collapse
Affiliation(s)
- Ruhao Pan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
| | - Jianyu Kang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
| | - Yutong Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongshan Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
| | - Renfei Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
| | - Yang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
| |
Collapse
|
30
|
Lo TW, Chen X, Zhang Z, Zhang Q, Leung CW, Zayats AV, Lei D. Plasmonic Nanocavity Induced Coupling and Boost of Dark Excitons in Monolayer WSe 2 at Room Temperature. NANO LETTERS 2022; 22:1915-1921. [PMID: 35225629 DOI: 10.1021/acs.nanolett.1c04360] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Spin-forbidden excitons in monolayer transition metal dichalcogenides are optically inactive at room temperature. Probing and manipulating these dark excitons are essential for understanding exciton spin relaxation and valley coherence of these 2D materials. Here, we show that the coupling of dark excitons to a metal nanoparticle-on-mirror cavity leads to plasmon-induced resonant emission with the intensity comparable to that of the spin-allowed bright excitons. A three-state quantum model combined with full-wave electrodynamic calculations reveals that the radiative decay rate of the dark excitons can be enhanced by nearly 6 orders of magnitude through the Purcell effect, therefore compensating its intrinsic nature of weak radiation. Our nanocavity approach provides a useful paradigm for understanding the room-temperature dynamics of dark excitons, potentially paving the road for employing dark exciton in quantum computing and nanoscale optoelectronics.
Collapse
Affiliation(s)
- Tsz Wing Lo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Hong Kong S.A.R
| | - Xiaolin Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Hong Kong S.A.R
| | - Zhedong Zhang
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R
| | - Qiang Zhang
- Department of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Chi Wah Leung
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Hong Kong S.A.R
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Hong Kong S.A.R
| |
Collapse
|
31
|
Liu L, Krasavin AV, Zheng J, Tong Y, Wang P, Wu X, Hecht B, Pan C, Li J, Li L, Guo X, Zayats AV, Tong L. Atomically Smooth Single-Crystalline Platform for Low-Loss Plasmonic Nanocavities. NANO LETTERS 2022; 22:1786-1794. [PMID: 35129980 DOI: 10.1021/acs.nanolett.2c00095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticle-on-mirror plasmonic nanocavities, capable of extreme optical confinement and enhancement, have triggered state-of-the-art progress in nanophotonics and development of applications in enhanced spectroscopies. However, the optical quality factor and thus performance of these nanoconstructs are undermined by the granular polycrystalline metal films (especially when they are optically thin) used as a mirror. Here, we report an atomically smooth single-crystalline platform for low-loss nanocavities using chemically synthesized gold microflakes as a mirror. Nanocavities constructed using gold nanorods on such microflakes exhibit a rich structure of plasmonic modes, which are highly sensitive to the thickness of optically thin (down to ∼15 nm) microflakes. The microflakes endow nanocavities with significantly improved quality factor (∼2 times) and scattering intensity (∼3 times) compared with their counterparts based on deposited films. The developed low-loss nanocavities further allow for the integration with a mature platform of fiber optics, opening opportunities for realizing nanocavity-based miniaturized photonic devices for practical applications.
Collapse
Affiliation(s)
- Lufang Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Alexey V Krasavin
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, U.K
| | - Junsheng Zheng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanbiao Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pan Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaofei Wu
- NanoOptics & Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bert Hecht
- NanoOptics & Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Chenxinyu Pan
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jialin Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linjun Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Guo
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, U.K
| | - Limin Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
32
|
Mendelson N, Ritika R, Kianinia M, Scott J, Kim S, Fröch JE, Gazzana C, Westerhausen M, Xiao L, Mohajerani SS, Strauf S, Toth M, Aharonovich I, Xu ZQ. Coupling Spin Defects in a Layered Material to Nanoscale Plasmonic Cavities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106046. [PMID: 34601757 DOI: 10.1002/adma.202106046] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Spin defects in hexagonal boron nitride, and specifically the negatively charged boron vacancy (VB - ) centers, are emerging candidates for quantum sensing. However, the VB - defects suffer from low quantum efficiency and, as a result, exhibit weak photoluminescence. In this work, a scalable approach is demonstrated to dramatically enhance the VB - emission by coupling to a plasmonic gap cavity. The plasmonic cavity is composed of a flat gold surface and a silver cube, with few-layer hBN flakes positioned in between. Employing these plasmonic cavities, two orders of magnitude are extracted in photoluminescence enhancement associated with a corresponding twofold enhancement in optically detected magnetic resonance contrast. The work will be pivotal to progress in quantum sensing employing 2D materials, and in realization of nanophotonic devices with spin defects in hexagonal boron nitride.
Collapse
Affiliation(s)
- Noah Mendelson
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Ritika Ritika
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Mehran Kianinia
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - John Scott
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Sejeong Kim
- Department of Electrical and Electronic Engineering, University of Melbourne, Victoria, 3010, Australia
| | - Johannes E Fröch
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Camilla Gazzana
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Mika Westerhausen
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Licheng Xiao
- Department of Physics, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- Center for Quantum Science and Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Seyed Sepehr Mohajerani
- Department of Physics, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- Center for Quantum Science and Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Stefan Strauf
- Department of Physics, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- Center for Quantum Science and Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Milos Toth
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Zai-Quan Xu
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| |
Collapse
|
33
|
Yang K, Yao X, Liu B, Ren B. Metallic Plasmonic Array Structures: Principles, Fabrications, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007988. [PMID: 34048123 DOI: 10.1002/adma.202007988] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/22/2021] [Indexed: 05/18/2023]
Abstract
The vast development of nanofabrication has spurred recent progress for the manipulation of light down to a region much smaller than the wavelength. Metallic plasmonic array structures are demonstrated to be the most powerful platform to realize controllable light-matter interactions and have found wide applications due to their rich and tunable optical performance through the morphology and parameter engineering. Here, various light-management mechanisms that may exist on metallic plasmonic array structures are described. Then, the typical techniques for fabrication of metallic plasmonic arrays are summarized. Next, some recent applications of plasmonic arrays are reviewed, including plasmonic sensing, surface-enhanced spectroscopies, plasmonic nanolasing, and perfect light absorption. Lastly, the existing challenges and perspectives for metallic plasmonic arrays are discussed. The aim is to provide guidance for future development of metallic plasmonic array structures.
Collapse
Affiliation(s)
- Kang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xu Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bowen Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
34
|
Fukunaga Y, Harada M, Okada T. Surface-enhanced Raman scattering of DNA bases using frozen silver nanoparticle dispersion as a platform. Mikrochim Acta 2021; 188:406. [PMID: 34734344 DOI: 10.1007/s00604-021-05055-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
Raman spectroscopy is a powerful method to characterize molecules in various media. Although surface-enhanced Raman scattering (SERS) is often employed to compensate for the intrinsically poor sensitivity of Raman spectroscopy, there remain serious tasks, such as simple preparations of SERS substrates, sensitivity control, and reproducible measurements. Here, we propose freezing as an efficient way to overcome these problems in SERS measurements using DNA bases as model targets. Solutes are expelled from ice crystals and concentrated in the liquid phase upon freezing. Silver nanoparticles (AgNPs) are also concentrated in the liquid phase to aggregate with Raman target analytes. The SERS signal intensity is maximized when the AgNP concentration exceeds the critical aggregation value. Freezing allows up to 5000 times enhancements of the SERS signal. Thus, an efficient SERS platform is prepared by simple freezing. The simultaneous detection of four DNA bases effectively eliminates variations of signal intensities and allows the reliable determination of concentration ratios.
Collapse
Affiliation(s)
- Yu Fukunaga
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8551, Japan
| | - Makoto Harada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8551, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
35
|
Lee J, Jeon DJ, Yeo JS. Quantum Plasmonics: Energy Transport Through Plasmonic Gap. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006606. [PMID: 33891781 DOI: 10.1002/adma.202006606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Indexed: 06/12/2023]
Abstract
At the interfaces of metal and dielectric materials, strong light-matter interactions excite surface plasmons; this allows electromagnetic field confinement and enhancement on the sub-wavelength scale. Such phenomena have attracted considerable interest in the field of exotic material-based nanophotonic research, with potential applications including nonlinear spectroscopies, information processing, single-molecule sensing, organic-molecule devices, and plasmon chemistry. These innovative plasmonics-based technologies can meet the ever-increasing demands for speed and capacity in nanoscale devices, offering ultrasensitive detection capabilities and low-power operations. Size scaling from the nanometer to sub-nanometer ranges is consistently researched; as a result, the quantum behavior of localized surface plasmons, as well as those of matter, nonlocality, and quantum electron tunneling is investigated using an innovative nanofabrication and chemical functionalization approach, thereby opening a new era of quantum plasmonics. This new field enables the ultimate miniaturization of photonic components and provides extreme limits on light-matter interactions, permitting energy transport across the extremely small plasmonic gap. In this review, a comprehensive overview of the recent developments of quantum plasmonic resonators with particular focus on novel materials is presented. By exploring the novel gap materials in quantum regime, the potential quantum technology applications are also searched for and mapped out.
Collapse
Affiliation(s)
- Jihye Lee
- School of Integrated Technology, Yonsei University, Incheon, 21983, Republic of Korea
- Yonsei Institute of Convergence Technology, Yonsei University, Incheon, 21983, Republic of Korea
| | - Deok-Jin Jeon
- School of Integrated Technology, Yonsei University, Incheon, 21983, Republic of Korea
- Yonsei Institute of Convergence Technology, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jong-Souk Yeo
- School of Integrated Technology, Yonsei University, Incheon, 21983, Republic of Korea
- Yonsei Institute of Convergence Technology, Yonsei University, Incheon, 21983, Republic of Korea
| |
Collapse
|
36
|
Whang K, Jo Y, Lee H, Kim D, Kang T. Water-Wettable Open Plasmonic Nanocavities for Ultrasensitive Molecular Detections in Multiple Phases. NANO LETTERS 2021; 21:6194-6201. [PMID: 34254801 DOI: 10.1021/acs.nanolett.1c01872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasmonic nanocavities between metal nanoparticles on metal films are either hydrophobic or fully occupied by nonmetallic spacers, preventing molecular diffusion into electromagnetic hotspots. Here we realize water-wettable open plasmonic cavities by devising gold nanoparticle with site-selectively grown ultrathin dielectric layer-on-gold film structures. We directly confirm that hydrophilic dielectric layers of SiO2 or TiO2, which are formed only at the tips of gold nanorod via precise temperature control, render sub-10 nm cavities open to the surroundings and completely water-wettable. Simulations reveal that spontaneous wetting in our cavities is driven by the presence of tip-selective hydrophilic layer and tendency of minimizing high energy air/water interface inside the cavities. Our plasmonic cavities show significant Raman enhancement of up to 4 orders of magnitude higher than those of conventional ones for molecules in various media. Our findings will offer new opportunities for sensing applications of plasmonic nanocavities and have huge impacts on cavity plasmonics.
Collapse
Affiliation(s)
- Keumrai Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Yuseung Jo
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Hyunjoo Lee
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| |
Collapse
|
37
|
Abstract
Plasmonic nanojunctions, consisting of adjacent metal structures with nanometre gaps, can support localised plasmon resonances that boost light matter interactions and concentrate electromagnetic fields at the nanoscale. In this regime, the optical response of the system is governed by poorly understood dynamical phenomena at the frontier between the bulk, molecular and atomic scales. Here, we report ubiquitous spectral fluctuations in the intrinsic light emission from photo-excited gold nanojunctions, which we attribute to the light-induced formation of domain boundaries and quantum-confined emitters inside the noble metal. Our data suggest that photoexcited carriers and gold adatom - molecule interactions play key roles in triggering luminescence blinking. Surprisingly, this internal restructuring of the metal has no measurable impact on the Raman signal and scattering spectrum of the plasmonic cavity. Our findings demonstrate that metal luminescence offers a valuable proxy to investigate atomic fluctuations in plasmonic cavities, complementary to other optical and electrical techniques.
Collapse
|
38
|
Zha Z, Liu R, Yang W, Li C, Gao J, Shafi M, Fan X, Li Z, Du X, Jiang S. Surface-enhanced Raman scattering by the composite structure of Ag NP-multilayer Au films separated by Al 2O 3. OPTICS EXPRESS 2021; 29:8890-8901. [PMID: 33820330 DOI: 10.1364/oe.419133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
In the present study, a nanoparticle-multilayer metal film substrate was presented with silver nanoparticles (Ag NPs) assembled on a multilayer gold (Au) film by employing alumina (Al2O3) as a spacer. The SERS performance of the proposed structures was determined. It was suggested that the SERS effect was improved with the increase in the number of layers, which was saturated at four layers. The SERS performance of the structures resulted from the mutual coupling of multiple plasmon modes [localized surface plasmons (LSPs), surface plasmon polaritons (SPPs), as well as bulk plasmon polaritons (BPPs)] generated by the Ag NP-multilayer Au film structure. Furthermore, the electric field distribution of the hybrid system was studied with COMSOL Multiphysics software, which changed in almost consistency with the experimentally achieved results. For this substrate, the limit of detection (LOD) was down to 10-13 M for the rhodamine 6G (R6G), and the proposed SERS substrate was exhibited prominently quantitatively detected capability and high reproducibility. Moreover, a highly sensitive detection was conducted on toluidine blue (TB) molecules. As revealed from the present study, the Ag NP-multilayer Au film structure can act as a dependable SERS substrate for its sensitive molecular sensing applications in the medical field.
Collapse
|
39
|
Zhang D, Dai W, Hu H, Chen W, Liu Y, Guan Z, Zhang S, Xu H. Controlling the immobilization process of an optically enhanced protein microarray for highly reproducible immunoassay. NANOSCALE 2021; 13:4269-4277. [PMID: 33595014 DOI: 10.1039/d0nr08407g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
By virtue of its high throughput multiplex detection capability, superior read-out sensitivity, and tiny analyte consumption, an optically enhanced protein microarray assay has been developed as a promising diagnostic tool for various applications, ranging from the field of pharmacology to diagnostics. However, so far, the development of an optically enhanced protein microarray (OEPM) toward widespread commercial availability is mainly hampered by insufficient detection reproducibility. Here, we develop an OEPM platform with an order of magnitude optical enhancement induced by the interference effect. High assay reproducibility of the OEPM is achieved by optimizing the protein immobilization schemes, linking to the surface energy of the substrate, surfactant-tuned wetting ability, and the washing and drying dynamics. As a result, smearing-free and uniform spot arrays with a coefficient of variation less than 7% can be achieved. Furthermore, we demonstrate the assay performance of the OEPM by detecting five biomarkers, showing an order of magnitude higher sensitivity, many-fold higher throughput, and 10 times less analyte consumption than those of the commercial enzyme-linked immunosorbent assay kits. Our results provide new insight for improving the reproducibility of OEPMs toward practical and commercial diagnostic assays.
Collapse
Affiliation(s)
- Daxiao Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Wei Dai
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Huatian Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wen Chen
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Yang Liu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Zhiqiang Guan
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Shunping Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China. and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
40
|
Xiong Y, Fu T, Zhang D, Zhang S, Xu H. Superradiative plasmonic nanoantenna biosensors enable sensitive immunoassay using the naked eye. NANOSCALE 2021; 13:2429-2435. [PMID: 33459751 DOI: 10.1039/d0nr06148d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Easy-to-use and sensitive quantification of biomarkers has a great significance in disease prediction, diagnosis, and monitoring. Here, we report a biosensor for simple and sensitive biomarker detection based on the strong light scattering (brightness) of superradiative plasmonic nanoantennas. This nanoantenna is constructed using antibody-decorated gold nanoparticles (Au NPs) immobilized onto a gold mirror by the target antigen, forming a nanoparticle-on-mirror (NPOM) configuration. The NPOM produces an order of magnitude stronger light scattering in the red region compared with isolated Au NPs on the dielectric substrate, due to the strong near-field coupling of surface plasmons across the gap between the Au NPs and the gold film. The increased brightness allows one to observe the captured Au NPs with the naked eye using a dark-field optical microscope. The particle density of the Au NPs varies linearly with the concentration of the target antigen over a broad dynamic range from 10-3 to 103 ng mL-1. This dynamic range is three orders of magnitude broader than that obtained from the previous work based on a dark-field optical microscope. The limit of detection is 1 pg mL-1 (6.67 fM), which is three orders of magnitude more sensitive than that obtained in the previous work using similar conditions. The uniform spatial distribution of the Au NPs on the gold film was allowed to quantify biomarkers with a relative standard deviation as small as 1-7%. Biosensing using superradiative NPs can lower the detection limit, simplify, and speed up the detection procedure for biomarker detection.
Collapse
Affiliation(s)
- Yang Xiong
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Tong Fu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Daxiao Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Shunping Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Hongxing Xu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China. and School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
41
|
Zhang Y, Esteban R, Boto RA, Urbieta M, Arrieta X, Shan C, Li S, Baumberg JJ, Aizpurua J. Addressing molecular optomechanical effects in nanocavity-enhanced Raman scattering beyond the single plasmonic mode. NANOSCALE 2021; 13:1938-1954. [PMID: 33442716 DOI: 10.1039/d0nr06649d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The description of surface-enhanced Raman scattering (SERS) as a molecular optomechanical process has provided new insights into the vibrational dynamics and nonlinearities of this inelastic scattering process. In earlier studies, molecular vibrations have typically been assumed to couple with a single plasmonic mode of a metallic nanostructure, ignoring the complexity of the plasmonic response in many configurations of practical interest such as in metallic nanojunctions. By describing the plasmonic fields as a continuum, we demonstrate here the importance of considering the full plasmonic response to properly address the molecule-cavity optomechanical interaction. We apply the continuum-field model to calculate the Raman signal from a single molecule in a plasmonic nanocavity formed by a nanoparticle-on-a-mirror configuration, and compare the results of optomechanical parameters, vibrational populations, and Stokes and anti-Stokes signals of the continuum-field model with those obtained from the single-mode model. Our results reveal that high-order non-radiative plasmonic modes significantly modify the optomechanical behavior under strong laser illumination. Moreover, Raman linewidths, lineshifts, vibrational populations, and parametric instabilities are found to be sensitive to the energy of the molecular vibrational modes. The implications of adopting the continuum-field model to describe the plasmonic cavity response in molecular optomechanics are relevant in many other nanoantenna and nanocavity configurations commonly used to enhance SERS.
Collapse
Affiliation(s)
- Yuan Zhang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sun J, Hu H, Pan D, Zhang S, Xu H. Selectively Depopulating Valley-Polarized Excitons in Monolayer MoS 2 by Local Chirality in Single Plasmonic Nanocavity. NANO LETTERS 2020; 20:4953-4959. [PMID: 32578993 DOI: 10.1021/acs.nanolett.0c01019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Transition metal dichalcogenides, whose valley degrees of freedom are characterized by the degree of circular polarization (DCP) of the photoluminescence, draw broad interests due to their potential applications in information storage and processing. However, this DCP is usually low at room temperature due to the phonon-assisted intervalley scattering, severely degrading the fidelity of the valley-stored signals. Therefore, achieving high DCP at room temperature is vital for valley-encoded nanophotonic devices. In this work, we demonstrate a high DCP of 48.7% at room temperature by embedding monolayer MoS2 into a compact plasmonic nanocavity. Such a high DCP is proven to originate from the prominent chiral Purcell effect owing to the degeneracy-lifted circularly polarized local density of states in the nanocavity. In addition, the DCP can be further manipulated by an in situ plasmon-scanned technique. This highly compact system provides possibilities for developing versatile valley-encoded light-emitting devices at room temperature.
Collapse
Affiliation(s)
- Jiawei Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Huatian Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Deng Pan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Shunping Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
43
|
Li Y, Hu H, Jiang W, Shi J, Halas NJ, Nordlander P, Zhang S, Xu H. Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy. NANO LETTERS 2020; 20:3499-3505. [PMID: 32250634 DOI: 10.1021/acs.nanolett.0c00434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plasmonic nanoantennas are capable of reversibly interconverting free-space radiation with localized modes at the nanoscale. However, optical access to a single nanoantenna, through a laser beam, is always accompanied by disruptive background perturbations and heating effects. Remote spectroscopy is one promising route to overcome these effects. Here, we demonstrate excitation-collection-separated enhanced spectroscopy using a matched nanoantenna pair. The receiving and transmitting antennas are geometrically separated but bridged by the propagating surface plasmon polaritons (SPPs) on the metal film. The receiving antenna, consisting of a silver nanowire on a mirror, ensures a high light-to-plasmon conversion efficiency. The transmitting antenna consists of a silver nanocube over a mirror and is impedance matched to free space photons and the propagating SPPs. As a proof-of-principle, we demonstrate remote surface-enhanced Raman scattering with a high signal-to-noise ratio. This matched nanoantenna pair may have applications for remote entanglement of quantum emitters, biochemistry detection, or optical interconnects.
Collapse
Affiliation(s)
- Yang Li
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Huatian Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wei Jiang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Junjun Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Naomi J Halas
- Department of Physics and Astronomy, Department of Electrical and Computer Engineering and Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department of Physics and Astronomy, Department of Electrical and Computer Engineering and Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Shunping Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, Wuhan 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
44
|
Flesch J, Kappen M, Drees C, You C, Piehler J. Self-assembly of robust gold nanoparticle monolayer architectures for quantitative protein interaction analysis by LSPR spectroscopy. Anal Bioanal Chem 2020; 412:3413-3422. [PMID: 32198532 PMCID: PMC7214499 DOI: 10.1007/s00216-020-02551-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 11/30/2022]
Abstract
Localized surface plasmon resonance (LSPR) detection offers highly sensitive label-free detection of biomolecular interactions. Simple and robust surface architectures compatible with real-time detection in a flow-through system are required for broad application in quantitative interaction analysis. Here, we established self-assembly of a functionalized gold nanoparticle (AuNP) monolayer on a glass substrate for stable, yet reversible immobilization of Histidine-tagged proteins. To this end, one-step coating of glass substrates with poly-L-lysine graft poly(ethylene glycol) functionalized with ortho-pyridyl disulfide (PLL-PEG-OPSS) was employed as a reactive, yet biocompatible monolayer to self-assemble AuNP into a LSPR active monolayer. Site-specific, reversible immobilization of His-tagged proteins was accomplished by coating the AuNP monolayer with tris-nitrilotriacetic acid (trisNTA) PEG disulfide. LSPR spectroscopy detection of protein binding on these biocompatible functionalized AuNP monolayers confirms high stability under various harsh analytical conditions. These features were successfully employed to demonstrate unbiased kinetic analysis of cytokine-receptor interactions. Graphical abstract ![]()
Collapse
Affiliation(s)
- Julia Flesch
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Marie Kappen
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Christoph Drees
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Changjiang You
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany.
| | - Jacob Piehler
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany.
| |
Collapse
|
45
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1441] [Impact Index Per Article: 360.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
46
|
Sannomiya T, Konečná A, Matsukata T, Thollar Z, Okamoto T, García de Abajo FJ, Yamamoto N. Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons. NANO LETTERS 2020; 20:592-598. [PMID: 31855432 DOI: 10.1021/acs.nanolett.9b04335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanoscale gaps between metals can strongly confine electromagnetic fields that enable efficient electromagnetic energy conversion and coupling to nanophotonic structures. In particular, the gap formed by depositing a metallic particle on a metallic substrate produces coupling of localized particle plasmons to propagating surface plasmon polaritons (SPPs). Understanding and controlling the phase of such coupling is essential for the design of devices relying on nanoparticles coupled through SPPs. Here we demonstrate the experimental visualization of the phase associated with the plasmonic field of metallic particle-surface composites through nanoscopically and spectroscopically resolved cathodoluminescence using a scanning transmission electron microscope. Specifically, we study the interference between the substrate transition radiation and the field resulting from out-coupling of SPP excitation, therefore giving rise to angle-, polarization-, and energy-dependent photon emission fringe patterns from which we extract phase information. Our methods should be readily applicable to more complex nanostructures, thus providing direct experimental insight into nanoplasmonic near-fields with potential applications in improving plasmon-based devices.
Collapse
Affiliation(s)
- Takumi Sannomiya
- Department of Materials Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta , Midoriku, Yokohama 226-8503 , Japan
- PRESTO , 4259 Nagatsuta , Midoriku, Yokohama 226-8503 , Japan
| | - Andrea Konečná
- ICFO-Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels , Barcelona , Spain
| | - Taeko Matsukata
- Department of Materials Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta , Midoriku, Yokohama 226-8503 , Japan
| | - Zac Thollar
- Department of Materials Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta , Midoriku, Yokohama 226-8503 , Japan
| | - Takayuki Okamoto
- Advanced Device Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels , Barcelona , Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats , Passeig Lluís Companys, 23 , 08010 Barcelona , Spain
| | - Naoki Yamamoto
- Department of Materials Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta , Midoriku, Yokohama 226-8503 , Japan
| |
Collapse
|
47
|
Mao P, Liu C, Chen Q, Han M, Maier SA, Zhang S. Broadband SERS detection with disordered plasmonic hybrid aggregates. NANOSCALE 2020; 12:93-102. [PMID: 31674618 DOI: 10.1039/c9nr08118f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic nanostructures possessing broadband intense field enhancement over a large area are highly desirable for nanophotonic and plasmonic device applications. In this study, 3D Ag hybrid nanoaggregates (3D-Ag-HNAs) are achieved via a highly efficient oblique angle gas-phase cluster beam deposition method. Not only can such structures produce a high density of plasmonic hot-spots to improve Raman sensitivity, but more importantly they generate kissing point-geometric singularities with a broadband optical response. We succeed in obtaining an experimental SERS enhancement factor beyond 4 × 107 in the visible range, providing an optimal sensing platform for different analytes. Combined with good uniformity, reproducibility and ease of fabrication, our 3D-Ag-HNA offers a candidate for new generations of SERS systems.
Collapse
Affiliation(s)
- Peng Mao
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China and School of Physics and Astronomy, University of Birmingham, B15 2TT, UK.
| | - Changxu Liu
- School of Physics and Astronomy, University of Birmingham, B15 2TT, UK. and Chair in Hybrid Nanosystems, Nanoinstitut München, Fakultät für Physik, Ludwig Maximilians-Universität München, 80539 München, Germany.
| | - Qiang Chen
- Key Laboratory of Intelligent Optical Sensing and Integration, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China.
| | - Min Han
- Key Laboratory of Intelligent Optical Sensing and Integration, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China.
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitut München, Fakultät für Physik, Ludwig Maximilians-Universität München, 80539 München, Germany.
| | - Shuang Zhang
- School of Physics and Astronomy, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
48
|
Ren M, Cai W, Xu J. Tailorable Dynamics in Nonlinear Optical Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806317. [PMID: 31215095 DOI: 10.1002/adma.201806317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Controlling light with light is essential for all-optical switching, data processing in optical communications and computing. Until now, all-optical control of light has relied almost exclusively on nonlinear optical interactions in materials. Achieving giant nonlinearities under low light intensity is essential for weak-light nonlinear optics. In the past decades, such weak-light nonlinear phenomena have been demonstrated in photorefractive and photochromic materials. However, their bulky size and slow speed have hindered practical applications. Metasurfaces, which enhance light-matter interactions at the nanoscale, provide a new framework with tailorable nonlinearities for weak-light nonlinear dynamics. Current advances in nonlinear metasurfaces are introduced, with a special emphasis on all-optical light controls. The tuning of the nonlinearity values using metasurfaces, including enhancement and sign reversal is presented. The tailoring of the transient behaviors of nonlinearities in metasurfaces to achieve femtosecond switching speed is also discussed. Furthermore, the impact of quantum effects from the metasurface on the nonlinearities is introduced. Finally, an outlook on the future development of this energetic field is offered.
Collapse
Affiliation(s)
- Mengxin Ren
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin, 300071, P. R. China
| | - Wei Cai
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin, 300071, P. R. China
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
49
|
He X, Tang J, Hu H, Shi J, Guan Z, Zhang S, Xu H. Electrically Driven Optical Antennas Based on Template Dielectrophoretic Trapping. ACS NANO 2019; 13:14041-14047. [PMID: 31738504 DOI: 10.1021/acsnano.9b06376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An electrically driven optical antenna (EDOA) provides a nanoscale light-emitting scheme that is appealing for biosensors, plasmonic displays, and on-chip optoelectronic circuits. The EDOA (consisting of metal nanoparticles (NPs)) excited by inelastic tunneling electrons has attracted broad interest due to its terahertz modulation bandwidth and microelectronics-compatible dimensions. Currently, the efficient fabrication of EDOA is hampered by the ultrasmall size of NPs and the requirement of controllable preparation. Here, we overcome this limitation by accurately positioning thiol-covered gold NPs onto predesigned electrodes using dielectrophoresis trapping. The combination of a high-quality molecule tunnel barrier and the template trapping ensures that the EDOA can operate stably in ambient conditions. More importantly, the template trapping allows fabrication of EDOA with different numbers and arrangements of NPs by controlling the size and orientation of the template. This technology provides a way to fabricate controllable optoelectronic devices based on NPs and is promising for compact and smart photonic devices.
Collapse
Affiliation(s)
- Xiaobo He
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education , Wuhan University , Wuhan 430072 , China
| | - Jibo Tang
- The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , China
| | - Huatian Hu
- The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , China
| | - Junjun Shi
- The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , China
| | - Zhiqiang Guan
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education , Wuhan University , Wuhan 430072 , China
| | - Shunping Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education , Wuhan University , Wuhan 430072 , China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education , Wuhan University , Wuhan 430072 , China
- The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
50
|
|