1
|
Gao L, Wang H, Fang F, Liu J, Zhao C, Niu J, Wang Z, Zhong Y, Wang X. The roles of orphan nuclear receptor 4 group A1 and A2 in fibrosis. Int Immunopharmacol 2024; 139:112705. [PMID: 39029235 DOI: 10.1016/j.intimp.2024.112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Fibrosis is not a disease but rather an outcome of the pathological tissue repair response. Many myofibroblasts are activated which lead to the excessive accumulation of extracellular matrix components such as collagen and fibronectin with fibrosis. A variety of organs, including kidney, liver, lung, heart and skin, can undergo fibrosis under the stimulation of exogenous or endogenous pathogenic factors. The orphan nuclear receptor 4 group A1 (NR4A1) and nuclear receptor 4 group A2(NR4A2)are belong to the nuclear receptor subfamily and inhibit the occurrence and development of fibrosis. NR4A1 is an inhibitory factor of TGF-β signaling transduction. Overexpression of NR4A1 in fibroblasts can reduce TGF-β induced collagen deposition and fibrosis related gene expression. Here, we summarize the current research progress on the NR4A1/2 and fibrosis, providing reference for the treatment of fibrosis.
Collapse
Affiliation(s)
- Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jieqi Niu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.
| |
Collapse
|
2
|
Aji A, Zhang C, Liu W, Chen T, Liu Z, Zuo J, Li H, Mi W, Mao-Ying QL, Wang Y, Zhao Q, Chu YX. Foxg1 Modulation of the Prkcd Gene in the Lateral Habenula Mediates Trigeminal Neuralgia-Associated Anxiety-Like Behaviors in Mice. Mol Neurobiol 2024; 61:4335-4351. [PMID: 38085455 DOI: 10.1007/s12035-023-03856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/28/2023] [Indexed: 07/11/2024]
Abstract
Trigeminal Neuralgia (TN) is a debilitating disorder frequently accompanied by mood complications such as depression and anxiety. The current study sought to elucidate the molecular underpinnings that contribute to the pathogenesis of TN and its associated anxiety. Employing a partial transection of the infraorbital nerve (pT-ION) in a murine model, we successfully induced sustained primary and secondary orofacial allodynia alongside anxiety-like behavioral manifestations. Transcriptome-wide gene microarray analyses revealed a marked upregulation of Foxg1 subsequent to pT-ION. Targeted knockdown of Foxg1, achieved through bilateral microinjection of adeno-associated virus harboring Foxg1-specific shRNA into the lateral habenula (LHb), resulted in a significant attenuation of both orofacial pain and anxiety-like behaviors. Subsequent RNA sequencing implicated Prkcd as a downstream effector gene modulated by Foxg1. Pharmacological inhibition of protein kinase C delta, encoded by Prkcd, within the LHb markedly ameliorated pT-ION-induced symptomatology. The dual luciferase assay revealed that Foxg1 substantially enhances the transcriptional activity of the Prkcd gene. Collectively, these findings indicate that trigeminal nerve injury leads to Foxg1 upregulation in the LHb, which in turn elevates the expression of Prkcd, culminating in the manifestation of orofacial pain and anxiety-like behaviors. This work offers promising therapeutic targets and a conceptual framework for the clinical management of TN and its psychological comorbidities.
Collapse
Affiliation(s)
- Abudula Aji
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Chen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Wenbo Liu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Teng Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Zhechen Liu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Jiaxin Zuo
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Haojun Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qing Zhao
- Shanghai Sunshine Rehabilitation Center, Shanghai Yangzhi Rehabilitation Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Zhuang K, Leng L, Su X, Wang S, Su Y, Chen Y, Yuan Z, Zi L, Li J, Xie W, Yan S, Xia Y, Wang H, Li H, Chen Z, Yuan T, Zhang J. Menin Deficiency Induces Autism-Like Behaviors by Regulating Foxg1 Transcription and Participates in Foxg1-Related Encephalopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307953. [PMID: 38582517 PMCID: PMC11200012 DOI: 10.1002/advs.202307953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/18/2024] [Indexed: 04/08/2024]
Abstract
FOXG1 syndrome is a developmental encephalopathy caused by FOXG1 (Forkhead box G1) mutations, resulting in high phenotypic variability. However, the upstream transcriptional regulation of Foxg1 expression remains unclear. This report demonstrates that both deficiency and overexpression of Men1 (protein: menin, a pathogenic gene of MEN1 syndrome known as multiple endocrine neoplasia type 1) lead to autism-like behaviors, such as social defects, increased repetitive behaviors, and cognitive impairments. Multifaceted transcriptome analyses revealed that Foxg1 signaling is predominantly altered in Men1 deficiency mice, through its regulation of the Alpha Thalassemia/Mental Retardation Syndrome X-Linked (Atrx) factor. Atrx recruits menin to bind to the transcriptional start region of Foxg1 and mediates the regulation of Foxg1 expression by H3K4me3 (Trimethylation of histone H3 lysine 4) modification. The deficits observed in menin deficient mice are rescued by the over-expression of Foxg1, leading to normalized spine growth and restoration of hippocampal synaptic plasticity. These findings suggest that menin may have a putative role in the maintenance of Foxg1 expression, highlighting menin signaling as a potential therapeutic target for Foxg1-related encephalopathy.
Collapse
Affiliation(s)
- Kai Zhuang
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Lige Leng
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Xiao Su
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Shuzhong Wang
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Yuemin Su
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Yanbing Chen
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Ziqi Yuan
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Liu Zi
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Jieyin Li
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Wenting Xie
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Sihan Yan
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Yujun Xia
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Han Wang
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Huifang Li
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Zhenyi Chen
- Department of AnesthesiologyFirst Affiliated HospitalCollege of MedicineXiamen UniversityXiamenFujian361105China
| | - Tifei Yuan
- Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghai200030China
| | - Jie Zhang
- Institute of NeuroscienceCollege of MedicineXiamen UniversityXiamenFujian361105China
- Department of AnesthesiologyFirst Affiliated HospitalCollege of MedicineXiamen UniversityXiamenFujian361105China
- The Key Laboratory of Neural and Vascular BiologyMinistry of EducationCollege of Basic MedicineHebei Medical UniversityShijiazhuang050017China
| |
Collapse
|
4
|
Del Puerto A, Lopez-Fonseca C, Simón-García A, Martí-Prado B, Barrios-Muñoz AL, Pose-Utrilla J, López-Menéndez C, Alcover-Sanchez B, Cesca F, Schiavo G, Campanero MR, Fariñas I, Iglesias T, Porlan E. Kidins220 sets the threshold for survival of neural stem cells and progenitors to sustain adult neurogenesis. Cell Death Dis 2023; 14:500. [PMID: 37542079 PMCID: PMC10403621 DOI: 10.1038/s41419-023-05995-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023]
Abstract
In the adult mammalian brain, neural stem cells (NSCs) located in highly restricted niches sustain the generation of new neurons that integrate into existing circuits. A reduction in adult neurogenesis is linked to ageing and neurodegeneration, whereas dysregulation of proliferation and survival of NSCs have been hypothesized to be at the origin of glioma. Thus, unravelling the molecular underpinnings of the regulated activation that NSCs must undergo to proliferate and generate new progeny is of considerable relevance. Current research has identified cues promoting or restraining NSCs activation. Yet, whether NSCs depend on external signals to survive or if intrinsic factors establish a threshold for sustaining their viability remains elusive, even if this knowledge could involve potential for devising novel therapeutic strategies. Kidins220 (Kinase D-interacting substrate of 220 kDa) is an essential effector of crucial pathways for neuronal survival and differentiation. It is dramatically altered in cancer and in neurological and neurodegenerative disorders, emerging as a regulatory molecule with important functions in human disease. Herein, we discover severe neurogenic deficits and hippocampal-based spatial memory defects accompanied by increased neuroblast death and high loss of newly formed neurons in Kidins220 deficient mice. Mechanistically, we demonstrate that Kidins220-dependent activation of AKT in response to EGF restraints GSK3 activity preventing NSCs apoptosis. We also show that NSCs with Kidins220 can survive with lower concentrations of EGF than the ones lacking this molecule. Hence, Kidins220 levels set a molecular threshold for survival in response to mitogens, allowing adult NSCs growth and expansion. Our study identifies Kidins220 as a key player for sensing the availability of growth factors to sustain adult neurogenesis, uncovering a molecular link that may help paving the way towards neurorepair.
Collapse
Affiliation(s)
- Ana Del Puerto
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av, Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Autovía A6, Km 7,5, 28040, Madrid, Spain
| | - Coral Lopez-Fonseca
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
- Instituto Universitario de Biología Molecular - UAM, C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Ana Simón-García
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av, Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - Beatriz Martí-Prado
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av, Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- Departmento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, C/ Dr. Moliner, 50, 46100, Burjassot, Spain
| | - Ana L Barrios-Muñoz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
- Instituto Universitario de Biología Molecular - UAM, C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Julia Pose-Utrilla
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av, Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Celia López-Menéndez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av, Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - Berta Alcover-Sanchez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
- Instituto Universitario de Biología Molecular - UAM, C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Fabrizia Cesca
- Department of Life Sciences, University of Trieste, via L. Giorgieri, 5, 34127, Trieste, Italy
| | - Giampietro Schiavo
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Miguel R Campanero
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera, 1, 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av, Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- Departmento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, C/ Dr. Moliner, 50, 46100, Burjassot, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av, Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
| | - Eva Porlan
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera, 1, 28049, Madrid, Spain.
- Instituto Universitario de Biología Molecular - UAM, C/ Nicolás Cabrera, 1, 28049, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
| |
Collapse
|
5
|
Singh N, Siebzehnrubl FA, Martinez-Garay I. Transcriptional control of embryonic and adult neural progenitor activity. Front Neurosci 2023; 17:1217596. [PMID: 37588515 PMCID: PMC10426504 DOI: 10.3389/fnins.2023.1217596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Neural precursors generate neurons in the embryonic brain and in restricted niches of the adult brain in a process called neurogenesis. The precise control of cell proliferation and differentiation in time and space required for neurogenesis depends on sophisticated orchestration of gene transcription in neural precursor cells. Much progress has been made in understanding the transcriptional regulation of neurogenesis, which relies on dose- and context-dependent expression of specific transcription factors that regulate the maintenance and proliferation of neural progenitors, followed by their differentiation into lineage-specified cells. Here, we review some of the most widely studied neurogenic transcription factors in the embryonic cortex and neurogenic niches in the adult brain. We compare functions of these transcription factors in embryonic and adult neurogenesis, highlighting biochemical, developmental, and cell biological properties. Our goal is to present an overview of transcriptional regulation underlying neurogenesis in the developing cerebral cortex and in the adult brain.
Collapse
Affiliation(s)
- Niharika Singh
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, United Kingdom
| | - Florian A. Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, United Kingdom
| | - Isabel Martinez-Garay
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
6
|
Wu SR, Butts JC, Caudill MS, Revelli JP, Dhindsa RS, Durham MA, Zoghbi HY. Atoh1 drives the heterogeneity of the pontine nuclei neurons and promotes their differentiation. SCIENCE ADVANCES 2023; 9:eadg1671. [PMID: 37390208 PMCID: PMC10313176 DOI: 10.1126/sciadv.adg1671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Pontine nuclei (PN) neurons mediate the communication between the cerebral cortex andthe cerebellum to refine skilled motor functions. Prior studies showed that PN neurons fall into two subtypes based on their anatomic location and region-specific connectivity, but the extent of their heterogeneity and its molecular drivers remain unknown. Atoh1 encodes a transcription factor that is expressed in the PN precursors. We previously showed that partial loss of Atoh1 function in mice results in delayed PN development and impaired motor learning. In this study, we performed single-cell RNA sequencing to elucidate the cell state-specific functions of Atoh1 during PN development and found that Atoh1 regulates cell cycle exit, differentiation, migration, and survival of PN neurons. Our data revealed six previously not known PN subtypes that are molecularly and spatially distinct. We found that the PN subtypes exhibit differential vulnerability to partial loss of Atoh1 function, providing insights into the prominence of PN phenotypes in patients with ATOH1 missense mutations.
Collapse
Affiliation(s)
- Sih-Rong Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Jessica C. Butts
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Matthew S. Caudill
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Jean-Pierre Revelli
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ryan S. Dhindsa
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mark A. Durham
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Student Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Huda Y. Zoghbi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
FOXG1 Contributes Adult Hippocampal Neurogenesis in Mice. Int J Mol Sci 2022; 23:ijms232314979. [PMID: 36499306 PMCID: PMC9735854 DOI: 10.3390/ijms232314979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Strategies to enhance hippocampal precursor cells efficiently differentiate into neurons could be crucial for structural repair after neurodegenerative damage. FOXG1 has been shown to play an important role in pattern formation, cell proliferation, and cell specification during embryonic and early postnatal neurogenesis. Thus far, the role of FOXG1 in adult hippocampal neurogenesis is largely unknown. Utilizing CAG-loxp-stop-loxp-Foxg1-IRES-EGFP (Foxg1fl/fl), a specific mouse line combined with CreAAV infusion, we successfully forced FOXG1 overexpressed in the hippocampal dentate gyrus (DG) of the genotype mice. Thereafter, we explored the function of FOXG1 on neuronal lineage progression and hippocampal neurogenesis in adult mice. By inhibiting p21cip1 expression, FOXG1-regulated activities enable the expansion of the precursor cell population. Besides, FOXG1 induced quiescent radial-glia like type I neural progenitor, giving rise to intermediate progenitor cells, neuroblasts in the hippocampal DG. Through increasing the length of G1 phase, FOXG1 promoted lineage-committed cells to exit the cell cycle and differentiate into mature neurons. The present results suggest that FOXG1 likely promotes neuronal lineage progression and thereby contributes to adult hippocampal neurogenesis. Elevating FOXG1 levels either pharmacologically or through other means could present a therapeutic strategy for disease related with neuronal loss.
Collapse
|