1
|
Webb SM, Miller BW, Wroten MG, Sacramento A, Travis KO, Kippin TE, Ben-Shahar O, Szumlinski KK. Replication and extension of the subregion selectivity of glutamate-related changes within the nucleus accumbens associated with the incubation of cocaine-craving. Pharmacol Biochem Behav 2024; 245:173889. [PMID: 39389205 DOI: 10.1016/j.pbb.2024.173889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Cue-elicited drug-seeking behavior intensifies with the passage of time during withdrawal from drug taking and this "incubation of cocaine-craving" involves alterations in nucleus accumbens (NA) glutamate transmission. Here, we employed a combination of in vivo microdialysis and immunoblotting approaches to further examine changes in biochemical indices of glutamate transmission within NA subregions that accompany the incubation of cocaine-craving exhibited by male rats with a 10-day history of 6-h access to intravenous cocaine (0.25 mg/infusion). Immunoblotting on whole cell lysates from the core subregion (NAc core) revealed interactions between cocaine self-administration history, withdrawal and drug cue re-exposure for Homer2a/b, mGlu1, and GluN2b expression, as well as indices of Akt and ERK activity. With the exception of PKCε phosphorylation, most protein changes within the shell subregion (NAc shell) depended on drug cue re-exposure and cocaine history rather than varying in a consistent time-dependent manner. Reduced basal extracellular glutamate content was apparent only in the NAc core of cocaine-experienced rats during protracted (30 days) withdrawal and this was accompanied by a markedly blunted capacity of the mGlu1/5 agonist DHPG to elevate glutamate levels within this subregion. Finally, over-expressing neither Homer1c nor Homer2b within the NAc core during protracted cocaine withdrawal altered the magnitude of cue-elicited responding, its extinction or cocaine-primed reinstatement of drug-seeking behavior. The present findings are consistent with the extant literature implicating changes in Group 1 mGlu receptor function within the NAc core subregion as central to incubated cocaine-craving and provide further evidence against a major role for Homer proteins in gating incubated cocaine-craving. Further, our results provide novel correlational evidence implicating elevated Akt and blunted ERK activity within the NAc core as potential contributors to the expression of incubated cocaine-craving, worthy of future investigation.
Collapse
Affiliation(s)
- Sierra M Webb
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Bailey W Miller
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Melissa G Wroten
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Arianne Sacramento
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Katherine O Travis
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - Osnat Ben-Shahar
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America.
| |
Collapse
|
2
|
Denning CJE, Madory LE, Herbert JN, Cabrera RA, Szumlinski KK. Neuropharmacological Evidence Implicating Drug-Induced Glutamate Receptor Dysfunction in Affective and Cognitive Sequelae of Subchronic Methamphetamine Self-Administration in Mice. Int J Mol Sci 2024; 25:1928. [PMID: 38339206 PMCID: PMC10856401 DOI: 10.3390/ijms25031928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Methamphetamine (MA) is a highly addictive drug, and MA use disorder is often comorbid with anxiety and cognitive impairment. These comorbid conditions are theorized to reflect glutamate-related neurotoxicity within the frontal cortical regions. However, our prior studies of MA-sensitized mice indicate that subchronic, behaviorally non-contingent MA treatment is sufficient to dysregulate glutamate transmission in mouse brain. Here, we extend this prior work to a mouse model of high-dose oral MA self-administration (0.8, 1.6, or 3.2 g/L; 1 h sessions × 7 days) and show that while female C57BL/6J mice consumed more MA than males, MA-experienced mice of both sexes exhibited some signs of anxiety-like behavior in a behavioral test battery, although not all effects were concentration-dependent. No MA effects were detected for our measures of visually cued spatial navigation, spatial learning, or memory in the Morris water maze; however, females with a history of 3.2 g/L MA exhibited reversal-learning deficits in this task, and mice with a history of 1.6 g/L MA committed more working-memory incorrect errors and relied upon a non-spatial navigation strategy during the radial-arm maze testing. Relative to naïve controls, MA-experienced mice exhibited several changes in the expression of certain glutamate receptor-related proteins and their downstream effectors within the ventral and dorsal areas of the prefrontal cortex, the hippocampus, and the amygdala, many of which were sex-selective. Systemic pretreatment with the mGlu1-negative allosteric modulator JNJ 162596858 reversed the anxiety-like behavior expressed by MA-experienced mice in the marble-burying test, while systemic pretreatment with NMDA or the NMDA antagonist MK-801 bi-directionally affected the MA-induced reversal-learning deficit. Taken together, these data indicate that a relatively brief history of oral MA is sufficient to induce some signs of anxiety-like behavior and cognitive dysfunction during early withdrawal that reflect, at least in part, MA-induced changes in the corticolimbic expression of certain glutamate receptor subtypes of potential relevance to treating symptoms of MA use disorder.
Collapse
Affiliation(s)
- Christopher J. E. Denning
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Lauren E. Madory
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Jessica N. Herbert
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Ryan A. Cabrera
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Castillo Díaz F, Mottarlini F, Targa G, Rizzi B, Fumagalli F, Caffino L. Recency memory is altered in cocaine-withdrawn adolescent rats: Implication of cortical mTOR signaling. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110822. [PMID: 37442333 DOI: 10.1016/j.pnpbp.2023.110822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
In humans, cocaine abuse during adolescence poses a significant risk for developing cognitive deficits later in life. Among the regions responsible for cognitive processes, the medial prefrontal cortex (mPFC) modulates temporal order information via mechanisms involving the mammalian-target of rapamycin (mTOR)-mediated pathway and protein synthesis regulation. Accordingly, our goal was to study the effect of repeated cocaine exposure during both adolescence and adulthood on temporal memory by studying the mTOR pathway in the mPFC. Adolescent or adult rats underwent repeated cocaine injections for 15 days and, after two weeks of withdrawal, engaged in the temporal order object recognition (TOOR) test. We found that repeated cocaine exposure during adolescence impaired TOOR performance, while control or adult-treated animals showed no impairments. Moreover, activation of the mTOR-S6-eEF2 pathway following the TOOR test was diminished only in the adolescent cocaine-treated group. Notably, inhibition of the mTOR-mediated pathway by rapamycin injection impaired TOOR performance in naïve adolescent and adult animals, revealing this pathway to be a critical component in regulating recency memory. Our data indicate that withdrawal from cocaine exposure impairs recency memory via the dysregulation of protein translation mechanisms, but only when cocaine is administered during adolescence.
Collapse
Affiliation(s)
- Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan 20133, Italy; Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg 93053, Germany
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan 20133, Italy
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan 20133, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan 20133, Italy; Center for Neuroscience, University of Camerino, Camerino 62032, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan 20133, Italy.
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan 20133, Italy
| |
Collapse
|
4
|
Davies RA, Barbee BR, Garcia-Sifuentes Y, Butkovich LM, Gourley SL. Subunit-selective PI3-kinase control of action strategies in the medial prefrontal cortex. Neurobiol Learn Mem 2023; 203:107789. [PMID: 37328026 PMCID: PMC10527156 DOI: 10.1016/j.nlm.2023.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
PI3-kinase (PI3K) is an intracellular signaling complex that is stimulated upon cocaine exposure and linked with the behavioral consequences of cocaine. We recently genetically silenced the PI3K p110β subunit in the medial prefrontal cortex following repeated cocaine in mice, reinstating the capacity of these mice to engage in prospective goal-seeking behavior. In the present short report, we address two follow-up hypotheses: 1) The control of decision-making behavior by PI3K p110β is attributable to neuronal signaling, and 2) PI3K p110β in the healthy (i.e., drug-naïve) medial prefrontal cortex has functional consequences in the control of reward-related decision-making strategies. In Experiment 1, we found that silencing neuronal p110β improved action flexibility following cocaine. In Experiment 2, we reduced PI3K p110β in drug-naïve mice that were extensively trained to respond for food reinforcers. Gene silencing caused mice to abandon goal-seeking strategies, unmasking habit-based behaviors that were propelled by interactions with the nucleus accumbens. Thus, PI3K control of goal-directed action strategies appears to act in accordance with an inverted U-shaped function, with "too much" (following cocaine) or "too little" (following p110β subunit silencing) obstructing goal seeking and causing mice to defer to habit-like response sequences.
Collapse
Affiliation(s)
- Rachel A Davies
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA
| | - Britton R Barbee
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA; Graduate Program in Molecular and Systems Pharmacology, Emory University, USA
| | - Yesenia Garcia-Sifuentes
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA; Graduate Program in Neuroscience, Emory University, USA
| | - Laura M Butkovich
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA; Graduate Program in Molecular and Systems Pharmacology, Emory University, USA; Graduate Program in Neuroscience, Emory University, USA.
| |
Collapse
|
5
|
Szumlinski KK, Herbert JN, Mejia Espinoza B, Madory LE, Scudder SL. Alcohol-drinking during later life by C57BL/6J mice induces sex- and age-dependent changes in hippocampal and prefrontal cortex expression of glutamate receptors and neuropathology markers. ADDICTION NEUROSCIENCE 2023; 7:100099. [PMID: 37396410 PMCID: PMC10310297 DOI: 10.1016/j.addicn.2023.100099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Heavy drinking can induce early-onset dementia and increase the likelihood of the progression and severity of Alzheimer's Disease and related dementias (ADRD). Recently, we showed that alcohol-drinking by mature adult C57BL/6J mice induces more signs of cognitive impairment in females versus males without worsening age-related cognitive decline in aged mice. Here, we immunoblotted for glutamate receptors and protein markers of ADRD-related neuropathology within the hippocampus and prefrontal cortex (PFC) of these mice after three weeks of alcohol withdrawal to determine protein correlates of alcohol-induced cognitive decline. Irrespective of alcohol history, age-related changes in protein expression included a male-specific decline in hippocampal glutamate receptors and an increase in the expression of a beta-site amyloid precursor protein cleaving enzyme (BACE) isoform in the PFC as well as a sex-independent increase in hippocampal amyloid precursor protein. Alcohol-drinking was associated with altered expression of glutamate receptors in the hippocampus in a sex-dependent manner, while all glutamate receptor proteins exhibited significant alcohol-related increases in the PFC of both sexes. Expression of BACE isoforms and phosphorylated tau varied in the PFC and hippocampus based on age, sex, and drinking history. The results of this study indicate that withdrawal from a history of alcohol-drinking during later life induces sex- and age-selective effects on glutamate receptor expression and protein markers of ADRD-related neuropathology within the hippocampus and PFC of potential relevance to the etiology, treatment and prevention of alcohol-induced dementia and Alzheimer's Disease.
Collapse
Affiliation(s)
- Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Jessica N. Herbert
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Brenda Mejia Espinoza
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Lauren E. Madory
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Samantha L. Scudder
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
- Department of Psychology, California State University Dominguez Hills, Carson, CA 90747, USA
| |
Collapse
|
6
|
Urena ES, Diezel CC, Serna M, Hala'ufia G, Majuta L, Barber KR, Vanderah TW, Riegel AC. K v 7 Channel Opener Retigabine Reduces Self-Administration of Cocaine but Not Sucrose in Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541208. [PMID: 37292619 PMCID: PMC10245780 DOI: 10.1101/2023.05.18.541208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increasing rates of drug misuse highlight the urgency of identifying improved therapeutics for treatment. Most drug-seeking behaviors that can be modeled in rodents utilize the repeated intravenous self-administration (SA) of drugs. Recent studies examining the mesolimbic pathway suggest that K v 7/KCNQ channels may contribute in the transition from recreational to chronic drug use. However, to date, all such studies used noncontingent, experimenter-delivered drug model systems, and the extent to which this effect generalizes to rats trained to self-administer drug is not known. Here, we tested the ability of retigabine (ezogabine), a K v 7 channel opener, to regulate instrumental behavior in male Sprague Dawley rats. We first validated the ability of retigabine to target experimenter-delivered cocaine in a CPP assay and found that retigabine reduced the acquisition of place preference. Next, we trained rats for cocaine-SA under a fixed-ratio or progressive-ratio reinforcement schedule and found that retigabine-pretreatment attenuated the self-administration of low to moderate doses of cocaine. This was not observed in parallel experiments, with rats self-administering sucrose, a natural reward. Compared to sucrose-SA, cocaine-SA was associated with reductions in the expression of the K v 7.5 subunit in the nucleus accumbens, without alterations in K v 7.2 and K v 7.3. Therefore, these studies reveal a reward specific reduction in SA behavior considered relevant for the study of long-term compulsive-like behavior and supports the notion that K v 7 is a potential therapeutic target for human psychiatric diseases with dysfunctional reward circuitry.
Collapse
|
7
|
Preventing incubation of drug craving to treat drug relapse: from bench to bedside. Mol Psychiatry 2023; 28:1415-1429. [PMID: 36646901 DOI: 10.1038/s41380-023-01942-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023]
Abstract
In 1986, Gawin and Kleber reported a progressive increase in cue-induced drug craving in individuals with cocaine use disorders during prolonged abstinence. After years of controversy, as of 2001, this phenomenon was confirmed in rodent studies using self-administration model, and defined as the incubation of drug craving. The intensification of cue-induced drug craving after withdrawal exposes abstinent individuals to a high risk of relapse, which urged us to develop effective interventions to prevent incubated craving. Substantial achievements have been made in deciphering the neural mechanisms, with potential implications for reducing drug craving and preventing the relapse. The present review discusses promising drug targets that have been well investigated in animal studies, including some neurotransmitters, neuropeptides, neurotrophic factors, and epigenetic markers. We also discuss translational exploitation and challenges in the field of the incubation of drug craving, providing insights into future investigations and highlighting the potential of pharmacological interventions, environment-based interventions, and neuromodulation techniques.
Collapse
|
8
|
Huerta Sanchez LL, Sankaran M, Li TL, Doan H, Chiu A, Shulman E, Shab G, Kippin TE, Szumlinski KK. Profiling prefrontal cortex protein expression in rats exhibiting an incubation of cocaine craving following short-access self-administration procedures. Front Psychiatry 2023; 13:1031585. [PMID: 36684008 PMCID: PMC9846226 DOI: 10.3389/fpsyt.2022.1031585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Incubation of drug-craving refers to a time-dependent increase in drug cue-elicited craving that occurs during protracted withdrawal. Historically, rat models of incubated cocaine craving employed extended-access (typically 6 h/day) intravenous drug self-administration (IV-SA) procedures, although incubated cocaine craving is reported to occur following shorter-access IV-SA paradigms. The notoriously low-throughput of extended-access IV-SA prompted us to determine whether two different short-access IV-SA procedures akin to those in the literature result in qualitatively similar changes in glutamate receptor expression and the activation of downstream signaling molecules within prefrontal cortex (PFC) subregions as those reported previously by our group under 6h-access conditions. Methods For this, adult, male Sprague-Dawley rats were trained to intravenously self-administer cocaine for 2 h/day for 10 consecutive days (2-h model) or for 6 h on day 1 and 2 h/day for the remaining 9 days of training (Mixed model). A sham control group was also included that did not self-administer cocaine. Results On withdrawal day 3 or 30, rats were subjected to a 2-h test of cue-reinforced responding in the absence of cocaine and a time-dependent increase in drug-seeking was observed under both IV-SA procedures. Immunoblotting of brain tissue collected immediately following the cue test session indicated elevated phospho-Akt1, phospho-CaMKII and Homer2a/b expression within the prelimbic subregion of the PFC of cocaine-incubated rats. However, we failed to detect incubation-related changes in Group 1 metabotropic glutamate receptor or ionotropic glutamate receptor subunit expression in either subregion. Discussion These results highlight further a role for Akt1-related signaling within the prelimbic cortex in driving incubated cocaine craving, and provide novel evidence supporting a potential role also for CaMKII-dependent signaling through glutamate receptors in this behavioral phenomenon.
Collapse
Affiliation(s)
- Laura L. Huerta Sanchez
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Mathangi Sankaran
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Taylor L. Li
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Hoa Doan
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Alvin Chiu
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Eleanora Shulman
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Gabriella Shab
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|