1
|
Foer D, Amin T, Nagai J, Tani Y, Feng C, Liu T, Newcomb DC, Lai J, Hayashi H, Snyder WE, McGill A, Lin A, Laidlaw T, Niswender KD, Boyce JA, Cahill KN. Glucagon-like Peptide-1 Receptor Pathway Attenuates Platelet Activation in Aspirin-Exacerbated Respiratory Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1806-1813. [PMID: 37870292 PMCID: PMC10842986 DOI: 10.4049/jimmunol.2300102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
Platelets are key contributors to allergic asthma and aspirin-exacerbated respiratory disease (AERD), an asthma phenotype involving platelet activation and IL-33-dependent mast cell activation. Human platelets express the glucagon-like peptide-1 receptor (GLP-1R). GLP-1R agonists decrease lung IL-33 release and airway hyperresponsiveness in mouse asthma models. We hypothesized that GLP-1R agonists reduce platelet activation and downstream platelet-mediated airway inflammation in AERD. GLP-1R expression on murine platelets was assessed using flow cytometry. We tested the effect of the GLP-1R agonist liraglutide on lysine-aspirin (Lys-ASA)-induced changes in airway resistance, and platelet-derived mediator release in a murine AERD model. We conducted a prospective cohort study comparing the effect of pretreatment with liraglutide or vehicle on thromboxane receptor agonist-induced in vitro activation of platelets from patients with AERD and nonasthmatic controls. GLP-1R expression was higher on murine platelets than on leukocytes. A single dose of liraglutide inhibited Lys-ASA-induced increases in airway resistance and decreased markers of platelet activation and recruitment to the lung in AERD-like mice. Liraglutide attenuated thromboxane receptor agonist-induced activation as measured by CXCL7 release in plasma from patients with AERD and CD62P expression in platelets from both patients with AERD (n = 31) and nonasthmatic, healthy controls (n = 11). Liraglutide, a Food and Drug Administration-approved GLP-1R agonist for treatment of type 2 diabetes and obesity, attenuates in vivo platelet activation in an AERD murine model and in vitro activation in human platelets in patients with and without AERD. These data advance the GLP-1R axis as a new target for platelet-mediated inflammation warranting further study in asthma.
Collapse
Affiliation(s)
- Dinah Foer
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Taneem Amin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jun Nagai
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Yumi Tani
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Chunli Feng
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Tao Liu
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Dawn C. Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Juying Lai
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hiroaki Hayashi
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - William E. Snyder
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alanna McGill
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Anabel Lin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tanya Laidlaw
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Kevin D. Niswender
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Joshua A. Boyce
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Katherine N. Cahill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Chen P, Wu M, He Y, Jiang B, He ML. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduct Target Ther 2023; 8:237. [PMID: 37286535 DOI: 10.1038/s41392-023-01510-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty acids, 2-DG, and metformin.
Collapse
Affiliation(s)
- Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Binghua Jiang
- Cell Signaling and Proteomic Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China.
| |
Collapse
|
3
|
Laidlaw TM, Boyce JA. Updates on immune mechanisms in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2023; 151:301-309. [PMID: 36184313 PMCID: PMC9905222 DOI: 10.1016/j.jaci.2022.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Aspirin-exacerbated respiratory disease has fascinated and frustrated specialists in allergy/immunology, pulmonology, and otorhinolaryngology for decades. It generally develops in previously healthy young adults and is unremitting and challenging to treat. The classical triad of asthma, nasal polyposis, and pathognomonic respiratory reactions to aspirin and other cyclooxygenase-1 inhibitors is accompanied by high levels of mast cell activation, cysteinyl leukotriene production, platelet activation, and severe type 2 respiratory inflammation. The "unbraking" of mast cell activation and further cysteinyl leukotriene generation induced by cyclooxygenase-1 inhibition reflect an idiosyncratic dependency on cyclooxygenase-1-derived products, likely prostaglandin E2, to maintain a tenuous homeostasis. Although cysteinyl leukotrienes are clear disease effectors, little else was known about their cellular sources and targets, and the contributions from other mediators and type 2 respiratory inflammation effector cells to disease pathophysiology were unknown until recently. The applications of targeted biological therapies, single-cell genomics, and transgenic animal approaches have substantially advanced our understanding of aspirin-exacerbated respiratory disease pathogenesis and treatment and have also revealed disease heterogeneity. This review covers novel insights into the immunopathogenesis of aspirin-exacerbated respiratory disease from each of these lines of research, including the roles of lipid mediators, effector cell populations, and inflammatory cytokines, discusses unanswered questions regarding cause and pathogenesis, and considers potential future therapeutic options.
Collapse
Affiliation(s)
- Tanya M Laidlaw
- Department of Medicine, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Jeff and Penny Vinik Center for Translational Immunology Research, Boston, Mass.
| | - Joshua A Boyce
- Department of Medicine, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Jeff and Penny Vinik Center for Translational Immunology Research, Boston, Mass
| |
Collapse
|
4
|
Allegra A, Murdaca G, Gammeri L, Ettari R, Gangemi S. Alarmins and MicroRNAs, a New Axis in the Genesis of Respiratory Diseases: Possible Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24021783. [PMID: 36675299 PMCID: PMC9861898 DOI: 10.3390/ijms24021783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
It is well ascertained that airway inflammation has a key role in the genesis of numerous respiratory pathologies, including asthma, chronic obstructive pulmonary disease, and acute respiratory distress syndrome. Pulmonary tissue inflammation and anti-inflammatory responses implicate an intricate relationship between local and infiltrating immune cells and structural pulmonary cells. Alarmins are endogenic proteins discharged after cell injury in the extracellular microenvironment. The purpose of our review is to highlight the alterations in respiratory diseases involving some alarmins, such as high mobility group box 1 (HMGB1) and interleukin (IL)-33, and their inter-relationships and relationships with genetic non-coding material, such as microRNAs. The role played by these alarmins in some pathophysiological processes confirms the existence of an axis composed of HMGB1 and IL-33. These alarmins have been implicated in ferroptosis, the onset of type 2 inflammation and airway alterations. Moreover, both factors can act on non-coding genetic material capable of modifying respiratory function. Finally, we present an outline of alarmins and RNA-based therapeutics that have been proposed to treat respiratory pathologies.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
5
|
Vicentino ARR, Fraga-Junior VDS, Palazzo M, Tasmo NRA, Rodrigues DAS, Barroso SPC, Ferreira SN, Neves-Borges AC, Allonso D, Fantappié MR, Scharfstein J, Oliveira AC, Vianna-Jorge R, Vale AM, Coutinho-Silva R, Savio LEB, Canetti C, Benjamim CF. High mobility group box 1, ATP, lipid mediators, and tissue factor are elevated in COVID-19 patients: HMGB1 as a biomarker of worst prognosis. Clin Transl Sci 2023; 16:631-646. [PMID: 36631939 PMCID: PMC10087071 DOI: 10.1111/cts.13475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2, the agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic, has spread worldwide since it was first identified in November 2019 in Wuhan, China. Since then, progress in pathogenesis linked severity of this systemic disease to the hyperactivation of network of cytokine-driven pro-inflammatory cascades. Here, we aimed to identify molecular biomarkers of disease severity by measuring the serum levels of inflammatory mediators in a Brazilian cohort of patients with COVID-19 and healthy controls (HCs). Critically ill patients in the intensive care unit were defined as such by dependence on oxygen supplementation (93% intubated and 7% face mask), and computed tomography profiles showing ground-glass opacity pneumonia associated to and high levels of D-dimer. Our panel of mediators included HMGB1, ATP, tissue factor, PGE2 , LTB4 , and cys-LTs. Follow-up studies showed increased serum levels of every inflammatory mediator in patients with COVID-19 as compared to HCs. Originally acting as a transcription factor, HMGB1 acquires pro-inflammatory functions following secretion by activated leukocytes or necrotic tissues. Serum levels of HMGB1 were positively correlated with cys-LTs, D-dimer, aspartate aminotransferase, and alanine aminotransferase. Notably, the levels of the classical alarmin HMGB1 were higher in deceased patients, allowing their discrimination from patients that had been discharged at the early pulmonary and hyperinflammatory phase of COVID-19. In particular, we verified that HMGB1 levels above 125.4 ng/ml is the cutoff that distinguishes patients that are at higher risk of death. In conclusion, we propose the use of serum levels of HMGB1 as a biomarker of severe prognosis of COVID-19.
Collapse
Affiliation(s)
- Amanda Roberta Revoredo Vicentino
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanderlei da Silva Fraga-Junior
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Palazzo
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Recardo Amorim Tasmo
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle A S Rodrigues
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shana Priscila Coutinho Barroso
- Molecular Biology Laboratory, Laboratório de Biologia Molecular, Instituto de Pesquisas Biomédicas, Hospital Naval Marcílio Dias, Rio de Janeiro, Brazil
| | - Sâmila Natiane Ferreira
- Molecular Biology Laboratory, Laboratório de Biologia Molecular, Instituto de Pesquisas Biomédicas, Hospital Naval Marcílio Dias, Rio de Janeiro, Brazil
| | - Anna Cristina Neves-Borges
- Department of Botanic, Departamento de Botânica, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Rosado Fantappié
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Oliveira
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosane Vianna-Jorge
- Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Macedo Vale
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Farias Benjamim
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Carion TW, Wang Y, Stambersky A, Ebrahim AS, Berger EA. A Dual Role for Cysteinyl Leukotriene Receptors in the Pathogenesis of Corneal Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2331-2342. [PMID: 35470258 PMCID: PMC9117469 DOI: 10.4049/jimmunol.2100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/12/2022] [Indexed: 05/17/2023]
Abstract
Cysteinyl leukotrienes (CysLTs) have been defined as central mediators of inflammation. Despite our extensive understanding of these bioactive lipid mediators in the pathogenesis of diseases such as asthma, allergic rhinitis, and even neurological disorders, information regarding the eye is markedly lacking. As a result, this study examined the expression profiles of two major CysLT receptors, CysLT1 and CysLT2, in the cornea using experimental mouse models of Pseudomonas aeruginosa-induced keratitis with contrasting outcomes: susceptible C57BL/6 (B6) and resistant BALB/c. Postinfection, disparate levels of CysLT receptors were accompanied by distinct expression profiles for select proinflammatory and anti-inflammatory cell surface markers detected on macrophages and polymorphonuclear neutrophils between the two strains. Further, inhibition of either CysLT receptor converted the disease response of both strains, where corneal perforation was prevented in B6 mice, and BALB/c mice fared significantly worse. In addition, receptor antagonist studies revealed changes in inflammatory cell infiltrate phenotypes and an influence on downstream CysLT receptor signaling pathways. Although the B6 mouse model highlights the established proinflammatory activities related to CysLT receptor activation, results generated from BALB/c mice indicate a protective mechanism that may be essential to disease resolution. Further, basal expression levels of CysLT1 and CysLT2 were significantly higher in uninfected corneas of both mouse strains as opposed to during infection, suggestive of a novel role in homeostatic maintenance within the eye. In light of these findings, therapeutic targeting of CysLT receptors extends beyond inhibition of proinflammatory activities and may impact inflammation resolution, as well as corneal surface homeostasis.
Collapse
Affiliation(s)
- Thomas W Carion
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI
| | - Yuxin Wang
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI
| | - Ashten Stambersky
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI
| | - Elizabeth A Berger
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
7
|
Ualiyeva S, Lemire E, Aviles EC, Wong C, Boyd AA, Lai J, Liu T, Matsumoto I, Barrett NA, Boyce JA, Haber AL, Bankova LG. Tuft cell-produced cysteinyl leukotrienes and IL-25 synergistically initiate lung type 2 inflammation. Sci Immunol 2021; 6:eabj0474. [PMID: 34932383 DOI: 10.1126/sciimmunol.abj0474] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Saltanat Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Evan Lemire
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Evelyn C Aviles
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Caitlin Wong
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Amelia A Boyd
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Juying Lai
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tao Liu
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Nora A Barrett
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Adam L Haber
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Lora G Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Tsai MJ, Chang WA, Chuang CH, Wu KL, Cheng CH, Sheu CC, Hsu YL, Hung JY. Cysteinyl Leukotriene Pathway and Cancer. Int J Mol Sci 2021; 23:ijms23010120. [PMID: 35008546 PMCID: PMC8745400 DOI: 10.3390/ijms23010120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer remains a leading cause of death worldwide, despite many advances being made in recent decades. Changes in the tumor microenvironment, including dysregulated immunity, may contribute to carcinogenesis and cancer progression. The cysteinyl leukotriene (CysLT) pathway is involved in several signal pathways, having various functions in different tissues. We summarized major findings of studies about the roles of the CysLT pathway in cancer. Many in vitro studies suggested the roles of CysLTs in cell survival/proliferation via CysLT1 receptor (CysLT1R). CysLT1R antagonism decreased cell vitality and induced cell death in several types of cancer cells, such as colorectal, urological, breast, lung and neurological malignancies. CysLTs were also associated with multidrug resistance of cancer, and CysLT1R antagonism might reverse chemoresistance. Some animal studies demonstrated the beneficial effects of CysLT1R antagonist in inhibiting tumorigenesis and progression of some cancer types, particularly colorectal cancer and lung cancer. The expression of CysLT1R was shown in various cancer tissues, particularly colorectal cancer and urological malignancies, and higher expression was associated with a poorer prognosis. The chemo-preventive effects of CysLT1R antagonists were demonstrated in two large retrospective cohort studies. In summary, the roles of the CysLT pathway in cancer have been delineated, whereas further studies are still warranted.
Collapse
Affiliation(s)
- Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Cheng-Hao Chuang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Kuan-Li Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chih-Hung Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 5651)
| |
Collapse
|
9
|
Manfredi AA, Ramirez GA, Godino C, Capobianco A, Monno A, Franchini S, Tombetti E, Corradetti S, Distler JHW, Bianchi ME, Rovere-Querini P, Maugeri N. Platelet Phagocytosis via P-selectin Glycoprotein Ligand 1 and Accumulation of Microparticles in Systemic Sclerosis. Arthritis Rheumatol 2021; 74:318-328. [PMID: 34279048 DOI: 10.1002/art.41926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE It is unclear why activated platelets and platelet-derived microparticles (MPs) accumulate in the blood of patients with systemic sclerosis (SSc). This study was undertaken to investigate whether defective phagocytosis might contribute to MP accumulation in the blood of patients with SSc. METHODS Blood samples were obtained from a total of 81 subjects, including 25 patients with SSc and 26 patients with stable coronary artery disease (CAD). Thirty sex- and age-matched healthy volunteers served as controls. Studies were also conducted in NSG mice, in which the tail vein of the mice was injected with MPs, and samples of the lung parenchyma were obtained for analysis of the pulmonary microvasculature. Tissue samples from human subjects and from mice were assessed by flow cytometry and immunochemical analyses for determination of platelet-neutrophil interactions, phagocytosis, levels and distribution of P-selectin, P-selectin glycoprotein ligand 1 (PSGL-1), and HMGB1 on platelets and MPs, and concentration of byproducts of neutrophil extracellular trap (NET) generation/catabolism. RESULTS Activated P-selectin+ platelets and platelet-derived HMGB1+ MPs accumulated in the blood of SSc patients but not in the blood of healthy controls. Patients with CAD, a vasculopathy independent of systemic inflammation, had fewer P-selectin+ platelets and a negligible number of MPs. The expression of the receptor for P-selectin, PSGL-1, in neutrophils from SSc patients was significantly decreased, raising the possibility that phagocytes in SSc do not recognize activated platelets, leading to a failure of phagocytosis and continued neutrophil release of MPs. As evidence of this process, activated platelets were not detected in the neutrophils from SSc patients, whereas they were consistently present in the neutrophils from patients with CAD. HMGB1+ MPs elicited generation of NETs, which were only detected in the plasma of SSc patients. In mice, P-selectin-PSGL-1 interaction resulted in platelet phagocytosis in vitro and influenced the ability of MPs to elicit NETs, endothelial activation, and migration of leukocytes through the pulmonary microvasculature. CONCLUSION The clearance of activated platelets via PSGL-1 limits the undesirable effects of MP-elicited neutrophil activation. This balance is disrupted in patients with SSc. Its reconstitution might curb vascular inflammation and prevent fibrosis.
Collapse
Affiliation(s)
- Angelo A Manfredi
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe A Ramirez
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cosmo Godino
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annalisa Capobianco
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Monno
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Franchini
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Tombetti
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Corradetti
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jörg H W Distler
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Marco E Bianchi
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Norma Maugeri
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
10
|
Sehanobish E, Asad M, Barbi M, Porcelli SA, Jerschow E. Aspirin Actions in Treatment of NSAID-Exacerbated Respiratory Disease. Front Immunol 2021; 12:695815. [PMID: 34305932 PMCID: PMC8297972 DOI: 10.3389/fimmu.2021.695815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022] Open
Abstract
Non-steroidal Anti-inflammatory drugs (NSAID)-exacerbated respiratory disease (N-ERD) is characterized by nasal polyposis, chronic rhinosinusitis, adult-onset asthma and hypersensitive reactions to cyclooxygenase-1 (COX-1) inhibitors. Among the available treatments for this disease, a combination of endoscopic sinus surgery followed by aspirin desensitization and aspirin maintenance therapy has been an effective approach. Studies have shown that long-term aspirin maintenance therapy can reduce the rate of nasal polyp recurrence in patients with N-ERD. However, the exact mechanism by which aspirin can both trigger and suppress airway disease in N-ERD remains poorly understood. In this review, we summarize current knowledge of aspirin effects in N-ERD, cardiovascular disease, and cancer, and consider potential mechanistic pathways accounting for the effects of aspirin in N-ERD.
Collapse
Affiliation(s)
- Esha Sehanobish
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mohammad Asad
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mali Barbi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Steven A. Porcelli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elina Jerschow
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
11
|
Al-Kuraishy HM, Al-Gareeb AI, Almulaiky YQ, Cruz-Martins N, El-Saber Batiha G. Role of leukotriene pathway and montelukast in pulmonary and extrapulmonary manifestations of Covid-19: The enigmatic entity. Eur J Pharmacol 2021; 904:174196. [PMID: 34004207 PMCID: PMC8123523 DOI: 10.1016/j.ejphar.2021.174196] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), the responsible agent for the coronavirus disease 2019 (Covid-19), has its entry point through interaction with angiotensin converting enzyme 2 (ACE2) receptors, highly expressed in lung type II alveolar cells and other tissues, like heart, pancreas, brain, and vascular endothelium. This review aimed to elucidate the potential role of leukotrienes (LTs) in the pathogenesis and clinical presentation of SARS-CoV-2 infection, and to reveal the critical role of LT pathway receptor antagonists and inhibitors in Covid-19 management. A literature search was done in PubMed, Scopus, Web of Science and Google Scholar databases to find the potential role of montelukast and other LT inhibitors in the management of pulmonary and extra-pulmonary manifestations triggered by SARS-CoV-2. Data obtained so far underline that pulmonary and extra-pulmonary manifestations in Covid-19 are attributed to a direct effect of SARS-CoV-2 in expressed ACE2 receptors or indirectly through NF-κB dependent induction of a cytokine storm. Montelukast can ameliorate extra-pulmonary manifestations in Covid-19 either directly through blocking of Cys-LTRs in different organs or indirectly through inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq.
| | - Yaaser Q Almulaiky
- University of Jeddah, College of Sciences and Arts at Khulis, Department of Chemistry, Jeddah, Saudi Arabia.
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319, Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal; Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Portugal.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
12
|
Aspirin exacerbated respiratory disease (AERD): molecular and cellular diagnostic & prognostic approaches. Mol Biol Rep 2021; 48:2703-2711. [PMID: 33625688 DOI: 10.1007/s11033-021-06240-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Aspirin-exacerbated respiratory disease (AERD) is characterized by immune cells dysfunction. This study aimed to investigate the molecular mechanisms involved in AERD pathogenesis. Relevant literatures were identified by a PubMed search (2005-2019) of english language papers using the terms "Aspirin-exacerbated respiratory disease", "Allergic inflammation", "molecular mechanism" and "mutation". According to the significant role of inflammation in AERD development, ILC-2 is known as the most important cell in disease progression. ILC-2 produces cytokines that induce allergic reactions and also cause lipid mediators production, which activates mast cells and basophils, ultimately. Finally, Monoclonal antibody and Aspirin desensitization in patients can be a useful treatment strategy for prevention and treatment.
Collapse
|
13
|
Leukotriene D 4 paradoxically limits LTC 4-driven platelet activation and lung immunopathology. J Allergy Clin Immunol 2020; 148:195-208.e5. [PMID: 33285161 DOI: 10.1016/j.jaci.2020.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The 3 cysteinyl leukotrienes (cysLTs), leukotriene (LT) C4 (LTC4), LTD4, and LTE4, have different biologic half-lives, cellular targets, and receptor specificities. CysLT2R binds LTC4 and LTD4in vitro with similar affinities, but it displays a marked selectivity for LTC4in vivo. LTC4, but not LTD4, strongly potentiates allergen-induced pulmonary eosinophilia in mice through a CysLT2R-mediated, platelet- and IL-33-dependent pathway. OBJECTIVE We sought to determine whether LTD4 functionally antagonizes LTC4 signaling at CysLT2R. METHODS We used 2 different in vivo models of CysLT2R-dependent immunopathology, as well as ex vivo activation of mouse and human platelets. RESULTS LTC4-induced CD62P expression; HMGB1 release; and secretions of thromboxane A2, CXCL7, and IL-33 by mouse platelets were all were blocked by a selective CysLT2R antagonist and inhibited by LTD4. These effects did not depend on CysLT1R. Inhaled LTD4 blocked LTC4-mediated potentiation of ovalbumin-induced eosinophilic inflammation; recruitment of platelet-adherent eosinophils; and increases in IL-33, IL-4, IL-5, and IL-13 levels in lung tissue. In contrast, the effect of administration of LTE4, the preferred ligand for CysLT3R, was additive with LTC4. The administration of LTD4 to Ptges-/- mice, which display enhanced LTC4 synthesis similar to that in aspirin-exacerbated respiratory disease, completely blocked the physiologic response to subsequent lysine-aspirin inhalation challenges, as well as increases in levels of IL-33, type 2 cytokines, and biochemical markers of mast cell and platelet activation. CONCLUSION The conversion of LTC4 to LTD4 may limit the duration and extent of potentially deleterious signaling through CysLT2R, and it may contribute to the therapeutic properties of desensitization to aspirin in aspirin-exacerbated respiratory disease.
Collapse
|
14
|
Zhou W, Zhang J, Toki S, Goleniewska K, Norlander AE, Newcomb DC, Wu P, Boyd KL, Kita H, Peebles RS. COX Inhibition Increases Alternaria-Induced Pulmonary Group 2 Innate Lymphoid Cell Responses and IL-33 Release in Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:1157-1166. [PMID: 32690653 DOI: 10.4049/jimmunol.1901544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
The cyclooxygenase (COX) metabolic pathway regulates immune responses and inflammation. The effect of the COX pathway on innate pulmonary inflammation induced by protease-containing fungal allergens, such as Alternaria alternata, is not fully defined. In this study, we tested the hypothesis that COX inhibition augments Alternaria-induced pulmonary group 2 innate lymphoid cell (ILC2) responses and IL-33 release. Mice were treated with the COX inhibitors indomethacin, flurbiprofen, or vehicle and challenged intranasally with Alternaria extract for four consecutive days to induce innate lung inflammation. We found that indomethacin and flurbiprofen significantly increased the numbers of ILC2 and IL-5 and IL-13 expression by ILC2 in the lung. Indomethacin also increased ILC2 proliferation, the percentages of eosinophils, and mucus production in the lung. Both indomethacin and flurbiprofen augmented the release of IL-33 in bronchoalveolar lavage fluid after Alternaria challenge, suggesting that more IL-33 was available for ILC2 activation and that a COX product(s) inhibited IL-33 release. This is supported by the in vitro finding that the COX product PGE2 and the PGI2 analogs cicaprost decreased Alternaria extract-induced IL-33 release by human bronchial epithelial cells. Although contrasting effects of PGD2, PGE2, and PGI2 on ILC2 responses have been previously reported, the overall effect of the COX pathway on ILC2 function is inhibitory in Alternaria-induced innate airway inflammation.
Collapse
Affiliation(s)
- Weisong Zhou
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232;
| | - Jian Zhang
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232
| | - Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232
| | - Allison E Norlander
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232
| | - Dawn C Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232
| | - Pingsheng Wu
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232
| | - Kelli L Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Hirohito Kita
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
| | - R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Nashville, TN 37232.,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| |
Collapse
|
15
|
Aspirin sensitivity: Lessons in the regulation (and dysregulation) of mast cell function. J Allergy Clin Immunol 2020; 144:875-881. [PMID: 31587797 DOI: 10.1016/j.jaci.2019.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 10/25/2022]
Abstract
The idiosyncratic activation of mast cells (MCs) in response to administration of nonselective COX inhibitors is a cardinal feature of aspirin-exacerbated respiratory disease (AERD). Older studies using MC-stabilizing drugs support a critical role for MCs and their products in driving the severe eosinophilic inflammation and respiratory dysfunction that is typical of AERD. Because patients with AERD react to all nonselective COX inhibitors regardless of their chemical structure, the mechanism of MC activation is not caused by classical, antigen-induced cross-linking of IgE receptors. Recent studies in both human subjects and animal models have revealed a complex and multifactorial process culminating in dysregulation of MC function and an aberrant dependency on COX-1-derived prostaglandin E2 to maintain a tenuous homeostasis. This article reviews the factors most likely to contribute to MC dysregulation in patients with AERD and the potential diagnostic and therapeutic implications.
Collapse
|
16
|
Laidlaw TM, Levy JM. NSAID-ERD Syndrome: the New Hope from Prevention, Early Diagnosis, and New Therapeutic Targets. Curr Allergy Asthma Rep 2020; 20:10. [PMID: 32172365 DOI: 10.1007/s11882-020-00905-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the latest information on the appropriate identification, evaluation, and treatment of patients with nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NSAID-ERD), also known as aspirin-exacerbated respiratory disease (AERD). Within the framework of our understanding of the underlying pathophysiology of NSAID-ERD, we also provide an update regarding new surgical techniques and newly available or upcoming medical therapies that may benefit these patients. RECENT FINDINGS There have been considerable developments regarding recommendations for both the extent and timing of sinus surgery for NSAID-ERD. The last few years have also given us several new biologic medications that warrant consideration in the treatment of patients with recalcitrant NSAID-ERD. Further clinical trials are underway to investigate additional medications that may decrease the type 2 inflammation that dominates this disease. Despite the severe lower respiratory inflammation and recurrent nature of the nasal polyps in patients with NSAID-ERD, significant recent advances now afford much-improved quality of life for these patients. Careful collaboration between Allergy/Immunology and Rhinology specialists is imperative to ensure proper treatment of patients with NSAID-ERD.
Collapse
Affiliation(s)
- Tanya M Laidlaw
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| | - Joshua M Levy
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
17
|
Current state and future prospect of the therapeutic strategy targeting cysteinyl leukotriene metabolism in asthma. Respir Investig 2019; 57:534-543. [PMID: 31591069 DOI: 10.1016/j.resinv.2019.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
Asthma is an allergic disorder with dominant type 2 airway inflammation, and its prevalence is increasing worldwide. Inhalation of corticosteroids is the primary treatment for asthma along with add-on drugs, including long-acting β2 agonists and/or cysteinyl leukotriene (cys-LT) receptor antagonists, in patients with poorly controlled asthma. Cys-LTs are composed of leukotriene C4 (LTC4), LTD4, and LTE4, which are enzymatically metabolized from arachidonic acid. These molecules act as inflammatory mediators through different types of high-affinity receptors, namely, CysLT1, CysLT2, and CysLT3 (also named as GPR99). CysLT1 antagonists possessing anti-inflammatory and bronchodilatory effects can be orally administered to patients with asthma. Recently, molecular biology-based studies have revealed the mechanism of inflammatory responses via other receptors, such as CysLT2 and CysLT3, as well as the importance of upstream inflammatory regulators, including type 2 cytokines (e.g., interleukins 4 and 5), in controlling cys-LT metabolism. These findings indicate the therapeutic potential of pharmacological agents targeting cys-LT metabolism-related receptors and enzymes, and antibody drugs neutralizing or antagonizing type 2 cytokines. This review focuses on the current state and future prospect of the therapeutic strategy targeting cys-LT metabolism.
Collapse
|
18
|
Trinh HKT, Lee SH, Cao TBT, Park HS. Asthma pharmacotherapy: an update on leukotriene treatments. Expert Rev Respir Med 2019; 13:1169-1178. [PMID: 31544544 DOI: 10.1080/17476348.2019.1670640] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Asthma is a chronic inflammatory disease of the airways with a large heterogeneity of clinical phenotypes. There has been increasing interest regarding the role of cysteinyl leukotriene (LT) and leukotriene receptor antagonists (LTRA) in asthma treatment.Areas covered: This review summarized the data (published in PubMed during 1984-2019) regarding LTRA treatment in asthma and LTs-related airway inflammation mechanisms. Involvement of LTs C4/D4/E4 has been demonstrated in the several aspects of airway inflammation and remodeling. Novel pathways related to LTE4, the most potent mediator, and its respective receptors have recently been studied. Antagonists against cysteinyl leukotriene receptor (CysLTR) type 1, including montelukast, pranlukast and zafirlukast, have been widely prescribed in clinical practices; however, some clinical trials have shown insignificant responses to LTRAs in adult asthmatics, while some phenotypes of adult asthma showed more favorable responses to LTRAs including aspirin-exacerbated respiratory disease, elderly asthma, asthma associated with smoking, obesity and allergic rhinitis.Expert opinion: Further investigations are needed to understand the role of LTs in airway inflammation and remodeling of the asthmatic airways. There is a lack of biomarkers to predict responsiveness to LTRA, especially in adult asthmatics. Besides CysLTR1 antagonists, targets aiming other LT pathways should be considered.
Collapse
Affiliation(s)
- Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea.,Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh city, Vietnam
| | - So-Hee Lee
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| | | | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea.,Department of Biomedicine, Ajou University, Suwon, South Korea
| |
Collapse
|
19
|
Kanaoka Y, Austen KF. Roles of cysteinyl leukotrienes and their receptors in immune cell-related functions. Adv Immunol 2019; 142:65-84. [PMID: 31296303 DOI: 10.1016/bs.ai.2019.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cysteinyl leukotrienes (cys-LTs), leukotriene C4, (LTC4), LTD4, and LTE4, are lipid mediators of inflammation. LTC4 is the only intracellularly synthesized cys-LT through the 5-lipoxygenase and LTC4 synthase pathway and after transport is metabolized to LTD4 and LTE4 by specific extracellular peptidases. Each cys-LT has a preferred functional receptor in vivo; LTD4 to the type 1 cys-LT receptor (CysLT1R), LTC4 to CysLT2R, and LTE4 to CysLT3R (OXGR1 or GPR99). Recent studies in mouse models revealed that there are multiple regulatory mechanisms for these receptor functions and each receptor plays a distinct role as observed in different mouse models of inflammation and immune responses. This review focuses on the integrated host responses to the cys-LT/CysLTR pathway composed of sequential ligands with preferred receptors as seen from mouse models. It also discusses potential therapeutic targets for LTC4 synthase, CysLT2R, and CysLT3R.
Collapse
Affiliation(s)
- Yoshihide Kanaoka
- Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, United States.
| | - K Frank Austen
- Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|