1
|
Gao Y, Hu Y, Wang J, Liu C, Im H, Jin W, Zhu W, Ge W, Zhao G, Yao Q, Wang P, Zhang M, Niu X, He Q, Wang Q. Neuroanatomical and functional substrates of the short video addiction and its association with brain transcriptomic and cellular architecture. Neuroimage 2025; 307:121029. [PMID: 39826772 DOI: 10.1016/j.neuroimage.2025.121029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Short video addiction (SVA) has emerged as a growing behavioral and social issue, driven by the widespread use of digital platforms that provide highly engaging, personalized, and brief video content. We investigated the neuroanatomical and functional substrates of SVA symptoms, alongside brain transcriptomic and cellular characteristics, using Inter-Subject Representational Similarity Analysis (IS-RSA) and transcriptomic approaches. Behaviorally, we found that dispositional envy was associated with SVA. Structurally, SVA was positively correlated with increased morphological volumes in the orbitofrontal cortex (OFC) and bilateral cerebellum. Functionally, the dorsolateral prefrontal cortex (DLPFC), posterior cingulate cortex (PCC), cerebellum, and temporal pole (TP) exhibited heightened spontaneous activity, which was positively correlated with SVA severity. Transcriptomic and cellular analyses also showed specific genes linked to gray matter volume (GMV) associated with SVA, with predominant expression in excitatory and inhibitory neurons. These genes showed distinct spatiotemporal expression patterns in the cerebellum during adolescence. This study offers a comprehensive framework integrating structural, functional, and neurochemical evidence to highlight the neural-transcriptomic underpinnings of SVA symptoms in a non-clinical population.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Ying Hu
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Jinlian Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Chang Liu
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | | | - Weipeng Jin
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Wenwei Zhu
- School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Wei Ge
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Guang Zhao
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Qiong Yao
- School of Educational and Psychology Science, Hefei Normal University, Hefei 230601, China
| | - Pinchun Wang
- College of Early Childhood Education, Tianjin Normal University, Tianjin 300387, China; Tianjin Normal School of Preschool Education, Tianjin 300387, China
| | - Manman Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Xin Niu
- Department of Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, United States
| | - Qinghua He
- Faculty of Psychology, MOE Key Lab of Cognition and Personality, Southwest University, Chongqing 400715, China.
| | - Qiang Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China; State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Institute of Mathematics and Interdisciplinary Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
2
|
Xie H, Wang Y, Zhu F, Zhang F, Wu B, Zhao Z, Gan R, Gong Q, Jia Z. Genes associated with cortical thickness alterations in behavioral addiction. Cereb Cortex 2024; 34:bhae298. [PMID: 39051658 DOI: 10.1093/cercor/bhae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Behavioral addiction (BA) is a conceptually new addictive phenotype characterized by compulsive reward-seeking behaviors despite adverse consequences. Currently, its underlying neurogenetic mechanism remains unclear. Here, this study aimed to investigate the association between cortical thickness (CTh) and genetic phenotypes in BA. We conducted a systematic search in five databases and extracted gene expression data from the Allen Human Brain Atlas. Meta-analysis of 10 studies (343 addicted individuals and 355 controls) revealed that the BA group showed thinner CTh in the precuneus, postcentral gyrus, orbital-frontal cortex, and dorsolateral prefrontal cortex (P < 0.005). Meta-regression showed that the CTh in the precuneus and postcentral gyrus were negatively associated with the addiction severity (P < 0.0005). More importantly, the CTh phenotype of BA was spatially correlated with the expression of 12 genes (false discovery rate [FDR] < 0.05), and the dopamine D2 receptor had the highest correlation (rho = 0.55). Gene enrichment analysis further revealed that the 12 genes were involved in the biological processes of behavior regulation and response to stimulus (FDR < 0.05). In conclusion, our findings demonstrated the thinner CTh in cognitive control-related brain areas in BA, which could be associated with the expression of genes involving dopamine metabolism and behavior regulation.
Collapse
Affiliation(s)
- Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Yuanyuan Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Fei Zhu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Feifei Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
| | - Baolin Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Ziru Zhao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Ruoqiu Gan
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Qiyong Gong
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, 699 Jinyuan Xi Road, Jimei District, 361021 Xiamen, Fujian, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Chen P, Wang J, Tang G, Chen G, Xiao S, Guo Z, Qi Z, Wang J, Wang Y. Large-scale network abnormality in behavioral addiction. J Affect Disord 2024; 354:743-751. [PMID: 38521138 DOI: 10.1016/j.jad.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Researchers have endeavored to ascertain the network dysfunction associated with behavioral addiction (BA) through the utilization of resting-state functional connectivity (rsFC). Nevertheless, the identification of aberrant patterns within large-scale networks pertaining to BA has proven to be challenging. METHODS Whole-brain seed-based rsFC studies comparing subjects with BA and healthy controls (HC) were collected from multiple databases. Multilevel kernel density analysis was employed to ascertain brain networks in which BA was linked to hyper-connectivity or hypo-connectivity with each prior network. RESULTS Fifty-six seed-based rsFC publications (1755 individuals with BA and 1828 HC) were included in the meta-analysis. The present study indicate that individuals with BAs exhibit (1) hypo-connectivity within the fronto-parietal network (FN) and hypo- and hyper-connectivity within the ventral attention network (VAN); (2) hypo-connectivity between the FN and regions of the VAN, hypo-connectivity between the VAN and regions of the FN and default mode network (DMN), hyper-connectivity between the DMN and regions of the FN; (3) hypo-connectivity between the reward system and regions of the sensorimotor network (SS), DMN and VAN; (4) hypo-connectivity between the FN and regions of the SS, hyper-connectivity between the VAN and regions of the SS. CONCLUSIONS These findings provide impetus for a conceptual framework positing a model of BA characterized by disconnected functional coordination among large-scale networks.
Collapse
Affiliation(s)
- Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou 510006, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zixuan Guo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Jurong Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
4
|
Zheng H, Zhai T, Lin X, Dong G, Yang Y, Yuan TF. The resting-state brain activity signatures for addictive disorders. MED 2024; 5:201-223.e6. [PMID: 38359839 PMCID: PMC10939772 DOI: 10.1016/j.medj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Addiction is a chronic and relapsing brain disorder. Despite numerous neuroimaging and neurophysiological studies on individuals with substance use disorder (SUD) or behavioral addiction (BEA), currently a clear neural activity signature for the addicted brain is lacking. METHODS We first performed systemic coordinate-based meta-analysis and partial least-squares regression to identify shared or distinct brain regions across multiple addictive disorders, with abnormal resting-state activity in SUD and BEA based on 46 studies (55 contrasts), including regional homogeneity (ReHo) and low-frequency fluctuation amplitude (ALFF) or fractional ALFF. We then combined Neurosynth, postmortem gene expression, and receptor/transporter distribution data to uncover the potential molecular mechanisms underlying these neural activity signatures. FINDINGS The overall comparison between addiction cohorts and healthy subjects indicated significantly increased ReHo and ALFF in the right striatum (putamen) and bilateral supplementary motor area, as well as decreased ReHo and ALFF in the bilateral anterior cingulate cortex and ventral medial prefrontal cortex, in the addiction group. On the other hand, neural activity in cingulate cortex, ventral medial prefrontal cortex, and orbitofrontal cortex differed between SUD and BEA subjects. Using molecular analyses, the altered resting activity recapitulated the spatial distribution of dopaminergic, GABAergic, and acetylcholine system in SUD, while this also includes the serotonergic system in BEA. CONCLUSIONS These results indicate both common and distinctive neural substrates underlying SUD and BEA, which validates and supports targeted neuromodulation against addiction. FUNDING This work was supported by the National Natural Science Foundation of China and Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.
Collapse
Affiliation(s)
- Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tianye Zhai
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Guangheng Dong
- Department of Psychology, Yunnan Normal University, Kunming 650092, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China; Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
5
|
Liu S, Wu P, Han X, Wang M, Kan Y, Qin K, Lan J. Mom, dad, put down your phone and talk to me: how parental phubbing influences problematic internet use among adolescents. BMC Psychol 2024; 12:125. [PMID: 38443976 PMCID: PMC10916140 DOI: 10.1186/s40359-024-01620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The positive association of parental phubbing with internalising and externalising problems among adolescents has gained academic traction. To date, limited research has investigated the association of parental phubbing and adolescents' Problematic Internet Use (PIU). Furthermore, the mechanism underlying this association is largely unknown. These gaps limit our understanding of family-related issues affecting PIU among adolescents. The present study explores whether there is a relation between parental phubbing and PIU and investigates the mechanisms underlying this relation among adolescents. METHODS The participants were 495 junior high schoolers aged 11-15 years. Participants completed questionnaires on their experiences with PIU, parental phubbing, parent-child relationships, and basic psychological needs satisfaction. RESULTS The results showed a direct and indirect positive association between parental phubbing and PIU. Furthermore, parental phubbing indirectly influenced PIU and was mediated by the parent-child relationship and basic psychological needs satisfaction, respectively. Moreover, the parent-child relationship and basic psychological needs satisfaction were sequentially mediated. CONCLUSIONS Our study highlights the crucial role of parents in the development of adolescent PIU and provides theoretical and practical guidelines for PIU prevention and intervention.
Collapse
Affiliation(s)
- Saifang Liu
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, 710061, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, 710061, Xi'an, China
| | - Peiqian Wu
- School of Educational Science, Anhui Normal University, 241000, Wuhu, China
| | - Xiaoxi Han
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, 710061, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, 710061, Xi'an, China
| | - Mengyun Wang
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, 710061, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, 710061, Xi'an, China
| | - Yuecui Kan
- Department of Medical Psychology, Psychological Science and Health Management Center, Harbin Medical University, Harbin, China
| | - Kuiyuan Qin
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, 710061, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, 710061, Xi'an, China
| | - Jijun Lan
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, 710061, Xi'an, China.
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, 710061, Xi'an, China.
| |
Collapse
|
6
|
Feng Q, Ren Z, Wei D, Liu C, Wang X, Li X, Tie B, Tang S, Qiu J. Connectome-based predictive modeling of Internet addiction symptomatology. Soc Cogn Affect Neurosci 2024; 19:nsae007. [PMID: 38334691 PMCID: PMC10878364 DOI: 10.1093/scan/nsae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/14/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Internet addiction symptomatology (IAS) is characterized by persistent and involuntary patterns of compulsive Internet use, leading to significant impairments in both physical and mental well-being. Here, a connectome-based predictive modeling approach was applied to decode IAS from whole-brain resting-state functional connectivity in healthy population. The findings showed that IAS could be predicted by the functional connectivity between prefrontal cortex with the cerebellum and limbic lobe and connections of the occipital lobe with the limbic lobe and insula lobe. The identified edges associated with IAS exhibit generalizability in predicting IAS within an independent sample. Furthermore, we found that the unique contributing network, which predicted IAS in contrast to the prediction networks of alcohol use disorder symptomatology (the range of symptoms and behaviors associated with alcohol use disorder), prominently comprised connections involving the occipital lobe and other lobes. The current data-driven approach provides the first evidence of the predictive brain features of IAS based on the organization of intrinsic brain networks, thus advancing our understanding of the neurobiological basis of Internet addiction disorder (IAD) susceptibility, and may have implications for the timely intervention of people potentially at risk of IAD.
Collapse
Affiliation(s)
- Qiuyang Feng
- Center for Studies of Education and Psychology of Ethnic Minorities in Southwest China, Southwest University (SWU), Chongqing 400715, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Zhiting Ren
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Cheng Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Xianrui Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Bijie Tie
- Center for Studies of Education and Psychology of Ethnic Minorities in Southwest China, Southwest University (SWU), Chongqing 400715, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Shuang Tang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Beijing 100000, China
| |
Collapse
|
7
|
Parsons TD. High-dimensional Metaverse Platforms and the Virtually Extended Self. J Cogn 2024; 7:2. [PMID: 38223229 PMCID: PMC10785999 DOI: 10.5334/joc.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 01/16/2024] Open
Abstract
The study of cognition has traditionally used low-dimensional measures and stimulus presentations that emphasize laboratory control over high-dimensional (i.e., ecologically valid) tools that reflect the activities and interactions in everyday living. Although controlled experimental presentations in laboratories have enhanced our understanding of cognition for both healthy and clinical cohorts, high dimensionality may extend reality and cognition. High-dimensional Metaverse approaches use extended reality (XR) platforms with dynamic stimulus presentations that couple humans and simulation technologies to extend cognition. The plan for this paper is as follows: The "Extending from low to high-dimensional studies of cognition" section discusses current needs for high-dimensional stimulus presentations that reflect everyday cognitive activities. In the "Algorithmic devices and digital extension of cognition" section, technologies of the extended mind are introduced with the Metaverse as a candidate cognitive process for extension. Next, in the "A neurocognitive framework for understanding technologies of the extended mind" section, a framework and model are proposed for understanding the neural correlates of human technology couplings in terms of automatic algorithmic processes (limbic-ventral striatal loop); reflective cognition (prefrontal-dorsal striatal loop); and algorithmic processing (insular cortex). The algorithmic processes of human-technology interactions can, over time, become an automated and algorithmic coupling of brain and technology. The manuscript ends with a brief summary and discussion of the ways in which the Metaverse can be used for studying how persons respond to high-dimensional stimuli in simulations that approximate real-world activities and interactions.
Collapse
Affiliation(s)
- Thomas D. Parsons
- Grace Center, Edson College, Arizona State University, Tempe, AZ, US
- Computational Neuropsychology & Simulation (CNS) Lab, Arizona State University, Tempe, AZ, US
| |
Collapse
|
8
|
Tian MY, Zhou XY, Liao XY, Gong K, Cheng XT, Qin C, Liu KZ, Chen J, Lei W. Brain structural alterations in internet gaming disorder: Focus on the mesocorticolimbic dopaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110806. [PMID: 37271367 DOI: 10.1016/j.pnpbp.2023.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
AIMS This study aimed to identify gray/white matter volume (GMV/WMV) alterations in Internet Gaming Disorder (IGD), with a special focus on the subregions of the mesocorticolimbic dopaminergic system and their clinical association. RESULTS Compared with healthy controls, IGDs showed bigger GMV in the bilateral caudate and the left nucleus accumbens (NAc), and bigger WMV in the inferior parietal lobule. The comparison of regions of interest (ROI) confirmed increased GMV in the bilateral caudate (including the dorsal anterior, body, and tail) and the left core of NAc in IGD, but no significant WMV alterations in the mesocorticolimbic dopaminergic system. GMVs in the left lateral orbital gyrus of orbitofrontal cortex (OFC) were associated with craving for games, while GMVs in the left anterior insula, right NAc, right caudate, and right OFC were associated with self-control in IGD. CONCLUSIONS IGD was accompanied by changed GMV, but not WMV, in the mesocorticolimbic dopaminergic system. GMV in the mesocorticolimbic dopaminergic system may contribute to impaired self-control and craving in IGD.
Collapse
Affiliation(s)
- Ming-Yuan Tian
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Nuclear Industry 416 Hospital, the 2nd Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xin-Yi Zhou
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Yuan Liao
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ke Gong
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Tong Cheng
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Qin
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ke-Zhi Liu
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Chen
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Wei Lei
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
9
|
Müller SM, Antons S, Wegmann E, Ioannidis K, King DL, Potenza MN, Chamberlain SR, Brand M. A systematic review and meta-analysis of risky decision-making in specific domains of problematic use of the internet: Evidence across different decision-making tasks. Neurosci Biobehav Rev 2023; 152:105271. [PMID: 37277009 DOI: 10.1016/j.neubiorev.2023.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
This systematic review summarizes empirical evidence on risky decision-making (objective risk and ambiguity) in specific domains of problematic use of the internet (PUI) focusing on online addictive behaviors. We conducted a pre-registered (PROSPERO: CRD42020188452) PubMed search for PUI domains: gaming, social-network use, online buying-shopping, online pornography use, and unspecified PUI. We used the Newcastle-Ottawa Scale for quality assessment. Relevant studies were identified only for gaming (n = 19), social-network use (n = 8), unspecified PUI (n = 7), and online gambling (n = 1). The meta-analyses included 25 studies (2498 participants) comparing PUI and control groups regarding decision-making performance under objective risk and ambiguity. Across PUI domains, individuals with PUI compared to control participants showed more disadvantageous decision-making in measures of objective risk (g = -0.42 [-0.69, -0.16], p = .002) but not ambiguity (g = -0.22 [-0.47, -0.04], p = .096). PUI domain and gender were significant moderators. In the risk domain, effects were particularly present in gaming disorder, especially in exclusively male samples. Overall, the paucity of empirical studies in the considered area necessitates further research to identify probable gender- and disorder-specific cognitive relationships.
Collapse
Affiliation(s)
- Silke M Müller
- Department of General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR), University of Duisburg-Essen, Duisburg, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany.
| | - Stephanie Antons
- Department of General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR), University of Duisburg-Essen, Duisburg, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| | - Elisa Wegmann
- Department of General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR), University of Duisburg-Essen, Duisburg, Germany
| | - Konstantinos Ioannidis
- Department of Psychiatry, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK; Southern Health NHS Foundation Trust, Cambridge, UK
| | - Daniel L King
- College of Education, Psychology, & Social Work, Flinders University, Adelaide, Australia
| | - Marc N Potenza
- Departments of Psychiatry and Child Study Center, Yale School of Medicine, New Haven, CT, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; Connecticut Mental Health Center, New Haven, CT, USA; Departments of Neuroscience and the Wu Tsai Institute, New Haven, CT, USA
| | - Samuel R Chamberlain
- Department of Psychiatry, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK; Southern Health NHS Foundation Trust, Cambridge, UK
| | - Matthias Brand
- Department of General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR), University of Duisburg-Essen, Duisburg, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| |
Collapse
|
10
|
Pandey MK, Kumar K, Anand AA. Unravelling the Enigma: How Behavioural Addictions Alter the Developing Child Brain? Ann Neurosci 2023; 30:149-150. [PMID: 37779549 PMCID: PMC10540760 DOI: 10.1177/09727531231197513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Affiliation(s)
- Manoj K. Pandey
- Department of Clinical Psychology, JSS Medical College, Mysuru, Karnataka, India
| | - Krishan Kumar
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - and Akshay Anand
- 3Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
11
|
Tereshchenko SY. Neurobiological risk factors for problematic social media use as a specific form of Internet addiction: A narrative review. World J Psychiatry 2023; 13:160-173. [PMID: 37303928 PMCID: PMC10251362 DOI: 10.5498/wjp.v13.i5.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 04/07/2023] [Indexed: 05/19/2023] Open
Abstract
Problematic social media use (PSMU) is a behavioral addiction, a specific form of problematic Internet use associated with the uncontrolled use of social networks. It is typical mostly for modern adolescents and young adults, which are the first generations fully grown up in the era of total digitalization of society. The modern biopsychosocial model of the formation of behavioral addictions, postulating the impact of a large number of biological, psychological, and social factors on addictive behavior formation, may be quite applicable to PSMU. In this narrative review, we discussed neurobiological risk factors for Internet addiction with a focus on current evidence on the association between PSMU and structural/ functional characteristics of the brain and autonomic nervous system, neurochemical correlations, and genetic features. A review of the literature shows that the vast majority of the mentioned neurobiological studies were focused on computer games addiction and generalized Internet addiction (without taking into account the consumed content). Even though a certain number of neuroimaging studies have been conducted for PSMU, there is practically no research on neuropeptide and genetic associations for PSMU to date. This fact points to the extremely high relevance of such studies.
Collapse
Affiliation(s)
- Sergey Yu Tereshchenko
- Department of Child's Physical and Mental Health, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Research Institute of Medical Problems of the North, Krasnoyarsk 660022, Russia
| |
Collapse
|
12
|
Sun JT, Hu B, Chen TQ, Chen ZH, Shang YX, Li YT, Wang R, Wang W. Internet addiction-induced brain structure and function alterations: a systematic review and meta-analysis of voxel-based morphometry and resting-state functional connectivity studies. Brain Imaging Behav 2023; 17:329-342. [PMID: 36899209 DOI: 10.1007/s11682-023-00762-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/12/2023]
Abstract
Internet addiction (IA) is a growing social concern and has been intensively studied in recent years. Previous imaging studies have shown that IA may impair brain structure and function, but with no robust conclusions. We conducted a systematic review and meta-analysis of neuroimaging studies in IA. Two separate meta-analyses were conducted for voxel-based morphometry (VBM) studies and resting-state functional connectivity (rsFC) studies. All meta-analyses were performed using two analysis methods activation likelihood estimation (ALE) and seed-based d mapping with permutation of subject images (SDM-PSI). The ALE analysis of VBM studies revealed less gray matter volume (GMV) in the supplementary motor area (SMA) (1176 mm3), anterior cingulate cortex (ACC) (one cluster size is 744 mm3 and the other is 688 mm3), and orbitofrontal cortex (OFC) (624 mm3) in subjects with IA. The SDM-PSI analysis showed less GMV in the ACC (56 voxels). The ALE analysis of rsFC studies showed stronger rsFC from posterior cingulate cortex (PCC) (880 mm3) or insula (712 mm3) to the whole brain in subjects with IA; however, the SDM-PSI analysis revealed no obvious rsFC alteration. These changes may underlie the core symptoms of IA, which include emotional regulation disorder, distraction, and impaired executive control. Our results reflect the common features of neuroimaging studies related to IA in recent years and may potentially help inform the development of more effective diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Jing-Ting Sun
- Department of Medical Technology, Middle section of Century Avenue, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, China.,Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Tian-Qi Chen
- Institute of basic medicine, Fourth Military Medical University (Air Force Medical University, 169 Changle Road, 710032, Xi'an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Yu-Xuan Shang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Yu-Ting Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Rui Wang
- Military medical center, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China.
| | - Wen Wang
- Department of Medical Technology, Middle section of Century Avenue, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, China. .,Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China.
| |
Collapse
|
13
|
Orsolini L, Longo G, Volpe U. The Mediatory Role of the Boredom and Loneliness Dimensions in the Development of Problematic Internet Use. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4446. [PMID: 36901452 PMCID: PMC10001960 DOI: 10.3390/ijerph20054446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In recent years, there has been a gradual digitalization of our society, resulting in intensified technology use for daily life activities, including the emergence of problematic Internet use (PIU). Few studies specifically addressed the boredom and loneliness dimensions in mediating the association between depression, anxiety, and stress levels and the onset of PIU. A nationwide population-based cross-sectional case-control study was carried out by recruiting a sample of Italian young people (aged 18-35). Only 1643 participants were selected for the analyses based on the age and the presence versus absence of PIU. Participants were mainly females (68.7%), with a mean age of 21.8 (SD = 1.7). Non-PIU individuals had significantly stable relationships (p = 0.012), siblings (p = 0.044) and lived with their family (p = 0.010), compared to PIU. PIU individuals displayed significantly higher depression, anxiety, and stress, as well as higher loneliness and boredom levels (all p < 0.001), compared to non-PIU. Depressive symptomatology predicted PIU and that their interaction is positively double mediated by boredom and loneliness (ß = 0.3829 (0.0245), 95%CI = 0.3349-0.4309). Our findings suggested that boredom and loneliness dimensions could act as mediators in the association between depressive symptomatology and the likelihood of PIU onset and maintenance.
Collapse
|
14
|
Wang L, Zhou X, Song X, Gan X, Zhang R, Liu X, Xu T, Jiao G, Ferraro S, Bore MC, Yu F, Zhao W, Montag C, Becker B. Fear of missing out (FOMO) associates with reduced cortical thickness in core regions of the posterior default mode network and higher levels of problematic smartphone and social media use. Addict Behav 2023; 143:107709. [PMID: 37004381 DOI: 10.1016/j.addbeh.2023.107709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND AND AIMS Fear of missing out (FOMO) promotes the desire or urge to stay continuously connected with a social reference group and updated on their activities, which may result in escalating and potentially addictive smartphone and social media use. The present study aimed to determine whether the neurobiological basis of FOMO encompasses core regions of the reward circuitry or social brain, and associations with levels of problematic smartphone or social media use. METHODS We capitalized on a dimensional neuroimaging approach to examine cortical thickness and subcortical volume associations in a sample of healthy young individuals (n = 167). Meta-analytic network and behavioral decoding analyses were employed to further characterize the identified regions. RESULTS Higher levels of FOMO associated with lower cortical thickness in the right precuneus. In contrast, no associations between FOMO and variations in striatal morphology were observed. Meta-analytic decoding revealed that the identified precuneus region exhibited a strong functional interaction with the default mode network (DMN) engaged in social cognitive and self-referential domains. DISCUSSION AND CONCLUSIONS Together the present findings suggest that individual variations in FOMO are associated with the brain structural architecture of the right precuneus, a core hub within a large-scale functional network resembling the DMN and involved in social and self-referential processes. FOMO may promote escalating social media and smartphone use via social and self-referential processes rather than reward-related processes per se.
Collapse
Affiliation(s)
- Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojuan Jiao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Stefania Ferraro
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Mercy Chepngetich Bore
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
15
|
Lin HM, Chang YT, Chen MH, Liu ST, Chen BS, Li L, Lee CY, Sue YR, Sung TM, Sun CK, Yeh PY. Structural and Functional Neural Correlates in Individuals with Excessive Smartphone Use: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16277. [PMID: 36498362 PMCID: PMC9739413 DOI: 10.3390/ijerph192316277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Background: Despite known association of internet addiction with a reduced brain volume and abnormal connectivity, the impact of excessive smartphone use remains unclear. Methods: PubMed, Embase, ClinicalTrial.gov, and Web of Science databases were systematically searched from inception to July 2022 using appropriate keywords for observational studies comparing differences in brain volumes and activations between excessive smartphone users and individuals with regular use by magnetic resonance imaging. Results: Of the 11 eligible studies retrieved from 6993 articles initially screened, seven and six evaluated brain volumes and activations, respectively. The former enrolled 421 participants (165 excessive smartphone users vs. 256 controls), while the latter recruited 276 subjects with 139 excessive smartphone users. The results demonstrated a smaller brain volume in excessive smartphone users compared to the controls (g = −0.55, p < 0.001), especially in subcortical regions (p < 0.001). Besides, the impact was more pronounced in adolescents than in adults (p < 0.001). Regression analysis revealed a significant positive association between impulsivity and volume reduction. Regarding altered activations, the convergences of foci in the declive of the posterior lobe of cerebellum, the lingual gyrus, and the middle frontal gyrus were noted. Conclusions: Our findings demonstrated a potential association of excessive smartphone use with a reduced brain volume and altered activations.
Collapse
Affiliation(s)
- Hsiu-Man Lin
- Division of Child and Adolescent Psychiatry & Division of Developmental and Behavioral Pediatrics, China Medical University Children’s Hospital, Taichung 404327, Taiwan
| | - Yu-Tzu Chang
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 406040, Taiwan
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 404327, Taiwan
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung 83300, Taiwan
| | - Shu-Tsen Liu
- Division of Child and Adolescent Psychiatry & Division of Developmental and Behavioral Pediatrics, China Medical University Children’s Hospital, Taichung 404327, Taiwan
| | - Bo-Shen Chen
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Lin Li
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Chiao-Yu Lee
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Yu-Ru Sue
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Tsai-Mei Sung
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824005, Taiwan
- School of Medicine for International Students, I-Shou University, Kaohsiung 82445, Taiwan
| | - Pin-Yang Yeh
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Clinical Psychology Center, Asia University Hospital, Taichung 41354, Taiwan
| |
Collapse
|
16
|
Klugah-Brown B, Zhou X, Wang L, Gan X, Zhang R, Liu X, Song X, Zhao W, Biswal BB, Yu F, Montag C, Becker B. Associations between levels of Internet Gaming Disorder symptoms and striatal morphology-replication and associations with social anxiety. PSYCHORADIOLOGY 2022; 2:207-215. [PMID: 38665272 PMCID: PMC10917202 DOI: 10.1093/psyrad/kkac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 04/28/2024]
Abstract
Background Brain structural alterations of the striatum have been frequently observed in internet gaming disorder (IGD); however, the replicability of the results and the associations with social-affective dysregulations such as social anxiety remain to be determined. Methods The present study combined a dimensional neuroimaging approach with both voxel-wise and data-driven multivariate approaches to (i) replicate our previous results on a negative association between IGD symptom load (assessed by the Internet Gaming Disorder Scale-Short Form) and striatal volume, (ii) extend these findings to female individuals, and (iii) employ multivariate and mediation models to determine common brain structural representations of IGD and social anxiety (assessed by the Liebowitz Social Anxiety Scale). Results In line with the original study, the voxel-wise analyses revealed a negative association between IGD and volumes of the bilateral caudate. Going beyond the earlier study investigating only male participants, the present study demonstrates that the association in the right caudate was comparable in both the male and the female subsamples. Further examination using the multivariate approach revealed regionally different associations between IGD and social anxiety with striatal density representations in the dorsal striatum (caudate) and ventral striatum (nucleus accumbens). Higher levels of IGD were associated with higher social anxiety and the association was critically mediated by the multivariate neurostructural density variations of the striatum. Conclusions Altered striatal volumes may represent a replicable and generalizable marker of IGD symptoms. However, exploratory multivariate analyses revealed more complex and regional specific associations between striatal density and IGD as well as social anxiety symptoms. Variations in both tendencies may share common structural brain representations, which mediate the association between increased IGD and social anxiety.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xinqi Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xiqin Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Bharat B Biswal
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, 89069 Ulm, Germany
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| |
Collapse
|
17
|
Weinstein A. Problematic Internet usage: brain imaging findings. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Solly JE, Grant JE, Chamberlain SR. Pharmacological interventions for Problematic Usage of the Internet (PUI): A narrative review of current progress and future directions. Curr Opin Behav Sci 2022; 46:101158. [PMID: 35746944 PMCID: PMC7612886 DOI: 10.1016/j.cobeha.2022.101158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Problematic Usage of the Internet (PUI) represents a spectrum of excessive online behaviors and is linked to reduced quality of life and high rates of psychiatric comorbidity, with growing demand for effective treatments. This paper provides a narrative review of pharmacological studies for PUI conducted to date. Most pharmacological treatment trials have focused on bupropion and escitalopram or involved samples with common comorbidities and used current treatments for the relevant comorbid disorders. Overall, there remains a dearth of high-quality evidence, with the current literature lacking control groups, large sample sizes, validated outcome measures, longer term treatment and follow-up periods. The literature cannot at this stage determine evidence-based pharmacological treatments for PUI.
Collapse
Affiliation(s)
- Jeremy E Solly
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK; Department of Psychiatry, University of Cambridge, UK
| | - Jon E Grant
- University of Chicago, Department of Psychiatry and Behavioral Neuroscience, Chicago, IL, USA
| | - Samuel R Chamberlain
- Department of Psychiatry, Faculty of Medicine, University of Southampton, UK; Southern Health NHS Foundation Trust, Southampton, UK
| |
Collapse
|
19
|
Abstract
Problematic internet use parallels drug addiction, but the mechanisms are not yet clear.
Collapse
Affiliation(s)
- Matthias Brand
- General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR), University of Duisburg-Essen, Duisburg, Germany.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| |
Collapse
|
20
|
Yu J, Zhou P, Yuan S, Wu Y, Wang C, Zhang N, Li CSR, Liu N. Symptom provocation in obsessive-compulsive disorder: A voxel-based meta-analysis and meta-analytic connectivity modeling. J Psychiatr Res 2022; 146:125-134. [PMID: 34971910 DOI: 10.1016/j.jpsychires.2021.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a heterogeneous psychiatric illness with a complex array of symptoms and potentially distinct neural underpinnings. We employed meta-analysis and connectivity modeling of symptom dimensions to delineate the circuit mechanisms of OCD. METHODS With the activation likelihood estimation (ALE) algorithm we performed meta-analysis of whole-brain functional magnetic resonance imaging (fMRI) studies of symptom provocation. We contrasted all OCD patients and controls in a primary analysis and divided the studies according to clinical symptoms in secondary meta-analyses. Finally, we employed meta-analytic connectivity modeling analyses (MACMs) to examine co-activation patterns of the brain regions revealed in the primary meta-analysis. RESULTS A total of 14 experiments from 12 eligible studies with a total of 238 OCD patients (124 men) and 219 healthy controls (120 men) were included in the primary analysis. OCD patients showed higher activation in the right caudate body/putamen/insula and lower activation in the left orbitofrontal cortex (OFC), left inferior frontal gyrus (IFG), left caudate body/middle cingulate cortex (MCC), right middle temporal gyrus (MTG), middle occipital gyrus (MOG) and right lateral occipital gyrus (LOG). MACMs revealed significant co-activation between left IFG and left caudate body/MCC, left MOG and right LOG, right LOG and MTG. In the secondary meta-analyses, the washing subgroup showed higher activation in the right OFC, bilateral ACC, left MOG and right caudate body. CONCLUSION OCD patients showed elevated dorsal striatal activation during symptom provocation. In contrast, the washing subgroup engaged higher activation in frontal, temporal and posterior cortical structures as well as right caudate body. Broadly consistent with the proposition of cortico-striatal-thalamic-cortical circuit dysfunction, these findings highlight potentially distinct neural circuits that may underlie the symptoms and potentially etiological subtypes of OCD.
Collapse
Affiliation(s)
- Jianping Yu
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Ping Zhou
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Shiting Yuan
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Yun Wu
- Functional Brain Imaging Institute of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Chun Wang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Ning Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
21
|
McGlade EC, Han DH, Kim SM, Shi X, Cline K, Yurgelun-Todd D, Renshaw PF. Proton magnetic resonance spectroscopy (MRS) in individuals with internet gaming. Front Psychiatry 2022; 13:1031947. [PMID: 36620656 PMCID: PMC9813490 DOI: 10.3389/fpsyt.2022.1031947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Various comorbid psychiatric diagnoses, including attention deficit hyperactivity disorder (ADHD), have been reported in individuals with internet gaming disorder (IGD). Prior research has shown alterations in brain metabolites, including N-acetylaspartate (NAA), and combined glutamate and glutamine in patients with ADHD that were similar to those observed in patients with IGD. We hypothesized that the decreased NAA levels in the IGD group would be associated with a history of ADHD. METHODS Forty adults participated in this study. Participants were classified as having a high risk for IGD if they had a total score higher than 21 on the IGD Scale-short form. Proton magnetic resonance spectroscopy (1H-MRS) and high-resolution structural magnetic resonance imaging (MRI) data were acquired using a 3 Tesla Siemens Prisma scanner system. RESULTS Levels of NAA within the right prefrontal cortex were lower in the IGD group than those observed in the control group. In a multiple linear regression analysis, internet addiction test scores and history of ADHD were shown to predict increased game play. In addition, history of ADHD predicted lower levels of NAA within the right prefrontal cortex. CONCLUSION The preliminary results of current study suggest a mediating effect of ADHD on the severity of internet game play as well as the levels of NAA within the dorsolateral prefrontal cortex (DLPFC). The inclusion of ADHD in IGD research is important and deserving of further consideration.
Collapse
Affiliation(s)
- Erin C McGlade
- Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States.,VA Salt Lake City MIRECC, Salt Lake City, UT, United States
| | - Doug Hyun Han
- Department of Psychiatry, Chung Ang University Hospital, Seoul, Republic of Korea
| | - Sun Mi Kim
- Department of Psychiatry, Chung Ang University Hospital, Seoul, Republic of Korea
| | - Xianfeng Shi
- Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States
| | - Kirsten Cline
- Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States.,VA Salt Lake City MIRECC, Salt Lake City, UT, United States
| | - Deborah Yurgelun-Todd
- Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States.,VA Salt Lake City MIRECC, Salt Lake City, UT, United States
| | - Perry F Renshaw
- Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States.,VA Salt Lake City MIRECC, Salt Lake City, UT, United States
| |
Collapse
|