1
|
Walker KA, Rhodes ST, Liberman DA, Gore AC, Bell MR. Microglial responses to inflammatory challenge in adult rats altered by developmental exposure to polychlorinated biphenyls in a sex-specific manner. Neurotoxicology 2024; 104:95-115. [PMID: 39038526 DOI: 10.1016/j.neuro.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Polychlorinated biphenyls are ubiquitous environmental contaminants linkedc with peripheral immune and neural dysfunction. Neuroimmune signaling is critical to brain development and later health; however, effects of PCBs on neuroimmune processes are largely undescribed. This study extends our previous work in neonatal or adolescent rats by investigating longer-term effects of perinatal PCB exposure on later neuroimmune responses to an inflammatory challenge in adulthood. Male and female Sprague-Dawley rats were exposed to a low-dose, environmentally relevant, mixture of PCBs (Aroclors 1242, 1248, and 1254, 1:1:1, 20 μg / kg dam BW per gestational day) or oil control during gestation and via lactation. Upon reaching adulthood, rats were given a mild inflammatory challenge with lipopolysaccharide (LPS, 50 μg / kg BW, ip) or saline control and then euthanized 3 hours later for gene expression analysis or 24 hours later for immunohistochemical labeling of Iba1+ microglia. PCB exposure did not alter gene expression or microglial morphology independently, but instead interacted with the LPS challenge in brain region- and sex-specific ways. In the female hypothalamus, PCB exposure blunted LPS responses of neuroimmune and neuromodulatory genes without changing microglial morphology. In the female prefrontal cortex, PCBs shifted Iba1+ cells from reactive to hyperramified morphology in response to LPS. Conversely, in the male hypothalamus, PCBs shifted cell phenotypes from hyperramified to reactive morphologies in response to LPS. The results highlight the potential for long-lasting effects of environmental contaminants that are differentially revealed over a lifetime, sometimes only after a secondary challenge. These neuroimmune endpoints are possible mechanisms for PCB effects on a range of neural dysfunction in adulthood, including mental health and neurodegenerative disorders. The findings suggest possible interactions with other environmental challenges that also influence neuroimmune systems.
Collapse
Affiliation(s)
- Katherine A Walker
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Simone T Rhodes
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Deborah A Liberman
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Margaret R Bell
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA; Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
2
|
Guo J, Garshick E, Si F, Tang Z, Lian X, Wang Y, Li J, Koutrakis P. Environmental Toxicant Exposure and Depressive Symptoms. JAMA Netw Open 2024; 7:e2420259. [PMID: 38958973 PMCID: PMC11222999 DOI: 10.1001/jamanetworkopen.2024.20259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Importance Recognizing associations between exposure to common environmental toxicants and mental disorders such as depression is crucial for guiding targeted mechanism research and the initiation of disease prevention efforts. Objectives To comprehensively screen and assess the associations between potential environmental toxicants and depressive symptoms and to assess whether systemic inflammation serves as a mediator. Design, Setting, and Participants A total of 3427 participants from the 2013-2014 and 2015-2016 waves of the National Health and Nutrition Examination and Survey who had information on blood or urine concentrations of environmental toxicants and depression scores assessed by the 9-item Patient Health Questionnaire (PHQ-9) were included. Statistical analysis was performed from July 1, 2023, to January 31, 2024. Exposures Sixty-two toxicants in 10 categories included acrylamide, arsenic, ethylene oxide, formaldehyde, iodine, metals, nicotine metabolites, polycyclic aromatic hydrocarbons, volatile organic compound (VOC) metabolites; and perchlorate, nitrate, and thiocyanate. Main Outcomes and Measures An exposome-wide association study and the deletion-substitution-addition algorithm were used to assess associations with depression scores (PHQ-9 ≥5) adjusted for other important covariates. A mediation analysis framework was used to evaluate the mediating role of systemic inflammation assessed by the peripheral white blood cell count. Results Among the 3427 adults included, 1735 (50.6%) were women, 2683 (78.3%) were younger than 65 years, and 744 (21.7%) were 65 years or older, with 839 (24.5%) having depressive symptoms. In terms of race and ethnicity, 570 participants (16.6%) were Mexican American, 679 (19.8%) were non-Hispanic Black, and 1314 (38.3%) were non-Hispanic White. We identified associations between 27 chemical compounds or metals in 6 of 10 categories of environmental toxicants and the prevalence of depressive symptoms, including the VOC metabolites N-acetyl-S-(2-hydroxy-3-butenyl)-l-cysteine (odds ratio [OR], 1.74 [95% CI, 1.38, 2.18]) and total nicotine equivalent-2 (OR, 1.42 [95% CI, 1.26-1.59]). Men and younger individuals appear more vulnerable to environmental toxicants than women and older individuals. Peripheral white blood cell count mediated 5% to 19% of the associations. Conclusions and Relevance In this representative cross-sectional study of adults with environmental toxicant exposures, 6 categories of environmental toxicants were associated with depressive symptoms with mediation by systemic inflammation. This research provides insight into selecting environmental targets for mechanistic research into the causes of depression and facilitating efforts to reduce environmental exposures.
Collapse
Affiliation(s)
- Jianhui Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, Massachusetts
| | - Feifei Si
- Peking University Sixth Hospital Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ziqi Tang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Xinyao Lian
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yaqi Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
3
|
Tiezzi F, Goda K, Morgante F. Using lifestyle information in polygenic modeling of blood pressure traits: a simple method to reduce bias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597631. [PMID: 38895222 PMCID: PMC11185601 DOI: 10.1101/2024.06.05.597631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Complex traits are determined by the effects of multiple genetic variants, multiple environmental factors, and potentially their interaction. Predicting complex trait phenotypes from genotypes is a fundamental task in quantitative genetics that was pioneered in agricultural breeding for selection purposes. However, it has recently become important in human genetics. While prediction accuracy for some human complex traits is appreciable, this remains low for most traits. A promising way to improve prediction accuracy is by including not only genetic information but also environmental information in prediction models. However, environmental factors can, in turn, be genetically determined. This phenomenon gives rise to a correlation between the genetic and environmental components of the phenotype, which violates the assumption of independence between the genetic and environmental components of most statistical methods for polygenic modeling. In this work, we investigated the impact of including 27 lifestyle variables as well as genotype information (and their interaction) for predicting diastolic blood pressure, systolic blood pressure, and pulse pressure in older individuals in UK Biobank. The 27 lifestyle variables were included as either raw variables or adjusted by genetic and other non-genetic factors. The results show that including both lifestyle and genetic data improved prediction accuracy compared to using either piece of information alone. Both prediction accuracy and bias can improve substantially for some traits when the models account for the lifestyle variables after their proper adjustment. Our work confirms the utility of including environmental information in polygenic models of complex traits and highlights the importance of proper handling of the environmental variables.
Collapse
Affiliation(s)
- Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Khushi Goda
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Fabio Morgante
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| |
Collapse
|
4
|
Persson Waye K, Löve J, Lercher P, Dzhambov AM, Klatte M, Schreckenberg D, Belke C, Leist L, Ristovska G, Jeram S, Kanninen KM, Selander J, Arat A, Lachmann T, Clark C, Botteldooren D, White K, Julvez J, Foraster M, Kaprio J, Bolte G, Psyllidis A, Gulliver J, Boshuizen H, Bozzon A, Fels J, Hornikx M, van den Hazel P, Weber M, Brambilla M, Braat-Eggen E, Van Kamp I, Vincens N. Adopting a child perspective for exposome research on mental health and cognitive development - Conceptualisation and opportunities. ENVIRONMENTAL RESEARCH 2023; 239:117279. [PMID: 37778607 DOI: 10.1016/j.envres.2023.117279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Mental disorders among children and adolescents pose a significant global challenge. The exposome framework covering the totality of internal, social and physical exposures over a lifetime provides opportunities to better understand the causes of and processes related to mental health, and cognitive functioning. The paper presents a conceptual framework on exposome, mental health, and cognitive development in children and adolescents, with potential mediating pathways, providing a possibility for interventions along the life course. The paper underscores the significance of adopting a child perspective to the exposome, acknowledging children's specific vulnerability, including differential exposures, susceptibility of effects and capacity to respond; their susceptibility during development and growth, highlighting neurodevelopmental processes from conception to young adulthood that are highly sensitive to external exposures. Further, critical periods when exposures may have significant effects on a child's development and future health are addressed. The paper stresses that children's behaviour, physiology, activity pattern and place for activities make them differently vulnerable to environmental pollutants, and calls for child-specific assessment methods, currently lacking within today's health frameworks. The importance of understanding the interplay between structure and agency is emphasized, where agency is guided by social structures and practices and vice-versa. An intersectional approach that acknowledges the interplay of social and physical exposures as well as a global and rural perspective on exposome is further pointed out. To advance the exposome field, interdisciplinary efforts that involve multiple scientific disciplines are crucial. By adopting a child perspective and incorporating an exposome approach, we can gain a comprehensive understanding of how exposures impact children's mental health and cognitive development leading to better outcomes.
Collapse
Affiliation(s)
- Kerstin Persson Waye
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Jesper Löve
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Lercher
- Institute of Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria
| | - Angel M Dzhambov
- Institute of Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria; Department of Hygiene, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Group "Health and Quality of Life in a Green and Sustainable Environment", SRIPD, Medical University of Plovdiv, Plovdiv, Bulgaria; Environmental Health Division, Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Bulgaria
| | - Maria Klatte
- Cognitive and Developmental Psychology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Dirk Schreckenberg
- Centre for Applied Psychology, Environmental and Social Research (Zeus GmbH), Hagen, Germany
| | - Christin Belke
- Centre for Applied Psychology, Environmental and Social Research (Zeus GmbH), Hagen, Germany
| | - Larisa Leist
- Cognitive and Developmental Psychology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Gordana Ristovska
- Institute of Public Health of the Republic of North Macedonia, Skopje, Macedonia
| | - Sonja Jeram
- National Institute of Public Health, Ljubljana, Slovenia
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jenny Selander
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arzu Arat
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Lachmann
- Cognitive and Developmental Psychology, University of Kaiserslautern-Landau, Kaiserslautern, Germany; Centro de Investigación Nebrija en Cognición (CINC), Universidad Nebrija, Madrid, Spain
| | - Charlotte Clark
- Population Health Research Institute, St George's, University of London, London, United Kingdom
| | - Dick Botteldooren
- Department of Information Technology, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Kim White
- National Institute for Public Health and the Environment, Netherlands
| | - Jordi Julvez
- Institut D'Investigació Sanitària Pere Virgili (IISPV), Clinical and Epidemiological Neuroscience Group (NeuroÈpia), Reus, Spain
| | | | - Jaakko Kaprio
- Institute for Molecular Medicine Finland and Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Gabriele Bolte
- Institute of Public Health and Nursing Research, University of Bremen, Bremen, Germany
| | - Achilleas Psyllidis
- Department of Sustainable Design Engineering, Delft University of Technology, Delft, the Netherlands
| | - John Gulliver
- Population Health Research Institute, St George's, University of London, London, United Kingdom; Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Hendriek Boshuizen
- Department for Statistics, Datascience and Mathematical Modelling, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Alessandro Bozzon
- Department of Sustainable Design Engineering, Delft University of Technology, Delft, the Netherlands
| | - Janina Fels
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
| | - Maarten Hornikx
- Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Peter van den Hazel
- International Network on Children's Health, Environment and Safety, Ellecom, the Netherlands
| | | | - Marco Brambilla
- Data Science Laboratory, Politecnico di Milano, Milan, Italy
| | | | - Irene Van Kamp
- National Institute for Public Health and the Environment, Netherlands
| | - Natalia Vincens
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Hicks EM, Seah C, Cote A, Marchese S, Brennand KJ, Nestler EJ, Girgenti MJ, Huckins LM. Integrating genetics and transcriptomics to study major depressive disorder: a conceptual framework, bioinformatic approaches, and recent findings. Transl Psychiatry 2023; 13:129. [PMID: 37076454 PMCID: PMC10115809 DOI: 10.1038/s41398-023-02412-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and heterogeneous psychiatric syndrome with genetic and environmental influences. In addition to neuroanatomical and circuit-level disturbances, dysregulation of the brain transcriptome is a key phenotypic signature of MDD. Postmortem brain gene expression data are uniquely valuable resources for identifying this signature and key genomic drivers in human depression; however, the scarcity of brain tissue limits our capacity to observe the dynamic transcriptional landscape of MDD. It is therefore crucial to explore and integrate depression and stress transcriptomic data from numerous, complementary perspectives to construct a richer understanding of the pathophysiology of depression. In this review, we discuss multiple approaches for exploring the brain transcriptome reflecting dynamic stages of MDD: predisposition, onset, and illness. We next highlight bioinformatic approaches for hypothesis-free, genome-wide analyses of genomic and transcriptomic data and their integration. Last, we summarize the findings of recent genetic and transcriptomic studies within this conceptual framework.
Collapse
Affiliation(s)
- Emily M Hicks
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Carina Seah
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Alanna Cote
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Shelby Marchese
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
6
|
Reuben A, Manczak EM, Cabrera LY, Alegria M, Bucher ML, Freeman EC, Miller GW, Solomon GM, Perry MJ. The Interplay of Environmental Exposures and Mental Health: Setting an Agenda. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:25001. [PMID: 35171017 PMCID: PMC8848757 DOI: 10.1289/ehp9889] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND To date, health-effects research on environmental stressors has rarely focused on behavioral and mental health outcomes. That lack of research is beginning to change. Science and policy experts in the environmental and behavioral health sciences are coming together to explore converging evidence on the relationship-harmful or beneficial-between environmental factors and mental health. OBJECTIVES To organize evidence and catalyze new findings, the National Academy of Sciences, Engineering, and Medicine (NASEM) hosted a workshop 2-3 February 2021 on the interplay of environmental exposures and mental health outcomes. METHODS This commentary provides a nonsystematic, expert-guided conceptual review and interdisciplinary perspective on the convergence of environmental and mental health, drawing from hypotheses, findings, and research gaps presented and discussed at the workshop. Featured is an overview of what is known about the intersection of the environment and mental health, focusing on the effects of neurotoxic pollutants, threats related to climate change, and the importance of health promoting environments, such as urban green spaces. DISCUSSION We describe what can be gained by bridging environmental and psychological research disciplines and present a synthesis of what is needed to advance interdisciplinary investigations. We also consider the implications of the current evidence for a) foundational knowledge of the etiology of mental health and illness, b) toxicant policy and regulation, c) definitions of climate adaptation and community resilience, d) interventions targeting marginalized communities, and e) the future of research training and funding. We include a call to action for environmental and mental health researchers, focusing on the environmental contributions to mental health to unlock primary prevention strategies at the population level and open equitable paths for preventing mental disorders and achieving optimal mental health for all. https://doi.org/10.1289/EHP9889.
Collapse
Affiliation(s)
- Aaron Reuben
- Department of Psychology & Neuroscience, Duke University, Durham, North Carolina, USA
| | - Erika M. Manczak
- Department of Psychology, University of Denver, Denver, Colorado, USA
| | - Laura Y. Cabrera
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Margarita Alegria
- Departments of Medicine and Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Disparities Research Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Meghan L. Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Gina M. Solomon
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Public Health Institute, Oakland, CA
| | - Melissa J. Perry
- Department of Environmental and Occupational Health, George Washington University, Washington, District of Colombia, USA
| |
Collapse
|
7
|
Zhou X, Lee SH. An integrative analysis of genomic and exposomic data for complex traits and phenotypic prediction. Sci Rep 2021; 11:21495. [PMID: 34728654 PMCID: PMC8564528 DOI: 10.1038/s41598-021-00427-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
Complementary to the genome, the concept of exposome has been proposed to capture the totality of human environmental exposures. While there has been some recent progress on the construction of the exposome, few tools exist that can integrate the genome and exposome for complex trait analyses. Here we propose a linear mixed model approach to bridge this gap, which jointly models the random effects of the two omics layers on phenotypes of complex traits. We illustrate our approach using traits from the UK Biobank (e.g., BMI and height for N ~ 35,000) with a small fraction of the exposome that comprises 28 lifestyle factors. The joint model of the genome and exposome explains substantially more phenotypic variance and significantly improves phenotypic prediction accuracy, compared to the model based on the genome alone. The additional phenotypic variance captured by the exposome includes its additive effects as well as non-additive effects such as genome-exposome (gxe) and exposome-exposome (exe) interactions. For example, 19% of variation in BMI is explained by additive effects of the genome, while additional 7.2% by additive effects of the exposome, 1.9% by exe interactions and 4.5% by gxe interactions. Correspondingly, the prediction accuracy for BMI, computed using Pearson's correlation between the observed and predicted phenotypes, improves from 0.15 (based on the genome alone) to 0.35 (based on the genome and exposome). We also show, using established theories, that integrating genomic and exposomic data can be an effective way of attaining a clinically meaningful level of prediction accuracy for disease traits. In conclusion, the genomic and exposomic effects can contribute to phenotypic variation via their latent relationships, i.e. genome-exposome correlation, and gxe and exe interactions, and modelling these effects has a potential to improve phenotypic prediction accuracy and thus holds a great promise for future clinical practice.
Collapse
Affiliation(s)
- Xuan Zhou
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - S Hong Lee
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia.
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
8
|
Hernandez-Garcia E, Chrysikou E, Kalea AZ. The Interplay between Housing Environmental Attributes and Design Exposures and Psychoneuroimmunology Profile-An Exploratory Review and Analysis Paper in the Cancer Survivors' Mental Health Morbidity Context. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10891. [PMID: 34682637 PMCID: PMC8536084 DOI: 10.3390/ijerph182010891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Adult cancer survivors have an increased prevalence of mental health comorbidities and other adverse late-effects interdependent with mental illness outcomes compared with the general population. Coronavirus Disease 2019 (COVID-19) heralds an era of renewed call for actions to identify sustainable modalities to facilitate the constructs of cancer survivorship care and health care delivery through physiological supportive domestic spaces. Building on the concept of therapeutic architecture, psychoneuroimmunology (PNI) indicators-with the central role in low-grade systemic inflammation-are associated with major psychiatric disorders and late effects of post-cancer treatment. Immune disturbances might mediate the effects of environmental determinants on behaviour and mental disorders. Whilst attention is paid to the non-objective measurements for examining the home environmental domains and mental health outcomes, little is gathered about the multidimensional effects on physiological responses. This exploratory review presents a first analysis of how addressing the PNI outcomes serves as a catalyst for therapeutic housing research. We argue the crucial component of housing in supporting the sustainable primary care and public health-based cancer survivorship care model, particularly in the psychopathology context. Ultimately, we illustrate a series of interventions aiming at how housing environmental attributes can trigger PNI profile changes and discuss the potential implications in the non-pharmacological treatment of cancer survivors and patients with mental morbidities.
Collapse
Affiliation(s)
- Eva Hernandez-Garcia
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
| | - Evangelia Chrysikou
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
- Clinic of Social and Family Medicine, Department of Social Medicine, University of Crete, 700 13 Heraklion, Greece
| | - Anastasia Z. Kalea
- Division of Medicine, University College London, London WC1E 6JF, UK;
- Institute of Cardiovascular Science, University College London, London WC1E 6HX, UK
| |
Collapse
|