1
|
Wu L, Hong Z, Wang S, Huang J, Liu J. Sex differences of negative emotions in adults and infants along the prefrontal-amygdaloid brain pathway. Neuroimage 2024; 304:120948. [PMID: 39571642 DOI: 10.1016/j.neuroimage.2024.120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
The neural basis of sex-related differences in processing negative emotions remains poorly understood. The amygdala-related fiber pathways serve as the neuroanatomical foundation for emotion processing. However, the precise sex-related variations within these pathways remain largely elusive. Using diffusion magnetic resonance imaging data from 418 healthy individuals, we identified sex differences in white-matter microstructures of the striato-amygdaloid-prefrontal tracts, particularly the amygdala (Amy)-medial prefrontal cortex (mPFC) pathway. These differences were associated with various neurobiological factors, including pain-related negative emotions, pain sensitivity, neurotransmitter receptors, and gene expressions in the human brain. Our findings suggested that the Amy-mPFC pathway may serve as a neuroanatomical foundation for sex-specific negative emotion processing, driven by specific genetic and neurotransmitter profiles. Notably, we also found similar sex differences in this pathway in an infant imaging dataset, hinting at its developmental significance as a precursor to sex differences in adulthood. These findings underscore the importance of the striato-amygdaloid-prefrontal tracts in sex-related differences in processing negative emotions. This may enhance our understanding of sex-specific emotion regulation and potentially inform future research on strategies for preventing and diagnosing emotional regulation disorders across sexes.
Collapse
Affiliation(s)
- Leiming Wu
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Zilong Hong
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Shujun Wang
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Jia Huang
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Jixin Liu
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Yang J, Liu Z, Pan Y, Fan Z, Cheng Y, Wang F, Sun F, Wu G, Ouyang X, Tao H, Yang J, Palaniyappan L. Regional neural functional efficiency across schizophrenia, bipolar disorder, and major depressive disorder: a transdiagnostic resting-state fMRI study. Psychol Med 2024:1-12. [PMID: 39552391 DOI: 10.1017/s0033291724001685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
BACKGROUND Major psychiatric disorders (MPDs) are delineated by distinct clinical features. However, overlapping symptoms and transdiagnostic effectiveness of medications have challenged the traditional diagnostic categorisation. We investigate if there are shared and illness-specific disruptions in the regional functional efficiency (RFE) of the brain across these disorders. METHODS We included 364 participants (118 schizophrenia [SCZ], 80 bipolar disorder [BD], 91 major depressive disorder [MDD], and 75 healthy controls [HCs]). Resting-state fMRI was used to caclulate the RFE based on the static amplitude of low-frequency fluctuation, regional homogeneity, and degree centrality and corresponding dynamic measures indicating variability over time. We used principal component analysis to obtain static and dynamic RFE values. We conducted functional and genetic annotation and enrichment analysis based on abnormal RFE profiles. RESULTS SCZ showed higher static RFE in the cortico-striatal regions and excessive variability in the cortico-limbic regions. SCZ and MDD shared lower static RFE with higher dynamic RFE in sensorimotor regions than BD and HCs. We observed association between static RFE abnormalities with reward and sensorimotor functions and dynamic RFE abnormalities with sensorimotor functions. Differential spatial expression of genes related to glutamatergic synapse and calcium/cAMP signaling was more likely in the regions with aberrant RFE. CONCLUSIONS SCZ shares more regions with disrupted functional integrity, especially in sensorimotor regions, with MDD rather than BD. The neural patterns of these transdiagnostic changes appear to be potentially driven by gene expression variations relating to glutamatergic synapses and calcium/cAMP signaling. The aberrant sensorimotor, cortico-striatal, and cortico-limbic integrity may collectively underlie neurobiological mechanisms of MPDs.
Collapse
Affiliation(s)
- Jun Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhening Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yunzhi Pan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zebin Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yixin Cheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feiwen Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fuping Sun
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guowei Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuan Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haojuan Tao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jie Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lena Palaniyappan
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Yao G, Luo J, Li J, Feng K, Liu P, Xu Y. Functional gradient dysfunction in drug-naïve first-episode schizophrenia and its correlation with specific transcriptional patterns and treatment predictions. Psychol Med 2024:1-13. [PMID: 39552400 DOI: 10.1017/s0033291724001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
BACKGROUND First-episode schizophrenia (FES) is a progressive psychiatric disorder influenced by genetics, environmental factors, and brain function. The functional gradient deficits of drug-naïve FES and its relationship to gene expression profiles and treatment outcomes are unknown. METHODS In this study, we engaged a cohort of 116 FES and 100 healthy controls (HC), aged 7 to 30 years, including 15 FES over an 8-week antipsychotic medication regimen. Our examination focused on primary-to-transmodal alterations in voxel-based connection gradients in FES. Then, we employed network topology, Neurosynth, postmortem gene expression, and support vector regression to evaluate integration and segregation functions, meta-analytic cognitive terms, transcriptional patterns, and treatment predictions. RESULTS FES displayed diminished global connectome gradients (Cohen's d = 0.32-0.57) correlated with compensatory integration and segregation functions (Cohen's d = 0.31-0.36). Predominant alterations were observed in the default (67.6%) and sensorimotor (21.9%) network, related to high-order cognitive functions. Furthermore, we identified notable overlaps between partial least squares (PLS1) weighted genes and dysregulated genes in other psychiatric conditions. Genes linked with gradient alterations were enriched in synaptic signaling, neurodevelopment process, specific astrocytes, cortical layers (layer II and IV), and developmental phases from late/mid fetal to young adulthood. Additionally, the onset age influenced the severity of FES, with discernible differences in connection gradients between minor- and adult-FES. Moreover, the connectivity gradients of FES at baseline significantly predicted treatment outcomes. CONCLUSIONS These results offer significant theoretical foundations for elucidating the intricate interplay between macroscopic functional connection gradient changes and microscopic transcriptional patterns during the onset and progression of FES.
Collapse
Affiliation(s)
- Guanqun Yao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Luo
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jing Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
- College of Humanities and Social Science, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kun Feng
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, 100040, China
| | - Pozi Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, 100040, China
| | - Yong Xu
- Department of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518031, China
| |
Collapse
|
4
|
Petrican R, Chopra S, Murgatroyd C, Fornito A. Sex-Differential Markers of Psychiatric Risk and Treatment Response Based on Premature Aging of Functional Brain Network Dynamics and Peripheral Physiology. Biol Psychiatry 2024:S0006-3223(24)01667-6. [PMID: 39419460 DOI: 10.1016/j.biopsych.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Aging is a multilevel process of gradual decline that predicts morbidity and mortality. Independent investigations have implicated senescence of brain and peripheral physiology in psychiatric risk, but it is unclear whether these effects stem from unique or shared mechanisms. METHODS To address this question, we analyzed clinical, blood chemistry, and resting-state functional neuroimaging data in a healthy aging cohort (n = 427; ages 36-100 years) and 2 disorder-specific samples including patients with early psychosis (100 patients, 16-35 years) and major depressive disorder (MDD) (104 patients, 20-76 years). RESULTS We identified sex-dependent coupling between blood chemistry markers of metabolic senescence (i.e., homeostatic dysregulation), functional brain network aging, and psychiatric risk. In females, premature aging of frontoparietal and somatomotor networks was linked to greater homeostatic dysregulation. It also predicted the severity and treatment resistance of mood symptoms (depression/anxiety [all 3 samples], anhedonia [MDD]) and social withdrawal/behavioral inhibition (avoidant personality disorder [healthy aging], negative symptoms [early psychosis]). In males, premature aging of the default mode, cingulo-opercular, and visual networks was linked to reduced homeostatic dysregulation and predicted the severity and treatment resistance of symptoms relevant to hostility/aggression (antisocial personality disorder [healthy aging], mania/positive symptoms [early psychosis]), impaired thought processes (early psychosis, MDD), and somatic problems (healthy aging, MDD). CONCLUSIONS Our findings identify sexually dimorphic relationships between brain dynamics, peripheral physiology, and risk for psychiatric illness, suggesting that the specificity of putative risk biomarkers and precision therapeutics may be improved by considering sex and other relevant personal characteristics.
Collapse
Affiliation(s)
- Raluca Petrican
- Institute of Population Health, Department of Psychology, University of Liverpool, Liverpool, United Kingdom.
| | - Sidhant Chopra
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher Murgatroyd
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Dong T, Yu C, Mao Q, Han F, Yang Z, Yang Z, Pires N, Wei X, Jing W, Lin Q, Hu F, Hu X, Zhao L, Jiang Z. Advances in biosensors for major depressive disorder diagnostic biomarkers. Biosens Bioelectron 2024; 258:116291. [PMID: 38735080 DOI: 10.1016/j.bios.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Depression is one of the most common mental disorders and is mainly characterized by low mood or lack of interest and pleasure. It can be accompanied by varying degrees of cognitive and behavioral changes and may lead to suicide risk in severe cases. Due to the subjectivity of diagnostic methods and the complexity of patients' conditions, the diagnosis of major depressive disorder (MDD) has always been a difficult problem in psychiatry. With the discovery of more diagnostic biomarkers associated with MDD in recent years, especially emerging non-coding RNAs (ncRNAs), it is possible to quantify the condition of patients with mental illness based on biomarker levels. Point-of-care biosensors have emerged due to their advantages of convenient sampling, rapid detection, miniaturization, and portability. After summarizing the pathogenesis of MDD, representative biomarkers, including proteins, hormones, and RNAs, are discussed. Furthermore, we analyzed recent advances in biosensors for detecting various types of biomarkers of MDD, highlighting representative electrochemical sensors. Future trends in terms of new biomarkers, new sample processing methods, and new detection modalities are expected to provide a complete reference for psychiatrists and biomedical engineers.
Collapse
Affiliation(s)
- Tao Dong
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Chenghui Yu
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Qi Mao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Han
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenwei Yang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Pires
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Hu
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiao Hu
- Engineering Research Center of Ministry of Education for Smart Justice, School of Criminal Investigation, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Libo Zhao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
6
|
Hinzen W, Palaniyappan L. The 'L-factor': Language as a transdiagnostic dimension in psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110952. [PMID: 38280712 DOI: 10.1016/j.pnpbp.2024.110952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Thoughts and moods constituting our mental life incessantly change. When the steady flow of this dynamics diverges in clinical directions, the possible pathways involved are captured through discrete diagnostic labels. Yet a single vulnerable neurocognitive system may be causally involved in psychopathological deviations transdiagnostically. We argue that language viewed as integrating cortical functions is the best current candidate, whose forms of breakdown along its different dimensions are then manifest as symptoms - from prosodic abnormalities and rumination in depression to distortions of speech perception in verbal hallucinations, distortions of meaning and content in delusions, or disorganized speech in formal thought disorder. Spontaneous connected speech provides continuous objective readouts generating a highly accessible bio-behavioral marker with the potential of revolutionizing neuropsychological measurement. This argument turns language into a transdiagnostic 'L-factor' providing an analytical and mechanistic substrate for previously proposed latent general factors of psychopathology ('p-factor') and cognitive functioning ('c-factor'). Together with immense practical opportunities afforded by rapidly advancing natural language processing (NLP) technologies and abundantly available data, this suggests a new era of translational clinical psychiatry, in which both psychopathology and language may be rethought together.
Collapse
Affiliation(s)
- Wolfram Hinzen
- Department of Translation & Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal H4H1R3, Quebec, Canada; Robarts Research Institute & Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|