1
|
Du C, Liu J, Liu S, Xiao P, Chen Z, Chen H, Huang W, Lei Y. Bone and Joint-on-Chip Platforms: Construction Strategies and Applications. SMALL METHODS 2024; 8:e2400436. [PMID: 38763918 DOI: 10.1002/smtd.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Indexed: 05/21/2024]
Abstract
Organ-on-a-chip, also known as "tissue chip," is an advanced platform based on microfluidic systems for constructing miniature organ models in vitro. They can replicate the complex physiological and pathological responses of human organs. In recent years, the development of bone and joint-on-chip platforms aims to simulate the complex physiological and pathological processes occurring in human bones and joints, including cell-cell interactions, the interplay of various biochemical factors, the effects of mechanical stimuli, and the intricate connections between multiple organs. In the future, bone and joint-on-chip platforms will integrate the advantages of multiple disciplines, bringing more possibilities for exploring disease mechanisms, drug screening, and personalized medicine. This review explores the construction and application of Organ-on-a-chip technology in bone and joint disease research, proposes a modular construction concept, and discusses the new opportunities and future challenges in the construction and application of bone and joint-on-chip platforms.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pengcheng Xiao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuolin Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
2
|
Lou C, Yang H, Hou Y, Huang H, Qiu J, Wang C, Sang Y, Liu H, Han L. Microfluidic Platforms for Real-Time In Situ Monitoring of Biomarkers for Cellular Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307051. [PMID: 37844125 DOI: 10.1002/adma.202307051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Cellular processes are mechanisms carried out at the cellular level that are aimed at guaranteeing the stability of the organism they comprise. The investigation of cellular processes is key to understanding cell fate, understanding pathogenic mechanisms, and developing new therapeutic technologies. Microfluidic platforms are thought to be the most powerful tools among all methodologies for investigating cellular processes because they can integrate almost all types of the existing intracellular and extracellular biomarker-sensing methods and observation approaches for cell behavior, combined with precisely controlled cell culture, manipulation, stimulation, and analysis. Most importantly, microfluidic platforms can realize real-time in situ detection of secreted proteins, exosomes, and other biomarkers produced during cell physiological processes, thereby providing the possibility to draw the whole picture for a cellular process. Owing to their advantages of high throughput, low sample consumption, and precise cell control, microfluidic platforms with real-time in situ monitoring characteristics are widely being used in cell analysis, disease diagnosis, pharmaceutical research, and biological production. This review focuses on the basic concepts, recent progress, and application prospects of microfluidic platforms for real-time in situ monitoring of biomarkers in cellular processes.
Collapse
Affiliation(s)
- Chengming Lou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hongru Yang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ying Hou
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Haina Huang
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chunhua Wang
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266000, P. R. China
| |
Collapse
|
3
|
Wang Y, Zhao J, Jiang Z, Ma Y, Zhang R. Single-Cell Proteomics by Barcoded Phage-Displayed Screening via an Integrated Microfluidic Chip. Methods Mol Biol 2024; 2793:101-112. [PMID: 38526726 DOI: 10.1007/978-1-0716-3798-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Recent advancements in the profiling of proteomes at the single-cell level necessitate the development of quantitative and versatile platforms, particularly for analyzing rare cells like circulating tumor cells (CTCs). In this chapter, we present an integrated microfluidic chip that utilizes magnetic nanoparticles to capture single tumor cells with exceptional efficiency. This chip enables on-chip incubation and facilitates in situ analysis of cell-surface protein expression. By combining phage-based barcoding with next-generation sequencing technology, we successfully monitored changes in the expression of multiple surface markers induced by CTC adherence. This innovative platform holds significant potential for comprehensive screening of multiple surface antigens simultaneously in rare cells, offering single-cell resolution. Consequently, it will contribute valuable insights into biological heterogeneity and human disease.
Collapse
Affiliation(s)
- Yujiao Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| | - Jing Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Zhenwei Jiang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| | - Yuan Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China.
| | - Rui Zhang
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Tian Z, Yuan Z, Duarte PA, Shaheen M, Wang S, Haddon L, Chen J. Highly efficient cell-microbead encapsulation using dielectrophoresis-assisted dual-nanowell array. PNAS NEXUS 2023; 2:pgad155. [PMID: 37252002 PMCID: PMC10210622 DOI: 10.1093/pnasnexus/pgad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Recent advancements in micro/nanofabrication techniques have led to the development of portable devices for high-throughput single-cell analysis through the isolation of individual target cells, which are then paired with functionalized microbeads. Compared with commercially available benchtop instruments, portable microfluidic devices can be more widely and cost-effectively adopted in single-cell transcriptome and proteome analysis. The sample utilization and cell pairing rate (∼33%) of current stochastic-based cell-bead pairing approaches are fundamentally limited by Poisson statistics. Despite versatile technologies having been proposed to reduce randomness during the cell-bead pairing process in order to statistically beat the Poisson limit, improvement of the overall pairing rate of a single cell to a single bead is typically based on increased operational complexity and extra instability. In this article, we present a dielectrophoresis (DEP)-assisted dual-nanowell array (ddNA) device, which employs an innovative microstructure design and operating process that decouples the bead- and cell-loading processes. Our ddNA design contains thousands of subnanoliter microwell pairs specifically tailored to fit both beads and cells. Interdigitated electrodes (IDEs) are placed below the microwell structure to introduce a DEP force on cells, yielding high single-cell capture and pairing rates. Experimental results with human embryonic kidney cells confirmed the suitability and reproducibility of our design. We achieved a single-bead capture rate of >97% and a cell-bead pairing rate of >75%. We anticipate that our device will enhance the application of single-cell analysis in practical clinical use and academic research.
Collapse
Affiliation(s)
- Zuyuan Tian
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Zhipeng Yuan
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Pedro A Duarte
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Mohamed Shaheen
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, 127 Youyi St West, 710129 Xi’an, Shannxi, China
| | - Lacey Haddon
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Jie Chen
- To whom correspondence should be addressed:
| |
Collapse
|
5
|
Cedillo-Alcantar DF, Rodriguez-Moncayo R, Maravillas-Montero JL, Garcia-Cordero JL. On-Chip Analysis of Protein Secretion from Single Cells Using Microbead Biosensors. ACS Sens 2023; 8:655-664. [PMID: 36710459 DOI: 10.1021/acssensors.2c02148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The profiling of the effector functions of single immune cells─including cytokine secretion─can lead to a deeper understanding of how the immune system operates and to potential diagnostics and therapeutical applications. Here, we report a microfluidic device that pairs single cells and antibody-functionalized microbeads in hydrodynamic traps to quantitate cytokine secretion. The device contains 1008 microchambers, each with a volume of ∼500 pL, divided into six different sections individually addressed to deliver an equal number of chemical stimuli. Integrating microvalves allowed us to isolate cell/bead pairs, preventing cross-contamination with factors secreted by adjacent cells. We implemented a fluorescence sandwich immunoassay on the biosensing microbeads with a limit of detection of 9 pg/mL and were able to detect interleukin-8 (IL-8) secreted by single blood-derived human monocytes in response to different concentrations of LPS. Finally, our platform allowed us to observe a significant decrease in the number of IL-8-secreting monocytes when paracrine signaling becomes disrupted. Overall, our platform could have a variety of applications for which the analysis of cellular function heterogeneity is necessary, such as cancer research, antibody discovery, or rare cell screening.
Collapse
Affiliation(s)
- Diana F Cedillo-Alcantar
- Laboratory of Microtechnologies for Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Monterrey 66628, Nuevo León Mexico
| | - Roberto Rodriguez-Moncayo
- Laboratory of Microtechnologies for Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Monterrey 66628, Nuevo León Mexico
| | - Jose L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Jose L Garcia-Cordero
- Laboratory of Microtechnologies for Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Monterrey 66628, Nuevo León Mexico.,Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel 4058, Switzerland
| |
Collapse
|
6
|
Dietsche CL, Hirth E, Dittrich PS. Multiplexed analysis of signalling proteins at the single-immune cell level. LAB ON A CHIP 2023; 23:362-371. [PMID: 36606762 PMCID: PMC9844122 DOI: 10.1039/d2lc00891b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
High numbers of tumour-associated macrophages (TAMs) in the tumour microenvironment are associated with a poor prognosis. However, the effect of TAMs on tumour progression depends on the proteins secreted by individual TAMs. Here, we developed a microfluidic platform to quantitatively measure the secreted proteins of individual macrophages as well as macrophages polarized by the culture medium derived from breast cancer cells. The macrophages were captured in hydrodynamic traps and isolated with pneumatically activated valves for single-cell analysis. Barcoded and functionalized magnetic beads were captured in specially designed traps to determine the secreted proteins by immunoassay. Individual bead trapping facilitated the recording of the protein concentration since all beads were geometrically constrained in the same focal plane, which is an important requirement for rapid and automated image analysis. By determining three signaling proteins, namely interleuking 10 (IL-10), vascular endothelial growth factor (VEGF), and tumour necrosis factor alpha (TNF-α), we successfully distinguished between differently polarized macrophages. The results indicate a heterogeneous pattern, with M2 macrophages characterized by a higher secretion of IL-10, while M1 macrophages secrete high levels of the inflammatory cytokine TNF-α. The macrophages treated with the supernatant from cancer cells show a similar signalling pattern to M2 macrophages with an increased secretion of the pro-tumoural cytokine VEGF. This microfluidic method resolves correlations in signaling protein expression at the single-cell level. Ultimately, single-macrophage analysis can contribute to the development of novel therapies aimed at reversing M2-like TAMs into M1-like TAMs.
Collapse
Affiliation(s)
- Claudius L Dietsche
- Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4125 Basel, Switzerland.
| | - Elisabeth Hirth
- Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4125 Basel, Switzerland.
| | - Petra S Dittrich
- Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4125 Basel, Switzerland.
| |
Collapse
|
7
|
Zhang T, Chen X, Chen D, Wang J, Chen J. Development of constrictional microchannels and the recurrent neural network in single-cell protein analysis. Front Bioeng Biotechnol 2023; 11:1195940. [PMID: 37207125 PMCID: PMC10190128 DOI: 10.3389/fbioe.2023.1195940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction: As the golden approach of single-cell analysis, fluorescent flow cytometry can estimate single-cell proteins with high throughputs, which, however, cannot translate fluorescent intensities into protein numbers. Methods: This study reported a fluorescent flow cytometry based on constrictional microchannels for quantitative measurements of single-cell fluorescent levels and the recurrent neural network for data analysis of fluorescent profiles for high-accuracy cell-type classification. Results: As a demonstration, fluorescent profiles (e.g., FITC labeled β-actin antibody, PE labeled EpCAM antibody and PerCP labeled β-tubulin antibody) of individual A549 and CAL 27 cells were firstly measured and translated into protein numbers of 0.56 ± 0.43 × 104, 1.78 ± 1.06 × 106 and 8.11 ± 4.89 × 104 of A549 cells (ncell = 10232), and 3.47 ± 2.45 × 104, 2.65 ± 1.19 × 106 and 8.61 ± 5.25 × 104 of CAL 27 cells (ncell = 16376) based on the equivalent model of the constrictional microchannel. Then, the feedforward neural network was used to process these single-cell protein expressions, producing a classification accuracy of 92.0% for A549 vs. CAL 27 cells. In order to further increase the classification accuracies, as a key subtype of the recurrent neural network, the long short-term memory (LSTM) neural network was adopted to process fluorescent pulses sampled in constrictional microchannels directly, producing a classification accuracy of 95.5% for A549 vs. CAL 27 cells after optimization. Discussion: This fluorescent flow cytometry based on constrictional microchannels and recurrent neural network can function as an enabling tool of single-cell analysis and contribute to the development of quantitative cell biology.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Junbo Wang, ; Jian Chen,
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Junbo Wang, ; Jian Chen,
| |
Collapse
|
8
|
Miwa H, Dimatteo R, de Rutte J, Ghosh R, Di Carlo D. Single-cell sorting based on secreted products for functionally defined cell therapies. MICROSYSTEMS & NANOENGINEERING 2022; 8:84. [PMID: 35874174 PMCID: PMC9303846 DOI: 10.1038/s41378-022-00422-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 05/13/2023]
Abstract
Cell therapies have emerged as a promising new class of "living" therapeutics over the last decade and have been particularly successful for treating hematological malignancies. Increasingly, cellular therapeutics are being developed with the aim of treating almost any disease, from solid tumors and autoimmune disorders to fibrosis, neurodegenerative disorders and even aging itself. However, their therapeutic potential has remained limited due to the fundamental differences in how molecular and cellular therapies function. While the structure of a molecular therapeutic is directly linked to biological function, cells with the same genetic blueprint can have vastly different functional properties (e.g., secretion, proliferation, cell killing, migration). Although there exists a vast array of analytical and preparative separation approaches for molecules, the functional differences among cells are exacerbated by a lack of functional potency-based sorting approaches. In this context, we describe the need for next-generation single-cell profiling microtechnologies that allow the direct evaluation and sorting of single cells based on functional properties, with a focus on secreted molecules, which are critical for the in vivo efficacy of current cell therapies. We first define three critical processes for single-cell secretion-based profiling technology: (1) partitioning individual cells into uniform compartments; (2) accumulating secretions and labeling via reporter molecules; and (3) measuring the signal associated with the reporter and, if sorting, triggering a sorting event based on these reporter signals. We summarize recent academic and commercial technologies for functional single-cell analysis in addition to sorting and industrial applications of these technologies. These approaches fall into three categories: microchamber, microfluidic droplet, and lab-on-a-particle technologies. Finally, we outline a number of unmet needs in terms of the discovery, design and manufacturing of cellular therapeutics and how the next generation of single-cell functional screening technologies could allow the realization of robust cellular therapeutics for all patients.
Collapse
Affiliation(s)
- Hiromi Miwa
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- Partillion Bioscience, Los Angeles, CA 90095 USA
| | - Rajesh Ghosh
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- Department of Mechanical and Aerospace Engineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
9
|
Xie H, Ding X. The Intriguing Landscape of Single-Cell Protein Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105932. [PMID: 35199955 PMCID: PMC9036017 DOI: 10.1002/advs.202105932] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Indexed: 05/15/2023]
Abstract
Profiling protein expression at single-cell resolution is essential for fundamental biological research (such as cell differentiation and tumor microenvironmental examination) and clinical precision medicine where only a limited number of primary cells are permitted. With the recent advances in engineering, chemistry, and biology, single-cell protein analysis methods are developed rapidly, which enable high-throughput and multiplexed protein measurements in thousands of individual cells. In combination with single cell RNA sequencing and mass spectrometry, single-cell multi-omics analysis can simultaneously measure multiple modalities including mRNAs, proteins, and metabolites in single cells, and obtain a more comprehensive exploration of cellular signaling processes, such as DNA modifications, chromatin accessibility, protein abundance, and gene perturbation. Here, the recent progress and applications of single-cell protein analysis technologies in the last decade are summarized. Current limitations, challenges, and possible future directions in this field are also discussed.
Collapse
Affiliation(s)
- Haiyang Xie
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
10
|
Nuti N, Rottmann P, Stucki A, Koch P, Panke S, Dittrich PS. A Multiplexed Cell-Free Assay to Screen for Antimicrobial Peptides in Double Emulsion Droplets. Angew Chem Int Ed Engl 2022; 61:e202114632. [PMID: 34989471 PMCID: PMC9303939 DOI: 10.1002/anie.202114632] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/17/2022]
Abstract
The global surge in bacterial resistance against traditional antibiotics triggered intensive research for novel compounds, with antimicrobial peptides (AMPs) identified as a promising candidate. Automated methods to systematically generate and screen AMPs according to their membrane preference, however, are still lacking. We introduce a novel microfluidic system for the simultaneous cell-free production and screening of AMPs for their membrane specificity. On our device, AMPs are cell-free produced within water-in-oil-in-water double emulsion droplets, generated at high frequency. Within each droplet, the peptides can interact with different classes of co-encapsulated liposomes, generating a membrane-specific fluorescent signal. The double emulsions can be incubated and observed in a hydrodynamic trapping array or analyzed via flow cytometry. Our approach provides a valuable tool for the discovery and development of membrane-active antimicrobials.
Collapse
Affiliation(s)
- Nicola Nuti
- Department of Biosystems Science and EngineeringBioanalytics GroupETH ZürichMattenstrasse 264058BaselSwitzerland
| | - Philipp Rottmann
- Department of Biosystems Science and EngineeringBioprocess LaboratoryETH ZürichMattenstrasse 264058BaselSwitzerland
| | - Ariane Stucki
- Department of Biosystems Science and EngineeringBioanalytics GroupETH ZürichMattenstrasse 264058BaselSwitzerland
| | - Philipp Koch
- Department of Biosystems Science and EngineeringBioprocess LaboratoryETH ZürichMattenstrasse 264058BaselSwitzerland
| | - Sven Panke
- Department of Biosystems Science and EngineeringBioprocess LaboratoryETH ZürichMattenstrasse 264058BaselSwitzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and EngineeringBioanalytics GroupETH ZürichMattenstrasse 264058BaselSwitzerland
| |
Collapse
|
11
|
Dittrich PS, Nuti N, Rottmann P, Stucki A, Koch P, Panke S. A Multiplexed Cell‐Free Assay to Screen for Antimicrobial Peptides in Double Emulsion Droplets. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Petra S Dittrich
- Eidgenossische Technische Hochschule Zurich Biosystems and Engineering Mattenstrasse 26 4058 Basel SWITZERLAND
| | - Nicola Nuti
- ETH Zurich: Eidgenossische Technische Hochschule Zurich Biosystems Science and Engineering SWITZERLAND
| | - Philipp Rottmann
- ETH Zurich: Eidgenossische Technische Hochschule Zurich Biosystems Science and Engineering SWITZERLAND
| | - Ariane Stucki
- ETH Zurich: Eidgenossische Technische Hochschule Zurich Biosystems Science and Engineering SWITZERLAND
| | - Philipp Koch
- ETH Zurich: Eidgenossische Technische Hochschule Zurich Biosystems Science and Engineering SWITZERLAND
| | - Sven Panke
- ETH Zurich: Eidgenossische Technische Hochschule Zurich Biosysystems Science and Engineering SWITZERLAND
| |
Collapse
|
12
|
Ma Y, Chen K, Xia F, Atwal R, Wang H, Ahmed SU, Cardarelli L, Lui I, Duong B, Wang Z, Wells JA, Sidhu SS, Kelley SO. Phage-Based Profiling of Rare Single Cells Using Nanoparticle-Directed Capture. ACS NANO 2021; 15:19202-19210. [PMID: 34813293 DOI: 10.1021/acsnano.1c03935] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advances in single-cell level profiling of the proteome require quantitative and versatile platforms, especially for rare cell analyses such as circulating tumor cell (CTC) profiling. Here we demonstrate an integrated microfluidic chip that uses magnetic nanoparticles to capture single tumor cells with high efficiency, permits on-chip incubation, and facilitates in situ cell-surface protein expression analysis. Combined with phage-based barcoding and next-generation sequencing technology, we were able to monitor changes in the expression of multiple surface markers stimulated in response to CTC adherence. Interestingly, we found fluctuations in the expression of Frizzled2 (FZD2) that reflected the microenvironment of the single cells. This platform has a high potential for in-depth screening of multiple surface antigens simultaneously in rare cells with single-cell resolution, which will provide further insights regarding biological heterogeneity and human disease.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P.R. China
| | - Kangfu Chen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Fan Xia
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Randy Atwal
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Sharif U Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Lia Cardarelli
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Bill Duong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Zongjie Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Sachdev S Sidhu
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
13
|
Abali F, Baghi N, Mout L, Broekmaat JJ, Tibbe AGJ, Terstappen LWMM. Measurement of the Drug Sensitivity of Single Prostate Cancer Cells. Cancers (Basel) 2021; 13:cancers13236083. [PMID: 34885192 PMCID: PMC8656582 DOI: 10.3390/cancers13236083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cells communicate mainly through the secretion of proteins. Impaired protein secretion can indicate the development of disease. Cancer cell heterogeneity and acquired resistance to therapy are, however, reducing the effectiveness of cancer treatments. As cancer cells change during the course of the disease, sampling of cancer cells at the time of treatment is needed in order to determine which drugs will be effective. This paper describes a method for measuring secreted prostate specific antigen (PSA) protein from thousands of prostate cancer (PCa) cells. Furthermore, we show that the PSA secretion of individual cells in microwells can be stimulated or inhibited with drugs. To this end, we believe that this method could accelerate the development of new drugs, improve our understanding of resistance to therapy, and, ultimately, improve personalized cancer therapy. Abstract The treatment of cancer faces a serious challenge as cancer cells within patients are heterogeneous and frequently resistant to therapeutic drugs. Here, we introduce a technology enabling the assessment of single cancer cells exposed to different drugs. PCa cells were individually sorted in self-seeding microwells, cultured for 24 h, and then exposed to several drugs to induce (R1881) or inhibit (Enzalutamide/Abiraterone) the secretion of a protein (PSA). Cell viability and PSA secretion of each individual prostate cell were monitored over a 3-day period. The PSA protein secreted by each cell was captured on a PVDF membrane through a pore in the bottom of each well. The basal PSA secretion was found to be 6.1 ± 4.5 and 3.7 ± 1.9 pg/cell/day for LNCaP and VCaP, respectively. After exposure to R1881, the PSA secretion increased by ~90% on average and was not altered for ~10% of the cells. PSA production decreased in the majority of cells after exposure to enzalutamide and abiraterone.
Collapse
Affiliation(s)
- Fikri Abali
- Medical Cell Biophysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands;
- Correspondence: (F.A.); (L.W.M.M.T.)
| | - Narges Baghi
- Medical Cell Biophysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Lisanne Mout
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Joska J. Broekmaat
- VyCAP B.V., Capitool 41, 7521 PL Enschede, The Netherlands; (J.J.B.); (A.G.J.T.)
| | - Arjan G. J. Tibbe
- VyCAP B.V., Capitool 41, 7521 PL Enschede, The Netherlands; (J.J.B.); (A.G.J.T.)
| | - Leon W. M. M. Terstappen
- Medical Cell Biophysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands;
- Correspondence: (F.A.); (L.W.M.M.T.)
| |
Collapse
|
14
|
Xie H, Appelt JW, Jenkins RW. Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology. Cancers (Basel) 2021; 13:cancers13236052. [PMID: 34885161 PMCID: PMC8656483 DOI: 10.3390/cancers13236052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The clinical success of cancer immunotherapy targeting immune checkpoints (e.g., PD-1, CTLA-4) has ushered in a new era of cancer therapeutics aimed at promoting antitumor immunity in hopes of offering durable clinical responses for patients with advanced, metastatic cancer. This success has also reinvigorated interest in developing tumor model systems that recapitulate key features of antitumor immune responses to complement existing in vivo tumor models. Patient-derived tumor models have emerged in recent years to facilitate study of tumor–immune dynamics. Microfluidic technology has enabled development of microphysiologic systems (MPSs) for the evaluation of the tumor microenvironment, which have shown early promise in studying tumor–immune dynamics. Further development of microfluidic-based “tumor-on-a-chip” MPSs to study tumor–immune interactions may overcome several key challenges currently facing tumor immunology. Abstract Recent advances in cancer immunotherapy have led a paradigm shift in the treatment of multiple malignancies with renewed focus on the host immune system and tumor–immune dynamics. However, intrinsic and acquired resistance to immunotherapy limits patient benefits and wider application. Investigations into the mechanisms of response and resistance to immunotherapy have demonstrated key tumor-intrinsic and tumor-extrinsic factors. Studying complex interactions with multiple cell types is necessary to understand the mechanisms of response and resistance to cancer therapies. The lack of model systems that faithfully recapitulate key features of the tumor microenvironment (TME) remains a challenge for cancer researchers. Here, we review recent advances in TME models focusing on the use of microfluidic technology to study and model the TME, including the application of microfluidic technologies to study tumor–immune dynamics and response to cancer therapeutics. We also discuss the limitations of current systems and suggest future directions to utilize this technology to its highest potential.
Collapse
Affiliation(s)
- Hongyan Xie
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Jackson W. Appelt
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: ; Tel.: +617-726-9372; Fax: +844-542-5959
| |
Collapse
|
15
|
He CK, Hsu CH. Microfluidic technology for multiple single-cell capture. BIOMICROFLUIDICS 2021; 15:061501. [PMID: 34777676 PMCID: PMC8577867 DOI: 10.1063/5.0057685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/06/2021] [Indexed: 05/25/2023]
Abstract
Microfluidic devices are widely used in single-cell capture and for pairing single cells or groups of cells for cell-cell interaction analysis; these advances have improved drug screening and cell signal transduction analysis. The complex in vivo environment involves interactions between two cells and among multiple cells of the same or different phenotypes. This study reviewed the core principles and performance of several microfluidic multiple- and single-cell capture methods, namely, the microwell, valve, trap, and droplet methods. The advantages and disadvantages of the methods were compared, and suggestions regarding their application to multiple-cell capture were provided. The results may serve as a reference for research on microfluidic multiple single-cell coculture technology.
Collapse
|
16
|
Jusková P, Schmitt S, Armbrecht L, Dittrich PS. Microbial factories: monitoring vitamin B 2 production by Escherichia coli in microfluidic cultivation chambers. LAB ON A CHIP 2021; 21:4071-4080. [PMID: 34618882 PMCID: PMC8547325 DOI: 10.1039/d1lc00621e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Microbial cells represent a standard production host for various important biotechnological products. Production yields can be increased by optimising strains and growth conditions and understanding deviations in production rates over time or within the microbial population. We introduce here microfluidic cultivation chambers for highly parallel studies on microbial cultures, enabling continuous biosynthesis monitoring of the industrially relevant product by Escherichia coli cells. The growth chambers are defined by ring-valves that encapsulate a volume of 200 pL when activated. Bacterial cells, labelled with magnetic beads, are inoculated in a small magnetic trap, positioned in the centre of each chamber. Afterwards, the ring-valves are partially activated, allowing for exchange reagents, such as the addition of fresh media or specific inducers of biosynthesis, while the bacterial cells and their progeny are maintained inside. On this platform, we monitor the production of riboflavin (vitamin B2). We used different variants of a riboflavin-overproducing bacterial strain with different riboflavin production levels and could distinguish them on the level of individual micro-colonies. In addition, we could also observe differences in the bacterial morphology with respect to the production. The presented platform represents a flexible microfluidic tool for further studies of microbial cell factories.
Collapse
Affiliation(s)
- Petra Jusková
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| | - Steven Schmitt
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Lucas Armbrecht
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
17
|
Organ-Chip Models: Opportunities for Precision Medicine in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13174487. [PMID: 34503294 PMCID: PMC8430573 DOI: 10.3390/cancers13174487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Among all types of cancer, Pancreatic Ductal Adenocarcinoma (PDAC) has one of the lowest survival rates, partly due to the failure of current chemotherapeutics. This treatment failure can be attributed to the complicated nature of the tumor microenvironment, where the rich fibro-inflammatory responses can hinder drug delivery and efficacy at the tumor site. Moreover, the high molecular variations in PDAC create a large heterogeneity in the tumor microenvironment among patients. Current in vivo and in vitro options for drug testing are mostly ineffective in recapitulating the complex cellular interactions and individual variations in the PDAC tumor microenvironment, and as a result, they fail to provide appropriate models for individualized drug screening. Organ-on-a-chip technology combined with patient-derived organoids may provide the opportunity for developing personalized treatment options in PDAC. Abstract Pancreatic Ductal Adenocarcinoma (PDAC) is an expeditiously fatal malignancy with a five-year survival rate of 6–8%. Conventional chemotherapeutics fail in many cases due to inadequate primary response and rapidly developing resistance. This treatment failure is particularly challenging in pancreatic cancer because of the high molecular heterogeneity across tumors. Additionally, a rich fibro-inflammatory component within the tumor microenvironment (TME) limits the delivery and effectiveness of anticancer drugs, further contributing to the lack of response or developing resistance to conventional approaches in this cancer. As a result, there is an urgent need to model pancreatic cancer ex vivo to discover effective drug regimens, including those targeting the components of the TME on an individualized basis. Patient-derived three-dimensional (3D) organoid technology has provided a unique opportunity to study patient-specific cancerous epithelium. Patient-derived organoids cultured with the TME components can more accurately reflect the in vivo tumor environment. Here we present the advances in organoid technology and multicellular platforms that could allow for the development of “organ-on-a-chip” approaches to recapitulate the complex cellular interactions in PDAC tumors. We highlight the current advances of the organ-on-a-chip-based cancer models and discuss their potential for the preclinical selection of individualized treatment in PDAC.
Collapse
|
18
|
Briones J, Espulgar W, Koyama S, Takamatsu H, Tamiya E, Saito M. The future of microfluidics in immune checkpoint blockade. Cancer Gene Ther 2021; 28:895-910. [PMID: 33110208 DOI: 10.1038/s41417-020-00248-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 01/30/2023]
Abstract
Recent advances in microfluidic techniques have enabled researchers to study sensitivities to immune checkpoint therapy, to determine patients' response to particular antibody treatment. Utilization of this technology is helpful in antibody discovery and in the design of personalized medicine. A variety of microfluidic approaches can provide several functions in processes such as immunologic, genomic, and/or transcriptomic analysis with the aim of improving the efficacy and coverage of immunotherapy, particularly immune checkpoint blockade (ICB). To achieve this requires researchers to overcome the challenges in the current state of the technology. This review looks into the advancements in microfluidic technologies applied to researches on immune checkpoint blockade treatment and its potential shift from proof-of-principle stage to clinical application.
Collapse
Affiliation(s)
- Jonathan Briones
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Wilfred Espulgar
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shohei Koyama
- Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hyota Takamatsu
- Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Eiichi Tamiya
- AIST PhotoBIO-OIL, Osaka University, Suita, Osaka, 565-0871, Japan.,The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masato Saito
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan. .,AIST PhotoBIO-OIL, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
A design and optimization of a high throughput valve based microfluidic device for single cell compartmentalization and analysis. Sci Rep 2021; 11:12995. [PMID: 34155296 PMCID: PMC8217553 DOI: 10.1038/s41598-021-92472-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/08/2021] [Indexed: 12/04/2022] Open
Abstract
The need for high throughput single cell screening platforms has been increasing with advancements in genomics and proteomics to identify heterogeneity, unique cell subsets or super mutants from thousands of cells within a population. For real-time monitoring of enzyme kinetics and protein expression profiling, valve-based microfluidics or pneumatic valving that can compartmentalize single cells is advantageous by providing on-demand fluid exchange capability for several steps in assay protocol and on-chip culturing. However, this technique is throughput limited by the number of compartments in the array. Thus, one big challenge lies in increasing the number of microvalves to several thousand that can be actuated in the microfluidic device to confine enzymes and substrates in picoliter volumes. This work explores the design and optimizations done on a microfluidic platform to achieve high-throughput single cell compartmentalization as applied to single-cell enzymatic assay for protein expression quantification. Design modeling through COMSOL Multiphysics was utilized to determine the circular microvalve’s optimized parameters, which can close thousands of microchambers in an array at lower sealing pressure. Multiphysical modeling results demonstrated the relationships of geometry, valve dimensions, and sealing pressure, which were applied in the fabrication of a microfluidic device comprising of up to 5000 hydrodynamic traps and corresponding microvalves. Comparing the effects of geometry, actuation media and fabrication technique, a sealing pressure as low as 0.04 MPa was achieved. Applying to single cell enzymatic assay, variations in granzyme B activity in Jurkat and human PBMC cells were observed. Improvement in the microfluidic chip’s throughput is significant in single cell analysis applications, especially in drug discovery and treatment personalization.
Collapse
|
20
|
Bucheli OTM, Sigvaldadóttir I, Eyer K. Measuring single-cell protein secretion in immunology: Technologies, advances, and applications. Eur J Immunol 2021; 51:1334-1347. [PMID: 33734428 PMCID: PMC8252417 DOI: 10.1002/eji.202048976] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
The dynamics, nature, strength, and ultimately protective capabilities of an active immune response are determined by the extracellular constitution and concentration of various soluble factors. Generated effector cells secrete such mediators, including antibodies, chemo‐ and cytokines to achieve functionality. These secreted factors organize the individual immune cells into functional tissues, initiate, orchestrate, and regulate the immune response. Therefore, a single‐cell resolved analysis of protein secretion is a valuable tool for studying the heterogeneity and functionality of immune cells. This review aims to provide a comparative overview of various methods to characterize immune reactions by measuring single‐cell protein secretion. Spot‐based and cytometry‐based assays, such as ELISpot and flow cytometry, respectively, are well‐established methods applied in basic research and clinical settings. Emerging novel technologies, such as microfluidic platforms, offer new ways to measure and exploit protein secretion in immune reactions. Further technological advances will allow the deciphering of protein secretion in immunological responses with unprecedented detail, linking secretion to functionality. Here, we summarize the development and recent advances of tools that allow the analysis of protein secretion at the single‐cell level, and discuss and contrast their applications within immunology.
Collapse
Affiliation(s)
- Olivia T M Bucheli
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Ingibjörg Sigvaldadóttir
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
21
|
Wright NR, Rønnest NP, Sonnenschein N. Single-Cell Technologies to Understand the Mechanisms of Cellular Adaptation in Chemostats. Front Bioeng Biotechnol 2020; 8:579841. [PMID: 33392163 PMCID: PMC7775484 DOI: 10.3389/fbioe.2020.579841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
There is a growing interest in continuous manufacturing within the bioprocessing community. In this context, the chemostat process is an important unit operation. The current application of chemostat processes in industry is limited although many high yielding processes are reported in literature. In order to reach the full potential of the chemostat in continuous manufacture, the output should be constant. However, adaptation is often observed resulting in changed productivities over time. The observed adaptation can be coupled to the selective pressure of the nutrient-limited environment in the chemostat. We argue that population heterogeneity should be taken into account when studying adaptation in the chemostat. We propose to investigate adaptation at the single-cell level and discuss the potential of different single-cell technologies, which could be used to increase the understanding of the phenomena. Currently, none of the discussed single-cell technologies fulfill all our criteria but in combination they may reveal important information, which can be used to understand and potentially control the adaptation.
Collapse
Affiliation(s)
- Naia Risager Wright
- Novo Nordisk A/S, Bagsvaerd, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
22
|
Berlanda SF, Breitfeld M, Dietsche CL, Dittrich PS. Recent Advances in Microfluidic Technology for Bioanalysis and Diagnostics. Anal Chem 2020; 93:311-331. [DOI: 10.1021/acs.analchem.0c04366] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon F. Berlanda
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Maximilian Breitfeld
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Claudius L. Dietsche
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
23
|
Liu L, Li G, Xiang N, Huang X, Shiba K. Microfluidic Production of Autofluorescent BSA Hydrogel Microspheres and Their Sequential Trapping for Fluorescence-Based On-Chip Permanganate Sensing. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5886. [PMID: 33080899 PMCID: PMC7594029 DOI: 10.3390/s20205886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Microfabrication technologies have extensively advanced over the past decades, realizing a variety of well-designed compact devices for material synthesis, separation, analysis, monitoring, sensing, and so on. The performance of such devices has been undoubtedly improved, while it is still challenging to build up a platform by rationally combining multiple processes toward practical demands which become more diverse and complicated. Here, we present a simple and effective microfluidic system to produce and immobilize a well-defined functional material for on-chip permanganate (MnO4-) sensing. A droplet-based microfluidic approach that can continuously produce monodispersed droplets in a water-in-oil system is employed to prepare highly uniform microspheres (average size: 102 μm, coefficient of variation: 3.7%) composed of bovine serum albumin (BSA) hydrogel with autofluorescence properties in the presence of glutaraldehyde (GA). Each BSA hydrogel microsphere is subsequently immobilized in a microchannel with a hydrodynamic trapping structure to serve as an independent fluorescence unit. Various anions such as Cl-, NO3-, PO43-, Br-, BrO3-, ClO4-, SCN-, HCO3-, and MnO4- are individually flowed into the microchannel, resulting in significant fluorescence quenching only in the case of MnO4-. Linear correlation is confirmed at an MnO4- concentration from 20 to 80 μM, and a limit of detection is estimated to be 1.7 μM. Furthermore, we demonstrate the simultaneous immobilization of two kinds of different microspheres in parallel microchannels, pure BSA hydrogel microspheres and BSA hydrogel microspheres containing rhodamine B molecules, making it possible to acquire two fluorescence signals (green and yellow). The present microfluidics-based combined approach will be useful to record a fingerprint of complicated samples for sensing/identification purposes by flexibly designing the size and composition of the BSA hydrogel microspheres, immobilizing them in a desired manner and obtaining a specific pattern.
Collapse
Affiliation(s)
- Linbo Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (L.L.); (X.H.)
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China;
| | - Guangming Li
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (L.L.); (X.H.)
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun 130022, China
- State Key Laboratory of Rare Earth Resource Utilization, University of Science and Technology of China, Hefei 230026, China
| | - Nan Xiang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China;
| | - Xing Huang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (L.L.); (X.H.)
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kota Shiba
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (L.L.); (X.H.)
- Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
24
|
Armbrecht L, Rutschmann O, Szczerba BM, Nikoloff J, Aceto N, Dittrich PS. Quantification of Protein Secretion from Circulating Tumor Cells in Microfluidic Chambers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903237. [PMID: 32537399 PMCID: PMC7284199 DOI: 10.1002/advs.201903237] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 05/05/2023]
Abstract
Cancer cells can be released from a cancerous lesion and migrate into the circulatory system, from whereon they may form metastases at distant sites. Today, it is possible to infer cancer progression and treatment efficacy by determining the number of circulating tumor cells (CTCs) in the patient's blood at multiple time points; further valuable information about CTC phenotypes remains inaccessible. In this article, a microfluidic method for integrated capture, isolation, and analysis of membrane markers as well as quantification of proteins secreted by single CTCs and CTC clusters is introduced. CTCs are isolated from whole blood with extraordinary efficiencies above 95% using dedicated trapping structures that allow co-capture of functionalized magnetic beads to assess protein secretion. The patform is tested with multiple breast cancer cell lines spiked into human blood and mouse-model-derived CTCs. In addition to immunostaining, the secretion level of granulocyte growth stimulating factor (G-CSF), which is shown to be involved in neutrophil recruitment, is quantified The bead-based assay provides a limit of detection of 1.5 ng mL-1 or less than 3700 molecules per cell. Employing barcoded magnetic beads, this platform can be adapted for multiplexed analysis and can enable comprehensive functional CTC profiling in the future.
Collapse
Affiliation(s)
- Lucas Armbrecht
- Department for Biosystems Science and EngineeringBioanalytics GroupETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Ophélie Rutschmann
- Department for Biosystems Science and EngineeringBioanalytics GroupETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Barbara Maria Szczerba
- Department of BiomedicineCancer Metastasis LabUniversity of Basel and University Hospital BaselMattenstrasse 28BaselCH‐4058Switzerland
| | - Jonas Nikoloff
- Department for Biosystems Science and EngineeringBioanalytics GroupETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Nicola Aceto
- Department of BiomedicineCancer Metastasis LabUniversity of Basel and University Hospital BaselMattenstrasse 28BaselCH‐4058Switzerland
| | - Petra S. Dittrich
- Department for Biosystems Science and EngineeringBioanalytics GroupETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| |
Collapse
|
25
|
Saucedo-Espinosa MA, Dittrich PS. In-Droplet Electrophoretic Separation and Enrichment of Biomolecules. Anal Chem 2020; 92:8414-8421. [DOI: 10.1021/acs.analchem.0c01044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mario A. Saucedo-Espinosa
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
26
|
Chen Z, Memon K, Cao Y, Zhao G. A microfluidic approach for synchronous and nondestructive study of the permeability of multiple oocytes. MICROSYSTEMS & NANOENGINEERING 2020; 6:55. [PMID: 34567666 PMCID: PMC8433209 DOI: 10.1038/s41378-020-0160-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 05/11/2023]
Abstract
Investigation of oocyte membrane permeability plays a crucial role in fertility preservation, reproductive medicine, and reproductive pharmacology. However, the commonly used methods have disadvantages such as high time consumption, low efficiency, and cumbersome data processing. In addition, the developmental potential of oocytes after measurement has not been fully validated in previous studies. Moreover, oocytes can only maintain their best status in vitro within a very limited time. To address these limitations, we developed a novel multichannel microfluidic chip with newly designed micropillars that provide feasible and repeatable oocyte capture. The osmotic responses of three oocytes at different or the same cryoprotectant (CPA) concentrations were measured simultaneously, which greatly improved the measurement efficiency. Importantly, the CPA concentration dependence of mouse oocyte membrane permeability was found. Moreover, a neural network algorithm was employed to improve the efficiency and accuracy of data processing. Furthermore, analysis of fertilization and embryo transfer after perfusion indicated that the microfluidic approach does not damage the developmental potential of oocytes. In brief, we report a new method based on a multichannel microfluidic chip that enables synchronous and nondestructive measurement of the permeability of multiple oocytes.
Collapse
Affiliation(s)
- Zhongrong Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027 China
| | - Kashan Memon
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027 China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Anhui Medical University, Hefei, 230022 China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Anhui Medical University, Hefei, 230022 China
| |
Collapse
|