1
|
Cheng YK, Chiang HS. The interrelationship between intestinal immune cells and enteric α-synuclein in the progression of Parkinson's disease. Neurol Sci 2025:10.1007/s10072-025-08114-w. [PMID: 40085320 DOI: 10.1007/s10072-025-08114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder primarily characterized by motor impairment, resulting from the accumulation of α-synuclein and neuronal cell death in the substantia nigra of the midbrain. Emerging evidence suggests that α-synuclein aggregation may originate in the enteric nervous system (ENS) and subsequently propagate to the brain via the vagus nerve. Clinical observations, such as prodromal gastrointestinal dysfunction in PD patients and the increased incidence of PD among individuals with inflammatory bowel disease, support the hypothesis that abnormal intestinal inflammation may contribute to the onset of motor dysfunction and neuropathology in PD. This review examines recent findings on the interplay between intestinal immune cells and α-synuclein aggregation within the framework of gut-originated PD pathogenesis. It begins by discussing evidence linking dysbiosis and intestinal inflammation to α-synuclein aggregation in the ENS. Additionally, it explores the potential role of intestinal immune cells in influencing enteric neurons and α-synuclein aggregation, furthering the understanding of PD development.
Collapse
Affiliation(s)
- Yuan-Kai Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hao-Sen Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Liu L, Zhao Y, Yang W, Fan Y, Han L, Sheng J, Tian Y, Gao X. Rotenone Induces Parkinsonism with Constipation Symptoms in Mice by Disrupting the Gut Microecosystem, Inhibiting the PI3K-AKT Signaling Pathway and Gastrointestinal Motility. Int J Mol Sci 2025; 26:2079. [PMID: 40076704 PMCID: PMC11899888 DOI: 10.3390/ijms26052079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Constipation is a prodromal symptom of PD. It is important to investigate the pathogenesis of constipation symptoms in PD. Rotenone has been successfully used to establish PD animal models. However, the specific mechanism of rotenone-induced constipation symptoms is not well understood. In this work, we found that constipation symptoms appeared earlier than motor impairment in mice gavaged with a low dose of rotenone (30 mg/kg·BW). Rotenone not only caused loss of dopaminergic neurons and accumulation of α-synuclein, but also significantly reduced serum 5-HT levels and 5-HTR4 in the striatum and colon. The mRNA expression of aquaporins, gastrointestinal motility factors (c-Kit, Cx43, smMLCK and MLC-3) in mouse colon was also significantly regulated by rotenone. In addition, both colon and brain showed rotenone-induced inflammation and barrier dysfunction; the PI3K/AKT pathway in the substantia nigra and colon was also significantly inhibited by rotenone. Importantly, the structure, composition and function of the gut microbiota were also significantly altered by rotenone. Some specific taxa were closely associated with motor and constipation symptoms, inflammation, and gut and brain barrier status in PD mice. Akkermansia, Staphylococcus and Lachnospiraceae_UCG-006 may play a role in exacerbating constipation symptoms, whereas Acinetobacter, Lactobacillus, Bifidobacterium, Solibacillus and Eubacterium_xylanophilum_groups may be beneficial in stimulating gastrointestinal peristalsis, maintaining motor function and alleviating inflammation and barrier damage in mice. In conclusion, low-dose rotenone can cause parkinsonism with constipation symptoms in mice by disrupting the intestinal microecosystem and inhibiting the PI3K-AKT pathway and gastrointestinal motility.
Collapse
Affiliation(s)
- Li Liu
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; (L.L.); (J.S.); (Y.T.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.Y.); (Y.F.); (L.H.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Zhao
- Division of Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Weixing Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.Y.); (Y.F.); (L.H.)
| | - Yuqin Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.Y.); (Y.F.); (L.H.)
| | - Lixiang Han
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.Y.); (Y.F.); (L.H.)
| | - Jun Sheng
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; (L.L.); (J.S.); (Y.T.)
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; (L.L.); (J.S.); (Y.T.)
| | - Xiaoyu Gao
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; (L.L.); (J.S.); (Y.T.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.Y.); (Y.F.); (L.H.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Liu L, Zhao Y, Yang W, Han L, Mo X, Sheng J, Tian Y, Gao X. Correlations Between Amelioration of Rotenone-Induced Parkinson's Symptoms by Amomum tsaoko Flavonoids and Gut Microbiota in Mice. Int J Mol Sci 2025; 26:1676. [PMID: 40004140 PMCID: PMC11855768 DOI: 10.3390/ijms26041676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, but the existing therapeutic drugs for PD have limitations; thus, there is an urgent need to discover new methods of prevention and treatment. Amomum tsaoko Crevost et Lemarie (AT) is a classic traditional Chinese medicine and food. Its main pharmacological effect is the regulation of the gastrointestinal tract. To date, no studies on the use of AT or its extracts to treat PD have been reported. In this study, a rotenone-induced PD mouse model was utilized to evaluate the protective effect of Amomum tsaoko flavonoids (ATFs) and to elucidate the role of the gut microbiota in this effect. The results demonstrated that ATFs not only ameliorated the motor and constipation symptoms but also reduced the loss of nigrostriatal dopaminergic neurons. Furthermore, ATFs reduced the expression of inflammation-related genes (TNF-α, IL-1β, IL-6, COX-2, and MCP-1) and increased the expression of gut barrier-related genes (Muc-2, ZO-1, Occludin, Claudin3, and Claudin4) in the colon. Notably, ATFs were able to reverse rotenone-induced gut dysbiosis, including a significant decrease in the abundance of conditionally pathogenic bacteria (Desulfovibrio, Provotellaceae UCG-001, the Lachnospiraceae_NK4A136_group, norank_f_Erysipelotrichacea, and the Eubacterium nodatum group) and an increase in the abundance of probiotics (Bifidobacterium and Faecalibaculum). Interestingly, these genera were found to be significantly associated with PD motor symptoms and constipation indicators. This suggests that ATFs have the potential to alleviate PD symptoms through the modulation of gut microbes. These findings provide a solid foundation for further investigations into the anti-PD mechanism of ATFs and their potential in the prevention and treatment of PD.
Collapse
Affiliation(s)
- Li Liu
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; (L.L.); (J.S.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.Y.); (L.H.); (X.M.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Zhao
- Division of Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Weixing Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.Y.); (L.H.); (X.M.)
| | - Lixiang Han
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.Y.); (L.H.); (X.M.)
| | - Xiaohan Mo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.Y.); (L.H.); (X.M.)
| | - Jun Sheng
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; (L.L.); (J.S.)
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; (L.L.); (J.S.)
| | - Xiaoyu Gao
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; (L.L.); (J.S.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.Y.); (L.H.); (X.M.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Kumar D, Bishnoi M, Kondepudi KK, Sharma SS. Gut Microbiota-Based Interventions for Parkinson's Disease: Neuroprotective Mechanisms and Current Perspective. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10433-x. [PMID: 39809955 DOI: 10.1007/s12602-024-10433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Recent evidence links gut microbiota alterations to neurodegenerative disorders, including Parkinson's disease (PD). Replenishing the abnormal composition of gut microbiota through gut microbiota-based interventions "prebiotics, probiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT)" has shown beneficial effects in PD. These interventions increase gut metabolites like short-chain fatty acids (SCFAs) and glucagon-like peptide-1 (GLP-1), which may protect dopaminergic neurons via the gut-brain axis. Neuroprotective effects of these interventions are mediated by several mechanisms, including the enhancement of neurotrophin and activation of the PI3K/AKT/mTOR signaling pathway, GLP-1-mediated gut-brain axis signaling, Nrf2/ARE pathway, and autophagy. Other pathways, such as free fatty acid receptor activation, synaptic plasticity improvement, and blood-brain and gut barrier integrity maintenance, also contribute to neuroprotection. Furthermore, the inhibition of the TLR4/NF-кB pathway, MAPK pathway, GSK-3β signaling pathway, miR-155-5p-mediated neuroinflammation, and ferroptosis could account for their protective effects. Clinical studies involving gut microbiota-based interventions have shown therapeutic benefits in PD patients, particularly in improving gastrointestinal dysfunction and some neurological symptoms. However, the effectiveness in alleviating motor symptoms remains mild. Large-scale clinical trials are still needed to confirm these findings. This review emphasizes the neuroprotective mechanisms of gut microbiota-based interventions in PD as supported by both preclinical and clinical studies.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biomanufacturing Institute (NABI), Knowledge City-Sector 81, S.A.S. Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biomanufacturing Institute (NABI), Knowledge City-Sector 81, S.A.S. Nagar, Punjab, 140306, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
5
|
Kollaparampil Kishanchand D, K A AK, Chandrababu K, Philips CA, Sivan U, Pulikaparambil Sasidharan BC. The Intricate Interplay: Microbial Metabolites and the Gut-Liver-Brain Axis in Parkinson's Disease. J Neurosci Res 2025; 103:e70016. [PMID: 39754366 DOI: 10.1002/jnr.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/21/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder marked by the depletion of dopaminergic neurons. Recent studies highlight the gut-liver-brain (GLB) axis and its role in PD pathogenesis. The GLB axis forms a dynamic network facilitating bidirectional communication between the gastrointestinal tract, liver, and central nervous system. Dysregulation within this axis, encompassing gut dysbiosis and microbial metabolites, is emerging as a critical factor influencing PD progression. Our understanding of PD was traditionally centered on neurodegenerative processes within the brain. However, examining PD through the lens of the GLB axis provides new insights. This review provides a comprehensive analysis of microbial metabolites, such as short-chain fatty acids (SCFAs), trimethylamine-N-oxide (TMAO), kynurenine, serotonin, bile acids, indoles, and dopamine, which are integral to PD pathogenesis by modulation of the GLB axis. Our extensive research included a comprehensive literature review and database searches utilizing resources such as gutMGene and gutMDisorder. These databases have been instrumental in identifying specific microbes and their metabolites, shedding light on the intricate relationship between the GLB axis and PD. This review consolidates existing knowledge and underscores the potential for targeted therapeutic interventions based on the GLB axis and its components, which offer new avenues for future PD research and treatment strategies. While the GLB axis is not a novel concept, this review is the first to focus specifically on its role in PD, highlighting the importance of integrating the liver and microbial metabolites as central players in the PD puzzle.
Collapse
Affiliation(s)
| | - Athira Krishnan K A
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Krishnapriya Chandrababu
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Cyriac Abby Philips
- Clinical and Translational Hepatology, The Liver Institute, Centre of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Unnikrishnan Sivan
- Department of FSQA, FFE, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Baby Chakrapani Pulikaparambil Sasidharan
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
- Centre for Excellence in Neurodegeneration and Brain Health, Kochi, Kerala, India
| |
Collapse
|
6
|
Cheng H, Liu J, Zhang D, Wu J, Wu J, Zhou Y, Tan Y, Feng W, Peng C. Natural products: Harnessing the power of gut microbiota for neurological health. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156019. [PMID: 39305747 DOI: 10.1016/j.phymed.2024.156019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Neurological diseases are the primary cause of disability and death and impose substantial financial burdens. However, existing treatments only relieve symptoms and may cause many adverse effects. Natural products are a promising source of neurological therapeutic agents due to their excellent neuroprotective effect and safety. The gut microbiota has an essential impact on maintaining brain homeostasis via the gut-brain axis. Multiple investigations show that natural products offer neuroprotective effects by regulating gut microbiota-driven signaling networks. OBJECTIVES This review aims to provide a systematic review of how natural products promote neurological health by harnessing the power of gut microbiota. METHODS The pre-January 1, 2024 literature was gathered from several databases, including Scopus, PubMed, Google Scholar, and Web of Science, utilizing appropriate keywords. The gathered publications underwent a review process and were classified based on their study content, specifically focusing on the impact of natural products on gut microbiota and neurological health. RESULTS Here, we review how natural products promote neurological health by regulating the gut microbiota-brain axis. Specifically, we focus on the following areas. (1) Altering microorganism community structure, including increasing α-diversity and altering β-diversity. (2) Regulating the population of certain bacteria, including enriching beneficial microorganisms Akkermansia and Bifidobacterium, and inhibiting potentially hazardous microorganisms Bilophila, Klebsiella, and Helicobacter. (3) Regulating microbial neuroactive metabolites levels, including short-chain fatty acids, tryptophan and its derivatives, trimethylamine N-oxide, dopa/dopamine, γ-aminobutyric acid, and lipopolysaccharide. Furthermore, we review how natural products promote neurological health by regulating intestinal barrier homeostasis. CONCLUSION Natural products promote neurological health by harnessing the power of gut microbiota. This review will contribute to understanding how natural products promote neurological health by orchestrating the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
7
|
Kang EJ, Cha MG, Kwon GH, Han SH, Yoon SJ, Lee SK, Ahn ME, Won SM, Ahn EH, Suk KT. Akkermansia muciniphila improve cognitive dysfunction by regulating BDNF and serotonin pathway in gut-liver-brain axis. MICROBIOME 2024; 12:181. [PMID: 39342324 PMCID: PMC11438137 DOI: 10.1186/s40168-024-01924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
BACKRGROUND Akkermansia muciniphila, a next-generation probiotic, is known as a cornerstone regulating the gut-organ axis in various diseases, but the underlying mechanism remains poorly understood. Here, we revealed the neuronal and antifibrotic effects of A. muciniphila on the gut-liver-brain axis in liver injury. RESULTS To investigate neurologic dysfunction and characteristic gut microbiotas, we performed a cirrhosis cohort (154 patients with or without hepatic encephalopathy) and a community cognition cohort (80 participants in one region for three years) and validated the existence of cognitive impairment in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced hepatic injury mouse model. The effects of the candidate strain on cognition were evaluated in animal models of liver injury. The expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors was accessed in patients with fibrosis (100 patients) according to the fibrosis grade and hepatic venous pressure gradient. The proportion of A. muciniphila decreased in populations with hepatic encephalopathy and cognitive dysfunction. Tissue staining techniques confirmed gut-liver-brain damage in liver injury, with drastic expression of BDNF and serotonin in the gut and brain. The administration of A. muciniphila significantly reduced tissue damage and improved cognitive dysfunction and the expression of BDNF and serotonin. Isolated vagus nerve staining showed a recovery of serotonin expression without affecting the dopamine pathway. Conversely, in liver tissue, the inhibition of injury through the suppression of serotonin receptor (5-hydroxytryptamine 2A and 2B) expression was confirmed. The severity of liver injury was correlated with the abundance of serotonin, BDNF, and A. muciniphila. CONCLUSIONS A. muciniphila, a next-generation probiotic, is a therapeutic candidate for alleviating the symptoms of liver fibrosis and cognitive impairment.
Collapse
Affiliation(s)
- Eun Ji Kang
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-Gil 1, Chuncheon-Si, Gangwon-Do, 24252, South Korea
| | - Min-Gi Cha
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon-Si, Gangwon-Do, 24253, South Korea
| | - Goo-Hyun Kwon
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon-Si, Gangwon-Do, 24253, South Korea
| | - Sang Hak Han
- Department of Pathology, College of Medicine, Hallym University, Hallymdaehak-Gil 1, Chuncheon-Si, Gangwon-Do, 24252, South Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon-Si, Gangwon-Do, 24253, South Korea
| | - Sang Kyu Lee
- Department of Psychiatry, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-Do, 24253, Chuncheon-Si, South Korea
| | - Moo Eob Ahn
- Department of Emergency Medicine, Hallym University, Chuncheon Sacred Heart Hospital, Chuncheon-Si, Gangwon-Do, 24253, South Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon-Si, Gangwon-Do, 24253, South Korea.
| | - Eun Hee Ahn
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-Gil 1, Chuncheon-Si, Gangwon-Do, 24252, South Korea.
- Department of Neurology, College of Medicine, Hallym University, Hallymdaehak-Gil 1, Chuncheon-Si, Gangwon-Do, 24252, South Korea.
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon-Si, Gangwon-Do, 24253, South Korea.
| |
Collapse
|
8
|
Roy R, Kumar D, Bhattacharya P, Borah A. Modulating the biosynthesis and TLR4-interaction of lipopolysaccharide as an approach to counter gut dysbiosis and Parkinson's disease: Role of phyto-compounds. Neurochem Int 2024; 178:105803. [PMID: 38992819 DOI: 10.1016/j.neuint.2024.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The prevalence of the world's second leading neurodegenerative disorder Parkinson's disease (PD) is well known while its pathogenesis is still a topical issue to explore. Clinical and experimental reports suggest the prevalence of disturbed gut microflora in PD subjects, with an abundance of especially Gram-negative bacteria. The endotoxin lipopolysaccharide (LPS) released from the outer cell layer of these bacteria interacts with the toll-like receptor 4 (TLR4) present on the macrophages and it stimulates the downstream inflammatory cascade in both the gut and brain. Recent research also suggests a positive correlation between LPS, alpha-synuclein, and TLR4 levels, which indicates the contribution of a parallel LPS-alpha-synuclein-TLR4 axis in stimulating inflammation and neurodegeneration in the gut and brain, establishing a body-first type of PD. However, owing to the novelty of this paradigm, further investigation is mandatory. Modulating LPS biosynthesis and LPS-TLR4 interaction can ameliorate gut dysbiosis and PD. Several synthetic LpxC (UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase; LPS-synthesizing enzyme) inhibitors and TLR4 antagonists are reported to show beneficial effects including neuroprotection in PD models, however, are not devoid of side effects. Plant-derived compounds have been long documented for their benefits as nutraceuticals and thus to search for effective, safer, and multitarget therapeutics, the present study focused on summarizing the evidence reporting the potential of phyto-compounds as LpxC inhibitors and TLR4 antagonists. Studies demonstrating the dual potential of phyto-compounds as the modulators of LpxC and TLR4 have not yet been reported. Also, very few preliminary studies have reported LpxC inhibition by phyto-compounds. Nevertheless, remarkable neuroprotection along with TLR4 antagonism has been shown by curcumin and juglanin in PD models. The present review thus provides a wide look at the research progressed to date in discovering phyto-compounds that can serve as LpxC inhibitors and TLR4 antagonists. The study further recommends the need for expanding the search for potential candidates that can render dual protection by inhibiting both the biosynthesis and TLR4 interaction of LPS. Such multitarget therapeutic intervention is believed to bring fruitful yields in countering gut dysbiosis, neuroinflammation, and dopaminergic neuron damage in PD patients through a single treatment paradigm.
Collapse
Affiliation(s)
- Rubina Roy
- Department of Life Science & Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, 382355, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science & Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
9
|
Sadowski K, Zając W, Milanowski Ł, Koziorowski D, Figura M. Exploring Fecal Microbiota Transplantation for Modulating Inflammation in Parkinson's Disease: A Review of Inflammatory Markers and Potential Effects. Int J Mol Sci 2024; 25:7741. [PMID: 39062985 PMCID: PMC11277532 DOI: 10.3390/ijms25147741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by numerous motor and non-motor symptoms. Recent data highlight a potential interplay between the gut microbiota and the pathophysiology of PD. The degeneration of dopaminergic neurons in PD leads to motor symptoms (tremor, rigidity, and bradykinesia), with antecedent gastrointestinal manifestations, most notably constipation. Consequently, the gut emerges as a plausible modulator in the neurodegenerative progression of PD. Key molecular changes in PD are discussed in the context of the gut-brain axis. Evidence suggests that the alterations in the gut microbiota composition may contribute to gastroenteric inflammation and influence PD symptoms. Disturbances in the levels of inflammatory markers, including tumor necrosis factor-α (TNF α), interleukin -1β (IL-1β), and interleukin-6 (IL-6), have been observed in PD patients. These implicate the involvement of systemic inflammation in disease pathology. Fecal microbiota transplantation emerges as a potential therapeutic strategy for PD. It may mitigate inflammation by restoring gut homeostasis. Preclinical studies in animal models and initial clinical trials have shown promising results. Overall, understanding the interplay between inflammation, the gut microbiota, and PD pathology provides valuable insights into potential therapeutic interventions. This review presents recent data about the bidirectional communication between the gut microbiome and the brain in PD, specifically focusing on the involvement of inflammatory biomarkers.
Collapse
Affiliation(s)
- Karol Sadowski
- Students Scientific Group NEKON by the Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (K.S.); (W.Z.)
| | - Weronika Zając
- Students Scientific Group NEKON by the Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (K.S.); (W.Z.)
| | - Łukasz Milanowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| | - Monika Figura
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| |
Collapse
|
10
|
Yang ZX, Zhang Y, Wang Q, Zhang L, Liu YF, Zhang Y, Ren Y, Zhou C, Gao HW, Zhang NX, Feng LY. Addition of α-synuclein aggregates to the intestinal environment recapitulates Parkinsonian symptoms in model systems. Acta Pharmacol Sin 2024; 45:36-51. [PMID: 37684382 PMCID: PMC10770087 DOI: 10.1038/s41401-023-01150-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/02/2023] [Indexed: 09/10/2023]
Abstract
The gut-brain axis plays a vital role in Parkinson's disease (PD). The mechanisms of gut-brain transmission mainly focus on α-synuclein deposition, intestinal inflammation and microbiota function. A few studies have shown the trigger of PD pathology in the gut. α-Synuclein is highly conserved in food products, which was able to form β-folded aggregates and to infect the intestinal mucosa. In this study we investigated whether α-synuclein-preformed fibril (PFF) exposure could modulate the intestinal environment and induce rodent models replicating PD pathology. We first showed that PFF could be internalized into co-cultured Caco-2/HT29/Raji b cells in vitro. Furthermore, we demonstrated that PFF perfusion caused the intestinal inflammation and activation of enteric glial cells in an ex vivo intestinal organ culture and in an in vivo intestinal mouse coloclysis model. Moreover, we found that PFF exposure through regular coloclysis induced PD pathology in wild-type (WT) and A53T α-synuclein transgenic mice with various phenotypes. Particularly in A53T mice, PFF induced significant behavioral disorders, intestinal inflammation, α-synuclein deposition, microbiota dysbiosis, glial activation as well as degeneration of dopaminergic neurons in the substantia nigra. In WT mice, however, the PFF induced only mild behavioral abnormalities, intestinal inflammation, α-synuclein deposition, and glial activation, without significant changes in microbiota and dopaminergic neurons. Our results reveal the possibility of α-synuclein aggregates binding to the intestinal mucosa and modeling PD in mice. This study may shed light on the investigation and early intervention of the gut-origin hypothesis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ze-Xian Yang
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yu Zhang
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
| | - Qing Wang
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Lei Zhang
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yi-Fei Liu
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Ye Zhang
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yu Ren
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Chen Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui-Wen Gao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Nai-Xia Zhang
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Lin-Yin Feng
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
11
|
Gan Q, Ding Y, Peng M, Chen L, Dong J, Hu J, Ma Y. The Potential of Edible and Medicinal Resource Polysaccharides for Prevention and Treatment of Neurodegenerative Diseases. Biomolecules 2023; 13:biom13050873. [PMID: 37238743 DOI: 10.3390/biom13050873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
As natural medicines in complementary and alternative medicine, edible and medicinal resources are being gradually recognized throughout the world. According to statistics from the World Health Organization, about 80% of the worldwide population has used edible and medicinal resource products to prevent and treat diseases. Polysaccharides, one of the main effective components in edible and medicinal resources, are considered ideal regulators of various biological responses due to their high effectiveness and low toxicity, and they have a wide range of possible applications for the development of functional foods for the regulation of common, frequently occurring, chronic and severe diseases. Such applications include the development of polysaccharide products for the prevention and treatment of neurodegenerative diseases that are difficult to control by a single treatment, which is of great value to the aging population. Therefore, we evaluated the potential of polysaccharides to prevent neurodegeneration by their regulation of behavioral and major pathologies, including abnormal protein aggregation and neuronal damage caused by neuronal apoptosis, autophagy, oxidative damage, neuroinflammation, unbalanced neurotransmitters, and poor synaptic plasticity. This includes multi-target and multi-pathway regulation involving the mitochondrial pathway, MAPK pathway, NF-κB pathway, Nrf2 pathway, mTOR pathway, PI3K/AKT pathway, P53/P21 pathway, and BDNF/TrkB/CREB pathway. In this paper, research into edible and medicinal resource polysaccharides for neurodegenerative diseases was reviewed in order to provide a basis for the development and application of polysaccharide health products and promote the recognition of functional products of edible and medicinal resources.
Collapse
Affiliation(s)
- Qingxia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Yugang Ding
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Maoyao Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Linlin Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Jijing Dong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Jiaxi Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuntong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| |
Collapse
|
12
|
Advances in Molecular Psychiatry - March 2023: mitochondrial function, stress, neuroinflammation - bipolar disorder, psychosis, and Alzheimer's disease. Mol Psychiatry 2023; 28:968-971. [PMID: 36899214 DOI: 10.1038/s41380-023-01968-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 03/12/2023]
|
13
|
Duan H, Li J, Fan L. Agaricus bisporus Polysaccharides Ameliorates Behavioural Deficits in D-Galactose-Induced Aging Mice: Mediated by Gut Microbiota. Foods 2023; 12:424. [PMID: 36673515 PMCID: PMC9857696 DOI: 10.3390/foods12020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
White button mushroom polysaccharide (WMP) has various health-promoting functions. However, whether these functions are mediated by gut microbiota has not been well explored. Therefore, this study evaluated the anti-aging capacity of WMP and its effects on the diversity and composition of gut microbiota in D-galactose-induced aging mice. WMP significantly improved locomotor activity and the spatial and recognition memory of the aging mice. It also alleviated oxidative stress and decreased the pro-inflammatory cytokine levels in the brain. Moreover, WMP increased α-diversity, the short-chain fatty acid (SCFA) level and the abundance of beneficial genera, such as Bacteroides and Parabacteroides. Moreover, its effect on Bacteroides at the species level was further determined, and the enrichments of B. acidifaciens, B. sartorii and B. stercorirosoris were found. A PICRUSt analysis revealed that WMP had a greater impact on the metabolism of carbon, fatty acid and amino acid, as well as the MAPK and PPAR signaling pathway. In addition, there was a strong correlation between the behavioral improvements and changes in SCFA levels and the abundance of Bacteroides, Parabacteroides, Mucispirillum and Desulfovibrio and Helicobacter. Therefore, WMP might be suitable as a functional foods to prevent or delay aging via the directed enrichment of specific species in Bacteroides.
Collapse
Affiliation(s)
- Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|