1
|
Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S. Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020309. [PMID: 36837510 PMCID: PMC9967176 DOI: 10.3390/medicina59020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Background and Objectives: A subject with diabetes and obesity is a class of the metabolic disorder. The current investigation aimed to elucidate the potential biomarker and prognostic targets in subjects with diabetes and obesity. Materials and Methods: The next-generation sequencing (NGS) data of GSE132831 was downloaded from Gene Expression Omnibus (GEO) database. Functional enrichment analysis of DEGs was conducted with ToppGene. The protein-protein interactions network, module analysis, target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed. Furthermore, hub genes were validated by receiver operating characteristic (ROC) analysis. A total of 872 DEGs, including 439 up-regulated genes and 433 down-regulated genes were observed. Results: Second, functional enrichment analysis showed that these DEGs are mainly involved in the axon guidance, neutrophil degranulation, plasma membrane bounded cell projection organization and cell activation. The top ten hub genes (MYH9, FLNA, DCTN1, CLTC, ERBB2, TCF4, VIM, LRRK2, IFI16 and CAV1) could be utilized as potential diagnostic indicators for subjects with diabetes and obesity. The hub genes were validated in subjects with diabetes and obesity. Conclusion: This investigation found effective and reliable molecular biomarkers for diagnosis and prognosis by integrated bioinformatics analysis, suggesting new and key therapeutic targets for subjects with diabetes and obesity.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga 577501, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag 582101, Karnataka, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi 590010, Karnataka, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
- Correspondence: ; Tel.: +91-9480073398
| | - Shivakumar Kotrashetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
2
|
Chu DT, Bui NL, Le NH. Adrenoceptors and SCD1 in adipocytes/adipose tissues: The expression and variation in health and obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:311-332. [PMID: 36631196 DOI: 10.1016/bs.pmbts.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity, considered a metabolic disorder, is one of the most significant health issues that the community has to cope with today. A rising number of studies have been conducted to find out promising genetic targets for obese treatment. The sympathetic nervous system was proven to possess remarkable roles in energy metabolism, including the stimulation of lipolysis as well as thermogenesis, via distinct adrenoceptors appearing on the membrane of adipocyte. A decrease of β-adrenoceptor expression has been observed in obese individuals, which is related to reducing energy expenditure and developing obesity. While that the deficiency of stearoyl-CoA desaturase-1 (SCD1), which is a promising target for treatments of metabolic diseases, decreases oxidation and promotes the synthesis of fatty acids. Here, we emphasized several differences between distinct adrenoceptor subtypes, including their mRNA expression level and function in white adipose tissue and brown adipose tissue. We also highlighted SCD1's roles related to the progression of adipocytes and its changing expression under the obese condition in both rodents and humans, and furthermore, tried to figure out the interaction between adrenoceptors and SCD1 in adipose tissue.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Ngoc Hoan Le
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| |
Collapse
|
3
|
Mikolajczak A, Sallam NA, Singh RD, Scheidl TB, Walsh EJ, Larion S, Huang C, Thompson JA. Accelerated developmental adipogenesis programs adipose tissue dysfunction and cardiometabolic risk in offspring born to dams with metabolic dysfunction. Am J Physiol Endocrinol Metab 2021; 321:E581-E591. [PMID: 34459218 PMCID: PMC8791794 DOI: 10.1152/ajpendo.00229.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This study determined if a perturbation in in utero adipogenesis leading to later life adipose tissue (AT) dysfunction underlies programming of cardiometabolic risk in offspring born to dams with metabolic dysfunction. Female mice heterozygous for the leptin receptor deficiency (Hetdb) had 2.4-fold higher prepregnancy fat mass and in late gestation had higher plasma insulin and triglycerides compared with wild-type (Wt) females (P < 0.05). To isolate the role of the intrauterine milieu, wild-type (Wt) offspring from each pregnancy were studied. Differentiation potential in isolated progenitors and cell size distribution analysis revealed accelerated adipogenesis in Wt pups born to Hetdb dams, accompanied by a higher accumulation of neonatal fat mass. In adulthood, whole body fat mass by NMR was higher in male (69%) and female (20%) Wt offspring born to Hetdb versus Wt pregnancies, along with adipocyte hypertrophy and hyperlipidemia (all P < 0.05). Lipidomic analyses by gas chromatography revealed an increased lipogenic index (16:0/18:2n6) after high-fat/fructose diet (HFFD). Postprandial insulin, ADIPO-IR, and ex vivo AT lipolytic responses to isoproterenol were all higher in Wt offspring born to Hetdb dams (P < 0.05). Intrauterine metabolic stimuli may direct a greater proportion of progenitors toward terminal differentiation, thereby predisposing to hypertrophy-induced adipocyte dysfunction.NEW & NOTEWORTHY This study reveals that accelerated adipogenesis during the perinatal window of adipose tissue development predisposes to later life hypertrophic adipocyte dysfunction, thereby compromising the buffering function of the subcutaneous depot.
Collapse
Affiliation(s)
- Anna Mikolajczak
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Nada A Sallam
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Radha D Singh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Taylor B Scheidl
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Emma J Walsh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sebastian Larion
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina
| | - Carol Huang
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Jennifer A Thompson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Tuthill II BF, Quaglia CJ, O'Hara E, Musselman LP. Loss of Stearoyl-CoA desaturase 1 leads to cardiac dysfunction and lipotoxicity. J Exp Biol 2021; 224:jeb240432. [PMID: 34423827 PMCID: PMC8502255 DOI: 10.1242/jeb.240432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/16/2021] [Indexed: 12/28/2022]
Abstract
Diets high in carbohydrates are associated with type 2 diabetes and its co-morbidities, including hyperglycemia, hyperlipidemia, obesity, hepatic steatosis and cardiovascular disease. We used a high-sugar diet to study the pathophysiology of diet-induced metabolic disease in Drosophila melanogaster. High-sugar diets produce hyperglycemia, obesity, insulin resistance and cardiomyopathy in flies, along with ectopic accumulation of toxic lipids, or lipotoxicity. Stearoyl-CoA desaturase 1 is an enzyme that contributes to long-chain fatty acid metabolism by introducing a double bond into the acyl chain. Knockdown of stearoyl-CoA desaturase 1 in the fat body reduced lipogenesis and exacerbated pathophysiology in flies reared on high-sucrose diets. These flies exhibited dyslipidemia and growth deficiency in addition to defects in cardiac and gut function. We assessed the lipidome of these flies using tandem mass spectrometry to provide insight into the relationship between potentially lipotoxic species and type 2 diabetes-like pathophysiology. Oleic acid supplementation is able to rescue a variety of phenotypes produced by stearoyl-CoA desaturase 1 RNAi, including fly mass, triglyceride storage, gut development and cardiac failure. Taken together, these data suggest a protective role for monounsaturated fatty acids in diet-induced metabolic disease phenotypes.
Collapse
|
5
|
Sena-Júnior AS, Aidar FJ, de Oliveira e Silva AM, Estevam CDS, de Oliveira Carvalho CR, Lima FB, dos Santos JL, Marçal AC. Whether or Not the Effects of Curcuma longa Supplementation Are Associated with Physical Exercises in T1DM and T2DM: A Systematic Review. Nutrients 2020; 13:nu13010124. [PMID: 33396291 PMCID: PMC7823559 DOI: 10.3390/nu13010124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is one of the most prevalent chronic diseases in the world; one of its main characteristics is chronic hyperglycemia. Pharmacotherapy and other alternatives such as regular exercise are among the therapeutic methods used to control this pathology and participate in glycemic control, as well as the ingestion of plant extracts with antioxidant effects. Among the different plants used for this purpose, curcumin has potential to be used to attenuate the hyperglycemic condition triggered by diabetes mellitus (DM). Some prior studies suggest that this plant has antioxidant and hypoglycemic potential. This review aims to evaluate the antioxidant and hypoglycemic potential of curcumin supplementation in Type 1 DM (T1DM) and Type 2 DM (T2DM). The search considered articles published between 2010 and 2019 in English and Portuguese, and a theoretical survey of relevant information was conducted in the main databases of scientific publications, including the Virtual Health Library and its indexed databases, PubMed, LILACS (Latin American and Caribbean Literature on Health Sciences-Health Information for Latin America and the Caribbean-BIREME/PAHO/WHO), and Scientific Electronic Library Online (SciELO). The associated use of turmeric and physical exercise has demonstrated antioxidant, anti-inflammatory, and hypoglycemic effects, suggesting that these could be used as potential therapeutic methods to improve the quality of life and survival of diabetic patients.
Collapse
Affiliation(s)
- Ailton Santos Sena-Júnior
- Graduate Program in Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil; (A.S.S.-J.); (F.J.A.); (J.L.d.S.)
| | - Felipe José Aidar
- Graduate Program in Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil; (A.S.S.-J.); (F.J.A.); (J.L.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports—GEPEPS, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil;
| | - Ana Mara de Oliveira e Silva
- Nutrition Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil;
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe CEP 49060-100, Brazil
| | - Charles dos Santos Estevam
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil;
- Postgraduate in Biotechnology, Northeast Network in Biotechnology (RENORBIO), Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
| | - Carla Roberta de Oliveira Carvalho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo CEP 05508-000, Brazil; (C.R.d.O.C.); (F.B.L.)
| | - Fábio Bessa Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo CEP 05508-000, Brazil; (C.R.d.O.C.); (F.B.L.)
| | - Jymmys Lopes dos Santos
- Graduate Program in Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil; (A.S.S.-J.); (F.J.A.); (J.L.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports—GEPEPS, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
| | - Anderson Carlos Marçal
- Graduate Program in Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil; (A.S.S.-J.); (F.J.A.); (J.L.d.S.)
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
- Correspondence:
| |
Collapse
|
6
|
Júnior ASS, Aidar FJ, Santos JLD, Estevam CDS, Dos Santos JDM, de Oliveira E Silva AM, Lima FB, De Araújo SS, Marçal AC. Effects of resistance training and turmeric supplementation on reactive species marker stress in diabetic rats. BMC Sports Sci Med Rehabil 2020; 12:45. [PMID: 32774865 PMCID: PMC7409633 DOI: 10.1186/s13102-020-00194-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Background Type 1 diabetes mellitus (T1DM) is a metabolic disease characterized by hyperglycemia and excessive generation of reactive oxygen species caused by autoimmune destruction of beta-cells in the pancreas. Among the antioxidant compounds, Curcuma longa (CL) has potential antioxidant effects and may improve hyperglycemia in uncontrolled T1DM/TD1, as well as prevent its complications (higher costs for the maintenance of health per patient, functional disability, cardiovascular disease, and metabolic damage). In addition to the use of compounds to attenuate the effects triggered by diabetes, physical exercise is also essential for glycemic control and the maintenance of skeletal muscles. Our objective is to evaluate the effects of CL supplementation associated with moderate- to high-intensity resistance training on the parameters of body weight recovery, glycemic control, reactive species markers, and tissue damage in rats with T1DM/TD1. Methods Forty male 3-month-old Wistar rats (200–250 g) with alloxan-induced T1DM were divided into 4 groups (n = 7–10): sedentary diabetics (DC); diabetic rats that underwent a 4-week resistance training protocol (TD); CL-supplemented diabetic rats (200 mg/kg body weight, 3x a week) (SD); and supplemented diabetic rats under the same conditions as above and submitted to training (TSD). Body weight, blood glucose, and the following biochemical markers were analyzed: lipid profile, aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid, creatine kinase (CK), lactate dehydrogenase (LDH), and thiobarbituric acid reactive substances (TBARS). Results Compared to the DC group, the TD group showed body weight gain (↑7.99%, p = 0.0153) and attenuated glycemia (↓23.14%, p = 0.0008) and total cholesterol (↓31.72%, p ≤ 0.0041) associated with diminished reactive species markers in pancreatic (↓45.53%, p < 0.0001) and cardiac tissues (↓51.85%, p < 0.0001). In addition, compared to DC, TSD promoted body weight recovery (↑15.44%, p ≤ 0.0001); attenuated glycemia (↓42.40%, p ≤ 0.0001), triglycerides (↓39.96%, p ≤ 0.001), and total cholesterol (↓28.61%, p ≤ 0.05); and attenuated the reactive species markers in the serum (↓26.92%, p ≤ 0.01), pancreas (↓46.22%, p ≤ 0.0001), cardiac (↓55.33%, p ≤ 0.001), and skeletal muscle (↓42.27%, p ≤ 0.001) tissues caused by T1DM. Conclusion Resistance training associated (and/or not) with the use of Curcuma longa attenuated weight loss, the hypoglycemic and hypolipidemic effects, reactive species markers, and T1DM-induced tissue injury.
Collapse
Affiliation(s)
| | - Felipe José Aidar
- Department of Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil.,Group of Studies and Research of Performance, Sport, Health and Paralympic Sports - GEPEPS, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Jymmys Lopes Dos Santos
- Department of Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil.,Department of Physiology, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Charles Dos Santos Estevam
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports - GEPEPS, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | | | | | - Fábio Bessa Lima
- Department of Physiology and Biophysics, Universidade de São Paulo, São Paulo, Brazil
| | - Silvan Silva De Araújo
- Department of Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Anderson Carlos Marçal
- Department of Morphology, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| |
Collapse
|
7
|
Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines 2020; 8:biomedicines8060154. [PMID: 32521775 PMCID: PMC7344995 DOI: 10.3390/biomedicines8060154] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The role of the gut microbiome in human health is becoming apparent. The major functional impact of the gut microbiome is transmitted through the microbial metabolites that are produced in the gut and interact with host cells either in the local gut environment or are absorbed into circulation to impact distant cells/organs. Short-chain fatty acids (SCFAs) are the major microbial metabolites that are produced in the gut through the fermentation of non-digestible fibers. SCFAs are known to function through various mechanisms, however, their signaling through free fatty acid receptors 2 and 3 (FFAR2/3; type of G-coupled protein receptors) is a new therapeutic approach. FFAR2/3 are widely expressed in diverse cell types in human and mice, and function as sensors of SCFAs to change several physiological and cellular functions. FFAR2/3 modulate neurological signaling, energy metabolism, intestinal cellular homeostasis, immune response, and hormone synthesis. FFAR2/3 function through Gi and/or Gq signaling, that is mediated through specific structural features of SCFAs-FFAR2/3 bindings and modulating specific signaling pathway. In this review, we discuss the wide-spread expression and structural homologies between human and mice FFAR2/3, and their role in different human health conditions. This information can unlock opportunities to weigh the potential of FFAR2/3 as a drug target to prevent human diseases.
Collapse
|
8
|
Kim YJ, Ryu R, Choi JY, Choi MS. Platycodon grandiflorus Root Ethanol Extract Induces Lipid Excretion, Lipolysis, and Thermogenesis in Diet-Induced Obese Mice. J Med Food 2019; 22:1100-1109. [PMID: 31566484 DOI: 10.1089/jmf.2019.4443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adipocytes regulate lipid metabolism according to physiological energy requirements. A dysfunctional lipid metabolism can lead to obesity and its complications such as hepatic steatosis, diabetes, and hyperlipidemia. In our study, the impact of Platycodon grandiflorus root ethanol extract (PGH) on lipid excretion and thermogenesis-related markers in diet-induced obesity mice was analyzed. Our data show that PGH elevated fatty acid uptake in epididymal adipose tissue by increasing Cd36, Slc27a1, Ffar2, and Ffar4 expression, which led to decreased blood free fatty acid concentrations. Moreover, PGH normalized body weight and fat mass in diet-induced obese mice by increasing lipolysis (Plin1, Atgl, and Hsl) and fatty acid oxidation. Changes in the levels of browning-related genes, enzyme activity of carnitine palmitoyltransferase, and the overall transcriptome (Bmp4, Cidec, Ucp3, Sirt3, and Cox4i1) led to promote brown adipose tissue-like features (browning) in epididymal white adipose tissue and enhanced energy expenditure. Our results suggest that PGH promotes lipid excretion and thermogenic function in high-fat diet-induced obese mice, which are mediated by regulation of fat metabolism.
Collapse
Affiliation(s)
- Ye Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University, Daegu, Korea
| | - Ri Ryu
- Research Institute of Applied Animal Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Korea
| | - Ji-Young Choi
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Myung-Sook Choi
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Korea.,Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
| |
Collapse
|
9
|
Michael N, Gupta V, Sadananthan SA, Sampathkumar A, Chen L, Pan H, Tint MT, Lee KJ, Loy SL, Aris IM, Shek LPC, Yap FKP, Godfrey KM, Leow MKS, Lee YS, Kramer MS, Henry CJ, Fortier MV, Seng Chong Y, Gluckman PD, Karnani N, Velan SS. Determinants of intramyocellular lipid accumulation in early childhood. Int J Obes (Lond) 2019; 44:1141-1151. [PMID: 31462692 PMCID: PMC7188663 DOI: 10.1038/s41366-019-0435-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/22/2019] [Accepted: 06/30/2019] [Indexed: 12/25/2022]
Abstract
Background/Objectives Accumulation of lipid droplets inside skeletal muscle fibers (intramyocellular lipids or IMCL) with increasing obesity has been linked to skeletal muscle insulin resistance and risk of type 2 diabetes in both adults and prepubertal children. We aimed to evaluate the associations of race, genotype, prenatal factors, and postnatal factors with IMCL in early childhood. Subjects/Methods This study was a secondary analysis performed on the GUSTO birth cohort. Soleus muscle IMCL of 392 children at 4.5 years of age was measured by magnetic resonance spectroscopy, of which usable imaging data were obtained from 277 children (137 Chinese, 87 Malays, and 53 Indians). Metabolic assessments (fasting glucose, insulin, and HOMA-IR) were performed at age 6. Results The mean IMCL level at 4.5 years was 0.481 ± 0.279% of water resonance (mean ± sd). Corroborating with results from adults, Indian children had the highest IMCL levels compared with Malay and Chinese children. Among the prenatal factors, the rate of gestational weight gain (GWG rate) was associated with offspring IMCL (B = 0.396 (0.069, 0.724); p = 0.018). Both race and GWG rate continued to be associated with offspring IMCL even after accounting for current offspring BMI. Postnatally, IMCL was associated with shorter breastfeeding duration (B = 0.065 (0.001, 0.128); p = 0.045) and conditional relative weight gain between ages 2 and 3 (B = 0.052 (0.012, 0.093); p = 0.012). The associations with postnatal factors were attenuated after adjusting for current offspring BMI. IMCL was positively associated with offspring BMI (B = 0.028 (0.012, 0.044); p = 0.001). IMCL levels were not associated with fasting glucose, fasting insulin, and HOMA-IR at age 6. Conclusion This study provides evidence that IMCL accumulation occurs in early childhood and that developmental factors and race are associated with it. We also show that early childhood IMCL accumulation is well tolerated, suggesting that the adverse associations between IMCL and insulin resistance may emerge at older ages.
Collapse
Affiliation(s)
- Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Varsha Gupta
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Aparna Sampathkumar
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Li Chen
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Hong Pan
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Mya Thway Tint
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kuan Jin Lee
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore
| | - See Ling Loy
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Izzuddin M Aris
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Lynette Pei-Chi Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kok Peng Yap
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Department of Obstetrics and Gynaecology, KK Women's and Children's Hospital, Singapore, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit & NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Melvin K-S Leow
- Duke-NUS Medical School, Singapore, Singapore.,Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science Technology and Research and National University Health System, Singapore, Singapore.,Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore.,LKC School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael S Kramer
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Departments of Pediatrics and of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science Technology and Research and National University Health System, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Marielle Valerie Fortier
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore.,Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore.,Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore.
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore. .,Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore.
| |
Collapse
|