1
|
Filippelli A, Ciccone V, Del Gaudio C, Simonis V, Frosini M, Tusa I, Menconi A, Rovida E, Donnini S. ERK5 mediates pro-tumorigenic phenotype in non-small lung cancer cells induced by PGE2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119810. [PMID: 39128596 DOI: 10.1016/j.bbamcr.2024.119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, with non-small cell lung cancer (NSCLC) constituting approximately 84 % of all lung cancer cases. The role of inflammation in the initiation and progression of NSCLC tumors has been the focus of extensive research. Among the various inflammatory mediators, prostaglandin E2 (PGE2) plays a pivotal role in promoting the aggressiveness of epithelial tumors through multiple mechanisms, including the stimulation of growth, evasion of apoptosis, invasion, and induction of angiogenesis. The Extracellular signal-Regulated Kinase 5 (ERK5), the last discovered member among conventional mitogen-activated protein kinases (MAPK), is implicated in cancer-associated inflammation. In this study, we explored whether ERK5 is involved in the process of tumorigenesis induced by PGE2. Using A549 and PC9 NSCLC cell lines, we found that PGE2 triggers the activation of ERK5 via the EP1 receptor. Moreover, both genetic and pharmacological inhibition of ERK5 reduced PGE2-induced proliferation, migration, invasion and stemness of A549 and PC9 cells, indicating that ERK5 plays a critical role in PGE2-induced tumorigenesis. In summary, our study underscores the pivotal role of the PGE2/EP1/ERK5 axis in driving the malignancy of NSCLC cells in vitro. Targeting this axis holds promise as a potential avenue for developing novel therapeutic strategies aimed at controlling the advancement of NSCLC.
Collapse
Affiliation(s)
| | - Valerio Ciccone
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Cinzia Del Gaudio
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Vittoria Simonis
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Maria Frosini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy.
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| |
Collapse
|
2
|
Wang X, ShiYang X, Ma W, Wu X, Lu Y. Extracellular signal-regulated protein kinase 5 modulates the spindle assembly to coordinate the oocyte meiotic maturation. Theriogenology 2024; 226:335-342. [PMID: 38959844 DOI: 10.1016/j.theriogenology.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Extracellular signal-regulated protein kinase 5 (Erk5), a member of the mitogen-activated protein kinase (MAPK) family, is ubiquitously expressed in all eukaryotic cells and is implicated in the various mitotic processes such as cell survival, proliferation, migration, and differentiation. However, the potential functional roles of Erk5 in oocyte meiosis have not been fully determined. In this study, we document that ERK5 participates in the meiotic maturation of mouse oocytes by regulating the spindle assembly to ensure the meiotic progression. We unexpectedly found that phosphorylated ERK5 was localized in the spindle pole region at metaphase I and II stages by immunostaining analysis. Inhibition of ERK5 activity using its specific inhibitor XMD8-92 dramatically reduced the incidence of first polar body extrusion. In addition, inhibition of ERK5 evoked the spindle assembly checkpoint to arrest oocytes at metaphase I stage by impairing the spindle assembly, chromosome alignment and kinetochore-microtubule attachment. Mechanically, over-strengthened microtubule stability was shown to disrupt the microtubule dynamics and thus compromise the spindle assembly in ERK5-inhibited oocytes. Conversely, overexpression of ERK5 caused decreased level of acetylated α-tubulin and spindle defects. Collectively, we conclude that ERK5 plays an important role in the oocyte meiotic maturation by regulating microtubule dynamics and spindle assembly.
Collapse
Affiliation(s)
- Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Xiayan ShiYang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Ma
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Xue Wu
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China.
| |
Collapse
|
3
|
Mondru AK, Wilkinson B, Aljasir MA, Alrumayh A, Greaves G, Emmett M, Albohairi S, Pritchard-Jones R, Cross MJ. The ERK5 pathway in BRAFV600E melanoma cells plays a role in development of acquired resistance to dabrafenib but not vemurafenib. FEBS Lett 2024; 598:2011-2027. [PMID: 38977937 DOI: 10.1002/1873-3468.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 07/10/2024]
Abstract
Malignant melanoma, an aggressive skin cancer with a poor prognosis, frequently features BRAFV600E mutation resulting in activation of the MAPK pathway and melanocyte proliferation and survival. BRAFV600E inhibitors like vemurafenib and dabrafenib have enhanced patient survival, yet drug resistance remains a significant challenge. We investigated the role of the ERK5 pathway in BRAFV600E melanoma cells and cells with acquired resistance to PLX4720 (vemurafenib) and dabrafenib. In BRAFV600E melanoma, ERK5 inhibition minimally affected viability compared to ERK1/2 inhibition. In vemurafenib-resistant cells, ERK5 inhibition alone didn't impact viability or restore drug sensitivity to vemurafenib. However, in dabrafenib-resistant cells, ERK5 inhibition reduced viability and enhanced the anti-proliferative effect of MEK1/2 inhibition. Targeting the ERK5 pathway may represent a therapeutic opportunity in dabrafenib-resistant melanoma.
Collapse
Affiliation(s)
- Anil Kumar Mondru
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Beth Wilkinson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Mohammad A Aljasir
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Ahmed Alrumayh
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Georgia Greaves
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Maxine Emmett
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Saad Albohairi
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Rowan Pritchard-Jones
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Michael J Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| |
Collapse
|
4
|
Yan L, Chen Y, Zhang S, Zhu C, Xiao S, Xia H, Chen X, Guo D, Lv X, Rao L, Zhuang M. Reconstruction of TNF-α with specific isoelectric point released from SPIONs basing on variable charge to enhance pH-sensitive controlled-release. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 60:102758. [PMID: 38852881 DOI: 10.1016/j.nano.2024.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
The clinical application of tumor necrosis factor-α (TNF-α) is limited by its short half-life, subeffective concentration in the targeted area and severe systemic toxicity. In this study, the recombinant polypeptide S4-TNF-α was constructed and coupled with chitosan-modified superparamagnetic iron oxide nanoparticles (S4-TNF-α-SPIONs) to achieve pH-sensitive controlled release and active tumor targeting activity. The isoelectric point (pI) of S4-TNF-α was reconstructed to approach the pH of the tumor microenvironment. The negative-charge S4-TNF-α was adsorbed to chitosan-modified superparamagnetic iron oxide nanoparticles (CS-SPIONs) with a positive charge through electrostatic adsorption at physiological pH. The acidic tumor microenvironment endowed S4-TNF-α with a zero charge, which accelerated S4-TNF-α release from CS-SPIONs. Our studies showed that S4-TNF-α-SPIONs displayed an ideal pH-sensitive controlled release capacity and improved antitumor effects. Our study presents a novel approach to enhance the pH-sensitive controlled-release of genetically engineered drugs by adjusting their pI to match the pH of the tumor microenvironment.
Collapse
Affiliation(s)
- Lin Yan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Yadi Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China
| | - Shihao Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China
| | - Chunjie Zhu
- School of Basic Medicine Guangdong Medical University, Dongguan 523808, China
| | - Shangying Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China
| | - Haishan Xia
- School of Basic Medicine Guangdong Medical University, Dongguan 523808, China
| | - Xiaohua Chen
- Guangdong Provincial key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Medical college, Shaoguan University, Shaoguan 512005, China
| | - Dan Guo
- Guangdong Provincial key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Medical college, Shaoguan University, Shaoguan 512005, China
| | - Xiaohua Lv
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China
| | - Lei Rao
- Guangdong Provincial key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Medical college, Shaoguan University, Shaoguan 512005, China; Department of Biomedicine, Chengdu Medical College, Chengdu 610500, China.
| | - Manjiao Zhuang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China.
| |
Collapse
|
5
|
Tubita A, Menconi A, Lombardi Z, Tusa I, Esparís-Ogando A, Pandiella A, Gamberi T, Stecca B, Rovida E. Latent-Transforming Growth Factor β-Binding Protein 1/Transforming Growth Factor β1 Complex Drives Antitumoral Effects upon ERK5 Targeting in Melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1581-1591. [PMID: 38705382 DOI: 10.1016/j.ajpath.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
Melanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. While available treatments have improved survival, long-term benefits are still unsatisfactory. The mitogen-activated protein kinase extracellular signal-regulated kinase 5 (ERK5) promotes melanoma growth, and ERK5 inhibition determines cellular senescence and the senescence-associated secretory phenotype. Here, latent-transforming growth factor β-binding protein 1 (LTBP1) mRNA was found to be up-regulated in A375 and SK-Mel-5 BRAF V600E melanoma cells after ERK5 inhibition. In keeping with a key role of LTBP1 in regulating transforming growth factor β (TGF-β), TGF-β1 protein levels were increased in lysates and conditioned media of ERK5-knockdown (KD) cells, and were reduced upon LTBP1 KD. Both LTBP1 and TGF-β1 proteins were increased in melanoma xenografts in mice treated with the ERK5 inhibitor XMD8-92. Moreover, treatment with conditioned media from ERK5-KD melanoma cells reduced cell proliferation and invasiveness, and TGF-β1-neutralizing antibodies impaired these effects. In silico data sets revealed that higher expression levels of both LTBP1 and TGF-β1 mRNA were associated with better overall survival of melanoma patients. Increased LTBP1 or TGF-β1 expression played a beneficial role in patients treated with anti-PD1 immunotherapy, making a possible immunosuppressive role of LTBP1/TGF-β1 unlikely upon ERK5 inhibition. This study, therefore, identifies additional desirable effects of ERK5 targeting, providing evidence of an ERK5-dependent tumor-suppressive role of TGF-β in melanoma.
Collapse
Affiliation(s)
- Alessandro Tubita
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Alessio Menconi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Zoe Lombardi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Ignazia Tusa
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Salamanca, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Salamanca, Spain
| | - Tania Gamberi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Barbara Stecca
- Core Research Laboratory, Institute for Cancer Research and Prevention, Florence, Italy
| | - Elisabetta Rovida
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
6
|
Lombardi Z, Gardini L, Kashchuk AV, Menconi A, Lulli M, Tusa I, Tubita A, Maresca L, Stecca B, Capitanio M, Rovida E. Importin subunit beta-1 mediates ERK5 nuclear translocation, and its inhibition synergizes with ERK5 kinase inhibitors in reducing cancer cell proliferation. Mol Oncol 2024. [PMID: 38965815 DOI: 10.1002/1878-0261.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 07/06/2024] Open
Abstract
The mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5) is emerging as a promising target in cancer. Indeed, alterations of the MEK5/ERK5 pathway are present in many types of cancer, including melanoma. One of the key events in MAPK signalling is MAPK nuclear translocation and its subsequent regulation of gene expression. Likewise, the effects of ERK5 in supporting cancer cell proliferation have been linked to its nuclear localization. Despite many processes regulating ERK5 nuclear translocation having been determined, the nuclear transporters involved have not yet been identified. Here, we investigated the role of importin subunit alpha (α importin) and importin subunit beta-1 (importin β1) in ERK5 nuclear shuttling to identify additional targets for cancer treatment. Either importin β1 knockdown or the α/β1 importin inhibitor ivermectin reduced the nuclear amount of overexpressed and endogenous ERK5 in HEK293T and A375 melanoma cells, respectively. These results were confirmed in single-molecule microscopy in HeLa cells. Moreover, immunofluorescence analysis showed that ivermectin impairs epidermal growth factor (EGF)-induced ERK5 nuclear shuttling in HeLa cells. Both co-immunoprecipitation experiments and proximity ligation assay provided evidence that ERK5 and importin β1 interact and that this interaction is further induced by EGF administration and prevented by ivermectin treatment. The combination of ivermectin and the ERK5 inhibitor AX15836 synergistically reduced cell viability and colony formation ability in A375 and HeLa cells and was more effective than single treatments in preventing the growth of A375 and HeLa spheroids. The increased reduction of cell viability upon the same combination was also observed in patient-derived metastatic melanoma cells. The combination of ivermectin and ERK5 inhibitors other than AX15836 provided similar effects on cell viability. The identification of importin β1 as the nuclear transporter of ERK5 may be exploited for additional ERK5-inhibiting strategies for cancer therapy.
Collapse
Affiliation(s)
- Zoe Lombardi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Italy
| | - Lucia Gardini
- National Institute of Optics, National Research Council, Florence, Italy
- European Laboratory of Non-Linear Spectroscopy (LENS), Florence, Italy
| | - Anatolii V Kashchuk
- European Laboratory of Non-Linear Spectroscopy (LENS), Florence, Italy
- Department of Physics and Astronomy, University of Florence, Italy
| | - Alessio Menconi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Italy
| | - Matteo Lulli
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Italy
| | - Ignazia Tusa
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Italy
| | - Alessandro Tubita
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Italy
| | - Luisa Maresca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Barbara Stecca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Marco Capitanio
- European Laboratory of Non-Linear Spectroscopy (LENS), Florence, Italy
- Department of Physics and Astronomy, University of Florence, Italy
| | - Elisabetta Rovida
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Italy
| |
Collapse
|
7
|
Guo J, Xie T, Zhang S. Linc00239 Promotes Colorectal Cancer Development via MicroRNA-182-5p/Metadherin Axis. Biochem Genet 2024; 62:1727-1741. [PMID: 37695492 DOI: 10.1007/s10528-023-10510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Long non-coding RNAs (lncRNAs) are associated with colorectal cancer (CRC); however, CRC-related linc00239 functions have not been fully elucidated. Prognostic analysis of patients with CRC with linc00239 overexpression was performed using data from The Cancer Genome Atlas database. Cell Counting Kit-8 and Transwell were used to determine linc00239 functions for CRC cells. The lncRNA-miRNA-mRNA interaction network was used to screen target miRNAs and mRNAs regulated by linc00239. Quantitative real-time polymerase chain reaction and western blotting were used to confirm the miRNA and mRNA expression. Furthermore, a miRNA inhibitor was transfected into CRC cells, and cell function was evaluated. Results indicated a high linc00239 expression in the tumor tissue of patients with CRC. Transfection of linc00239 siRNA into SW480 and LOVO cells decreased cell proliferation, cell migration, and invasion. MiR-182-5p/metadherin (MTDH) axis is a downstream pathway of linc00239. MTDH expression, the activity of cell proliferation, migration, and invasion, which were suppressed by linc00239 siRNA, were partially attenuated when linc00239 siRNA and miR-182-5p inhibitor were co-transfected into the CRC cells. Furthermore, miR-182-5p expression was decreased and MTDH expression was promoted in CRC tissues. Altogether, linc00239 may promote CRC development through the miR-182-5p/MTDH axis.
Collapse
Affiliation(s)
- Jianian Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Tingting Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shi Zhang
- Department of Surgical Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Guangzhou, 510260, China.
| |
Collapse
|
8
|
Gagliardi S, Mitruccio M, Di Corato R, Romano R, Aloisi A, Rinaldi R, Alifano P, Guerra F, Bucci C. Defects of mitochondria-lysosomes communication induce secretion of mitochondria-derived vesicles and drive chemoresistance in ovarian cancer cells. Cell Commun Signal 2024; 22:165. [PMID: 38448982 PMCID: PMC10916030 DOI: 10.1186/s12964-024-01507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Among the mechanisms of mitochondrial quality control (MQC), generation of mitochondria-derived vesicles (MDVs) is a process to avoid complete failure of mitochondria determining lysosomal degradation of mitochondrial damaged proteins. In this context, RAB7, a late endocytic small GTPase, controls delivery of MDVs to late endosomes for subsequent lysosomal degradation. We previously demonstrated that RAB7 has a pivotal role in response to cisplatin (CDDP) regulating resistance to the drug by extracellular vesicle (EVs) secretion. METHODS Western blot and immunofluorescence analysis were used to analyze structure and function of endosomes and lysosomes in CDDP chemosensitive and chemoresistant ovarian cancer cell lines. EVs were purified from chemosensitive and chemoresistant cells by ultracentrifugation or immunoisolation to analyze their mitochondrial DNA and protein content. Treatment with cyanide m-chlorophenylhydrazone (CCCP) and RAB7 modulation were used, respectively, to understand the role of mitochondrial and late endosomal/lysosomal alterations on MDV secretion. Using conditioned media from chemoresistant cells the effect of MDVs on the viability after CDDP treatment was determined. Seahorse assays and immunofluorescence analysis were used to study the biochemical role of MDVs and the uptake and intracellular localization of MDVs, respectively. RESULTS We observed that CDDP-chemoresistant cells are characterized by increased MDV secretion, impairment of late endocytic traffic, RAB7 downregulation, an increase of RAB7 in EVs, compared to chemosensitive cells, and downregulation of the TFEB-mTOR pathway overseeing lysosomal and mitochondrial biogenesis and turnover. We established that MDVs can be secreted rather than delivered to lysosomes and are able to deliver CDDP outside the cells. We showed increased secretion of MDVs by chemoresistant cells ultimately caused by the extrusion of RAB7 in EVs, resulting in a dramatic drop in its intracellular content, as a novel mechanism to regulate RAB7 levels. We demonstrated that MDVs purified from chemoresistant cells induce chemoresistance in RAB7-modulated process, and, after uptake from recipient cells, MDVs localize to mitochondria and slow down mitochondrial activity. CONCLUSIONS Dysfunctional MQC in chemoresistant cells determines a block in lysosomal degradation of MDVs and their consequent secretion, suggesting that MQC is not able to eliminate damaged mitochondria whose components are secreted becoming effectors and potential markers of chemoresistance.
Collapse
Affiliation(s)
- Sinforosa Gagliardi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Marco Mitruccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Riccardo Di Corato
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce, 73100, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, 73010, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
- Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Alessandra Aloisi
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce, 73100, Italy
| | - Rosaria Rinaldi
- Department of Mathematics and Physics "E. De Giorgi", University of Salento, Via Monteroni, Lecce, 73100, Italy
- Scuola Superiore ISUFI, University of Salento, Via Monteroni, University Campus, Lecce, 73100, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
- Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy.
- Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy.
| |
Collapse
|
9
|
Zhang Q, Gao X, Duan X, Liang H, Gao M, Dong D, Guo C, Huang L. Design, synthesis and SAR of novel 7-azaindole derivatives as potential Erk5 kinase inhibitor with anticancer activity. Bioorg Med Chem 2023; 95:117503. [PMID: 37862935 DOI: 10.1016/j.bmc.2023.117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
The extracellular signal-regulated kinase 5 (Erk5) signaling plays a crucial role in cancer, and regulating its activity may have potential in cancer chemotherapy. In this study, a series of novel 7-azaindole derivatives (4a-5o) were designed and synthesized. Their antitumor activities on human lung cancer A549 cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4',6-diamidino-2-phenylindole (DAPI) staining and colony formation assay. Among them, compounds 4a, 4 h, 5d and 5j exhibited good anti-proliferative activity with the IC50 values of 6.23 µg/mL, 8.52 µg/mL, 7.33 µg/mL and 4.56 µg/mL, respectively, equivalent to Erk5 positive control XMD8-92 (IC50 = 5.36 µg/mL). The results of structure-activity relationships (SAR) showed that double bond on the piperidine ring and N atoms at the N7 position of 7-azaindole was essential for their antiproliferative activity. Furthermore, compounds 4a and 5j exhibited good inhibition on Erk5 kinase through Western blot analysis and possible action site of compounds with Erk5 kinase was elucidated by molecular docking.
Collapse
Affiliation(s)
- Qin Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Xintao Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Xiyu Duan
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Han Liang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Mingyuan Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Dianquan Dong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Chuanlong Guo
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China.
| | - Longjiang Huang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China.
| |
Collapse
|
10
|
Zhao C, Liu X, Liu L, Li J, Liu X, Tao W, Wang D, Wei J. Smoothened mediates medaka spermatogonia proliferation via Gli1-Rgcc-Cdk1 axis†. Biol Reprod 2023; 109:772-784. [PMID: 37552059 DOI: 10.1093/biolre/ioad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023] Open
Abstract
The proliferation of spermatogonia directly affects spermatogenesis and male fertility, but its underlying molecular mechanisms are poorly understood. In this study, Smoothened (Smo), the central transducer of Hedgehog signaling pathway, was characterized in medaka (Oryzias latipes), and its role and underlying mechanisms in the proliferation of spermatogonia were investigated. Smo was highly expressed in spermatogonia. In ex vivo testicular organ culture and a spermatogonial cell line (SG3) derived from medaka mature testis, Smo activation promoted spermatogonia proliferation, while its inhibition induced apoptosis. The expression of glioma-associated oncogene homolog 1 (gli1) and regulator of cell cycle (rgcc) was significantly upregulated in SG3 after Smo activation. Furthermore, Gli1 transcriptionally upregulated the expression of rgcc, and Rgcc overexpression rescued cell apoptosis caused by Smo or Gli1 inhibition. Co-immunoprecipitation assay indicated that Rgcc could interact with cyclin-dependent kinase 1 (Cdk1) to regulate the cell cycle of spermatogonia. Collectively, our study firstly reveals that Smo mediates the proliferation of spermatogonia through Gli1-Rgcc-Cdk1 axis. In addition, Smo and Gli1 are necessary of the survival of spermatogonia. This study deepens our understanding of spermatogonia proliferation and survival at the molecular level, and provides insights into male fertility control and reproductive disease treatment.
Collapse
Affiliation(s)
- Changle Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiang Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lei Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianeng Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xingyong Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jing Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Le NT. The significance of ERK5 catalytic-independent functions in disease pathways. Front Cell Dev Biol 2023; 11:1235217. [PMID: 37601096 PMCID: PMC10436230 DOI: 10.3389/fcell.2023.1235217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also known as BMK1 or MAPK7, represents a recent addition to the classical mitogen-activated protein kinase (MAPK) family. This family includes well-known members such as ERK1/2, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), as well as atypical MAPKs such as ERK3, ERK4, ERK7 (ERK8), and Nemo-like kinase (NLK). Comprehensive reviews available elsewhere provide detailed insights into ERK5, which interested readers can refer to for in-depth knowledge (Nithianandarajah-Jones et al., 2012; Monti et al., Cancers (Basel), 2022, 14). The primary aim of this review is to emphasize the essential characteristics of ERK5 and shed light on the intricate nature of its activation, with particular attention to the catalytic-independent functions in disease pathways.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
12
|
Seidita I, Tusa I, Prisinzano M, Menconi A, Cencetti F, Vannuccini S, Castiglione F, Bruni P, Petraglia F, Bernacchioni C, Rovida E, Donati C. Sphingosine 1-phosphate elicits a ROS-mediated proinflammatory response in human endometrial stromal cells via ERK5 activation. FASEB J 2023; 37:e23061. [PMID: 37389926 DOI: 10.1096/fj.202300323r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Endometriosis is a chronic gynecological disease affecting ~10% women in the reproductive age characterized by the growth of endometrial glands and stroma outside the uterine cavity. The inflammatory process has a key role in the initiation and progression of the disorder. Currently, there are no available early diagnostic tests and therapy relies exclusively on symptomatic drugs, so that elucidation of the complex molecular mechanisms involved in the pathogenesis of endometriosis is an unmet need. The signaling of the bioactive sphingolipid sphingosine 1-phosphate (S1P) is deeply dysregulated in endometriosis. S1P modulates a variety of fundamental cellular processes, including inflammation, neo-angiogenesis, and immune responses acting mainly as ligand of a family of G-protein-coupled receptors named S1P receptors (S1PR), S1P1-5 . Here, we demonstrated that the mitogen-activated protein kinase ERK5, that is expressed in endometriotic lesions as determined by quantitative PCR, is activated by S1P in human endometrial stromal cells. S1P-induced ERK5 activation was shown to be triggered by S1P1/3 receptors via a SFK/MEK5-dependent axis. S1P-induced ERK5 activation was, in turn, responsible for the increase of reactive oxygen species and proinflammatory cytokine expression in human endometrial stromal cells. The present findings indicate that the S1P signaling, via ERK5 activation, supports a proinflammatory response in the endometrium and establish the rationale for the exploitation of innovative therapeutic targets for endometriosis.
Collapse
Affiliation(s)
- Isabelle Seidita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Prisinzano
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Silvia Vannuccini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesca Castiglione
- Histopathology and Molecular Diagnostics, Careggi University Hospital, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
13
|
Sánchez-Fdez A, Matilla-Almazán S, Del Carmen S, Abad M, Arconada-Luque E, Jiménez-Suárez J, Chinchilla-Tábora LM, Ruíz-Hidalgo MJ, Sánchez-Prieto R, Pandiella A, Esparís-Ogando A. Etiopathogenic role of ERK5 signaling in sarcoma: prognostic and therapeutic implications. Exp Mol Med 2023; 55:1247-1257. [PMID: 37332046 PMCID: PMC10317974 DOI: 10.1038/s12276-023-01008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/20/2023] Open
Abstract
Sarcomas constitute a heterogeneous group of rare and difficult-to-treat tumors that can affect people of all ages, representing one of the most common forms of cancer in childhood and adolescence. Little is known about the molecular entities involved in sarcomagenesis. Therefore, the identification of processes that lead to the development of the disease may uncover novel therapeutic opportunities. Here, we show that the MEK5/ERK5 signaling pathway plays a critical role in the pathogenesis of sarcomas. By developing a mouse model engineered to express a constitutively active form of MEK5, we demonstrate that the exclusive activation of the MEK5/ERK5 pathway can promote sarcomagenesis. Histopathological analyses identified these tumors as undifferentiated pleomorphic sarcomas. Bioinformatic studies revealed that sarcomas are the tumors in which ERK5 is most frequently amplified and overexpressed. Moreover, analysis of the impact of ERK5 protein expression on overall survival in patients diagnosed with different sarcoma types in our local hospital showed a 5-fold decrease in median survival in patients with elevated ERK5 expression compared with those with low expression. Pharmacological and genetic studies revealed that targeting the MEK5/ERK5 pathway drastically affects the proliferation of human sarcoma cells and tumor growth. Interestingly, sarcoma cells with knockout of ERK5 or MEK5 were unable to form tumors when engrafted into mice. Taken together, our results reveal a role of the MEK5/ERK5 pathway in sarcomagenesis and open a new scenario to be considered in the treatment of patients with sarcoma in which the ERK5 pathway is pathophysiologically involved.
Collapse
Affiliation(s)
- Adrián Sánchez-Fdez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Salamanca, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sofía Matilla-Almazán
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Sofía Del Carmen
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departmento de Patología, Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Mar Abad
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departmento de Patología, Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Elena Arconada-Luque
- Universidad de Castilla-La Mancha, Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Jaime Jiménez-Suárez
- Universidad de Castilla-La Mancha, Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Luis Miguel Chinchilla-Tábora
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departmento de Patología, Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Mª José Ruíz-Hidalgo
- Universidad de Castilla-La Mancha, Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular. Facultad de Medicina, Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Universidad de Castilla-La Mancha, Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
- Universidad de Castilla-La Mancha, Departamento de Ciencias Médicas, Facultad de Medicina, Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Madrid, Spain
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (IIBM-CSIC)-Universidad de Castilla-La Mancha (UCLM), Albacete, Spain
| | - Atanasio Pandiella
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Azucena Esparís-Ogando
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-CSIC, Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
14
|
Tusa I, Menconi A, Tubita A, Rovida E. Pathophysiological Impact of the MEK5/ERK5 Pathway in Oxidative Stress. Cells 2023; 12:cells12081154. [PMID: 37190064 DOI: 10.3390/cells12081154] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Oxidative stress regulates many physiological and pathological processes. Indeed, a low increase in the basal level of reactive oxygen species (ROS) is essential for various cellular functions, including signal transduction, gene expression, cell survival or death, as well as antioxidant capacity. However, if the amount of generated ROS overcomes the antioxidant capacity, excessive ROS results in cellular dysfunctions as a consequence of damage to cellular components, including DNA, lipids and proteins, and may eventually lead to cell death or carcinogenesis. Both in vitro and in vivo investigations have shown that activation of the mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) pathway is frequently involved in oxidative stress-elicited effects. In particular, accumulating evidence identified a prominent role of this pathway in the anti-oxidative response. In this respect, activation of krüppel-like factor 2/4 and nuclear factor erythroid 2-related factor 2 emerged among the most frequent events in ERK5-mediated response to oxidative stress. This review summarizes what is known about the role of the MEK5/ERK5 pathway in the response to oxidative stress in pathophysiological contexts within the cardiovascular, respiratory, lymphohematopoietic, urinary and central nervous systems. The possible beneficial or detrimental effects exerted by the MEK5/ERK5 pathway in the above systems are also discussed.
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| |
Collapse
|
15
|
Miller D, Harnor SJ, Martin MP, Noble RA, Wedge SR, Cano C. Modulation of ERK5 Activity as a Therapeutic Anti-Cancer Strategy. J Med Chem 2023; 66:4491-4502. [PMID: 37002872 PMCID: PMC10108346 DOI: 10.1021/acs.jmedchem.3c00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 04/03/2023]
Abstract
The extracellular signal-regulated kinase 5 (ERK5) signaling pathway is one of four conventional mitogen-activated protein (MAP) kinase pathways. Genetic perturbation of ERK5 has suggested that modulation of ERK5 activity may have therapeutic potential in cancer chemotherapy. This Miniperspective examines the evidence for ERK5 as a drug target in cancer, the structure of ERK5, and the evolution of structurally distinct chemotypes of ERK5 kinase domain inhibitors. The emerging complexities of ERK5 pharmacology are discussed, including the confounding phenomenon of paradoxical ERK5 activation by small-molecule ERK5 inhibitors. The impact of the recent development and biological evaluation of potent and selective bifunctional degraders of ERK5 and future opportunities in ERK modulation are also explored.
Collapse
Affiliation(s)
- Duncan
C. Miller
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Newcastle University Centre for Cancer, School of Natural and
Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Suzannah J. Harnor
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Newcastle University Centre for Cancer, School of Natural and
Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Mathew P. Martin
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Translational and Clinical Research
Institute, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Richard A. Noble
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Translational and Clinical Research
Institute, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stephen R. Wedge
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Translational and Clinical Research
Institute, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Celine Cano
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Newcastle University Centre for Cancer, School of Natural and
Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
16
|
López-Borrego S, Campos-Silva C, Sandúa A, Camino T, Téllez-Pérez L, Alegre E, Beneitez A, Jara-Acevedo R, Paschen A, Pardo M, González Á, Valés-Gómez M. MAPK inhibitors dynamically affect melanoma release of immune NKG2D-ligands, as soluble protein and extracellular vesicle-associated. Front Cell Dev Biol 2023; 10:1055288. [PMID: 36726591 PMCID: PMC9884675 DOI: 10.3389/fcell.2022.1055288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023] Open
Abstract
Metastatic melanoma presents, in many cases, oncogenic mutations in BRAF, a MAPK involved in proliferation of tumour cells. BRAF inhibitors, used as therapy in patients with these mutations, often lead to tumour resistance and, thus, the use of MEK inhibitors was introduced in clinics. BRAFi/MEKi, a combination that has modestly increased overall survival in patients, has been proven to differentially affect immune ligands, such as NKG2D-ligands, in drug-sensitive vs. drug-resistant cells. However, the fact that NKG2D-ligands can be released as soluble molecules or in extracellular vesicles represents an additional level of complexity that has not been explored. Here we demonstrate that inhibition of MAPK using MEKi, and the combination of BRAFi with MEKi in vitro, modulates NKG2D-ligands in BRAF-mutant and WT melanoma cells, together with other NK activating ligands. These observations reinforce a role of the immune system in the generation of resistance to directed therapies and support the potential benefit of MAPK inhibition in combination with immunotherapies. Both soluble and EV-associated NKG2D-ligands, generally decreased in BRAF-mutant melanoma cell supernatants after MAPKi in vitro, replicating cell surface expression. Because potential NKG2D-ligand fluctuation during MAPKi treatment could have different consequences for the immune response, a pilot study to measure NKG2D-ligand variation in plasma or serum from metastatic melanoma patients, at different time points during MAPKi treatment, was performed. Not all NKG2D-ligands were equally detected. Further, EV detection did not parallel soluble protein. Altogether, our data confirm the heterogeneity between melanoma lesions, and suggest testing several NKG2D-ligands and other melanoma antigens in serum, both as soluble or vesicle-released proteins, to help classifying immune competence of patients.
Collapse
Affiliation(s)
- Silvia López-Borrego
- Department of Immunology and Oncology, National Center for Biotechnology (CNB), Spanish National Research Council (CSIC), Cantoblanco, Madrid, Spain
| | - Carmen Campos-Silva
- Department of Immunology and Oncology, National Center for Biotechnology (CNB), Spanish National Research Council (CSIC), Cantoblanco, Madrid, Spain
| | | | - Tamara Camino
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
| | - Lucía Téllez-Pérez
- Department of Immunology and Oncology, National Center for Biotechnology (CNB), Spanish National Research Council (CSIC), Cantoblanco, Madrid, Spain
| | | | | | | | - Annette Paschen
- Clinic for Dermatology University Hospital of Essen, Essen, North RhineWestphalia, Germany
| | - María Pardo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
| | | | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Center for Biotechnology (CNB), Spanish National Research Council (CSIC), Cantoblanco, Madrid, Spain,*Correspondence: Mar Valés-Gómez,
| |
Collapse
|
17
|
Sattler M, Mohanty A, Kulkarni P, Salgia R. Precision oncology provides opportunities for targeting KRAS-inhibitor resistance. Trends Cancer 2023; 9:42-54. [PMID: 36751115 DOI: 10.1016/j.trecan.2022.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/28/2022]
Abstract
Novel inhibitors targeting Kirsten rat sarcoma virus homolog (KRAS) KRASG12C in various cancers have shown good initial efficacy, but therapy-related drug resistance eventually occurs in most patients. It has become apparent that cancer cells not only rely on novel mutations that provide escape mechanisms, but about half of them become resistant in the absence of apparent genetic mutations. Redundancies within the KRAS signaling pathways and cross-talk between these pathways - as well as other canonical cancer-driving mechanisms - not only provide challenges but also present opportunities for drug development and targeted approaches. We discuss the challenges for the duality of KRAS inhibitor drug resistance with an additional focus on nongenetic mechanisms and the potential for patient-centered combination treatments.
Collapse
Affiliation(s)
- Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
18
|
Cook SJ, Lochhead PA. ERK5 Signalling and Resistance to ERK1/2 Pathway Therapeutics: The Path Less Travelled? Front Cell Dev Biol 2022; 10:839997. [PMID: 35903549 PMCID: PMC9315226 DOI: 10.3389/fcell.2022.839997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/13/2022] [Indexed: 12/01/2022] Open
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is frequently de-regulated in human cancer. Melanoma in particular exhibits a high incidence of activating BRAFV600E/K and NRASQ61L/K mutations and such cells are addicted to the activity of these mutant oncoproteins. As a result three different BRAF inhibitors (BRAFi) have now been approved for BRAFV600E/K- mutant melanoma and have transformed the treatment of this disease. Despite this, clinical responses are typically transient as tumour cells develop resistance. These resistance mechanisms frequently involve reinstatement of ERK1/2 signalling and BRAFi are now deployed in combination with one of three approved MEK1/2 inhibitors (MEKi) to provide more durable, but still transient, clinical responses. Furthermore, inhibitors to ERK1/2 (ERK1/2i) have also been developed to counteract ERK1/2 signalling. However, recent studies have suggested that BRAFi/MEKi and ERK1/2i resistance can arise through activation of a parallel signalling pathway leading to activation of ERK5, an unusual protein kinase that contains both a kinase domain and a transcriptional transactivation domain. Here we review the evidence supporting ERK5 as a mediator of BRAFi/MEKi and ERK1/2i resistance. We also review the challenges in targeting ERK5 signalling with small molecules, including paradoxical activation of the transcriptional transactivation domain, and discuss new therapeutic modalities that could be employed to target ERK5.
Collapse
Affiliation(s)
- Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Pamela A. Lochhead
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
19
|
Dorababu A. Pyrazolopyrimidines as attractive pharmacophores in efficient drug design: A recent update. Arch Pharm (Weinheim) 2022; 355:e2200154. [PMID: 35698212 DOI: 10.1002/ardp.202200154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022]
Abstract
Among the menacing diseases, cancer needs the most attention as millions of people are affected by it worldwide. Genetic and environmental factors play a pivotal role in causing cancer. Although a wide range of underlying mechanisms of cancer has been discovered, efficient treatments have not been discovered to date. Additionally, diseases caused by microbes such as viruses, bacteria, protozoa, and so forth, persistently result in several deaths. Also, inflammation is a major factor that leads to several health issues. For decades, drug design has become a major part of drug discovery and development for curing various diseases. Among the large number of pharmacological agents that have been synthesized, only very few have emerged as efficient drug molecules. Most of them are heterocyclic compounds, which are promising candidates for the design of efficient drug molecules. Furthermore, fused heterocycles showed comparatively stronger pharmacological activities than monocyclic heterocycles. The literature reveals that pyrazolopyrimidines have outstanding biological activity. Hence, here, the diverse pharmacological activities shown by pyrazolopyrimidine derivatives reported in the last 5 years are collated and reviewed systematically. This review is classified into various sections focusing on anticancer, antimicrobial, anti-inflammatory, and enzyme inhibitors. Structure-activity relationships are discussed in brief, which will help researchers design potent pharmacological agents.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College, Huvinahadagali, Karnataka, India
| |
Collapse
|
20
|
Kamel NM, El-Tanbouly DM, Abdallah DM, Sayed HM. PAR1, a therapeutic target for remote lung injury associated with hind limb ischemia/reperfusion: ERK5/KLF2-dependent lung capillary barrier preservation. Chem Biol Interact 2022; 354:109809. [PMID: 35031271 DOI: 10.1016/j.cbi.2022.109809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/28/2021] [Accepted: 01/05/2022] [Indexed: 11/03/2022]
Abstract
Protease-activated receptor 1 (PAR1) is expressed in pneumocytes and endothelial cells of the alveolar barrier. Its activation by thrombin disrupts the barrier integrity dynamics and induces lung injury in in vitro and in vivo paradigms. Nonetheless, the role of PAR1, as a therapeutic target, in hind limb ischemia/reperfusion (I/R)-mediated remote lung injury has been unclear. Therefore, this study aimed to determine the potential benefit of PAR1 blockade using the selective antagonist SCH79797 in distant lung dysfunction following hind limb I/R injury with special emphasis on the extracellular signal-regulated kinase 5 (ERK5)/Krüppel-like factor 2 (KLF2) axis. Rats were subdivided into control, bilateral hind limb I/R, SCH79797, and SCH79797+BIX02189 (ERK5 inhibitor) groups. PAR1 blockade, ERK5-dependently, alleviated alveolar barrier disruption as evidenced by reductions in both pulmonary systemic leakage of surfactant protein-D and lung fluid accumulation with increase in pulmonary claudin 5, vascular endothelial cadherin, and connexin 37 levels. Such improvements are downstream targets of the ERK5/KLF2-mediated sphingosine-1-phosphate receptor 1 (S1PR1) upregulated expression and pS536-nuclear factor-κB (NF-κB) p65 inhibition. SCH79797 effectively impedes the evoked inflammatory response and oxidative burst by suppressing vascular endothelial growth factor, tumor necrosis factor-α, lipid peroxidation, and neutrophil infiltration while boosting the glutathione antioxidant defense. Accordingly, PAR1 could be a therapeutic target, where its blockade mitigated pulmonary-endothelial barrier disruption via mutual S1PR1 enhancement and NF-κB p65 inhibition following ERK5/KLF2 activation.
Collapse
Affiliation(s)
- Nada M Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Faculty of Pharmacy, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Dalia M El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Faculty of Pharmacy, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Faculty of Pharmacy, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Helmy M Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Faculty of Pharmacy, Kasr El Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
21
|
Tubita A, Lombardi Z, Tusa I, Lazzeretti A, Sgrignani G, Papini D, Menconi A, Gagliardi S, Lulli M, Dello Sbarba P, Esparís-Ogando A, Pandiella A, Stecca B, Rovida E. Inhibition of ERK5 Elicits Cellular Senescence in Melanoma via the Cyclin-Dependent Kinase Inhibitor p21. Cancer Res 2022; 82:447-457. [PMID: 34799355 PMCID: PMC9397638 DOI: 10.1158/0008-5472.can-21-0993] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/06/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023]
Abstract
Melanoma is the deadliest skin cancer with a very poor prognosis in advanced stages. Although targeted and immune therapies have improved survival, not all patients benefit from these treatments. The mitogen-activated protein kinase ERK5 supports the growth of melanoma cells in vitro and in vivo. However, ERK5 inhibition results in cell-cycle arrest rather than appreciable apoptosis. To clarify the role of ERK5 in melanoma growth, we performed transcriptomic analyses following ERK5 knockdown in melanoma cells expressing BRAFV600E and found that cellular senescence was among the most affected processes. In melanoma cells expressing either wild-type or mutant (V600E) BRAF, both genetic and pharmacologic inhibition of ERK5 elicited cellular senescence, as observed by a marked increase in senescence-associated β-galactosidase activity and p21 expression. In addition, depletion of ERK5 from melanoma cells resulted in increased levels of CXCL1, CXCL8, and CCL20, proteins typically involved in the senescence-associated secretory phenotype. Knockdown of p21 suppressed the induction of cellular senescence by ERK5 blockade, pointing to p21 as a key mediator of this process. In vivo, ERK5 knockdown or inhibition with XMD8-92 in melanoma xenografts promoted cellular senescence. Based on these results, small-molecule compounds targeting ERK5 constitute a rational series of prosenescence drugs that may be exploited for melanoma treatment. SIGNIFICANCE: This study shows that targeting ERK5 induces p21-mediated cellular senescence in melanoma, identifying a prosenescence effect of ERK5 inhibitors that may be exploited for melanoma treatment.
Collapse
Affiliation(s)
- Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Zoe Lombardi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Azzurra Lazzeretti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giovanna Sgrignani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Dimitri Papini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Sinforosa Gagliardi
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Persio Dello Sbarba
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Instituto de Investigación Biomédica de Salamanca (IBSAL), CIBERONC, Salamanca, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Instituto de Investigación Biomédica de Salamanca (IBSAL), CIBERONC, Salamanca, Spain
- CSIC, Salamanca, Spain
| | - Barbara Stecca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| |
Collapse
|
22
|
Clinical Significance and Regulation of ERK5 Expression and Function in Cancer. Cancers (Basel) 2022; 14:cancers14020348. [PMID: 35053510 PMCID: PMC8773716 DOI: 10.3390/cancers14020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is a unique kinase among MAPKs family members, given its large structure characterized by the presence of a unique C-terminal domain. Despite increasing data demonstrating the relevance of the ERK5 pathway in the growth, survival, and differentiation of normal cells, ERK5 has recently attracted the attention of several research groups given its relevance in inflammatory disorders and cancer. Accumulating evidence reported its role in tumor initiation and progression. In this review, we explore the gene expression profile of ERK5 among cancers correlated with its clinical impact, as well as the prognostic value of ERK5 and pERK5 expression levels in tumors. We also summarize the importance of ERK5 in the maintenance of a cancer stem-like phenotype and explore the major known contributions of ERK5 in the tumor-associated microenvironment. Moreover, although several questions are still open concerning ERK5 molecular regulation, different ERK5 isoforms derived from the alternative splicing process are also described, highlighting the potential clinical relevance of targeting ERK5 pathways.
Collapse
|
23
|
ERK5 modulates IL-6 secretion and contributes to tumor-induced immune suppression. Cell Death Dis 2021; 12:969. [PMID: 34671021 PMCID: PMC8528934 DOI: 10.1038/s41419-021-04257-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
Tumors exhibit a variety of strategies to dampen antitumor immune responses. With an aim to identify factors that are secreted from tumor cells, we performed an unbiased mass spectrometry-based secretome analysis in lung cancer cells. Interleukin-6 (IL-6) has been identified as a prominent factor secreted by tumor cells and cancer-associated fibroblasts isolated from cancer patients. Incubation of dendritic cell (DC) cultures with tumor cell supernatants inhibited the production of IL-12p70 in DCs but not the surface expression of other activation markers which is reversed by treatment with IL-6 antibody. Defects in IL-12p70 production in the DCs inhibited the differentiation of Th1 but not Th2 and Th17 cells from naïve CD4+ T cells. We also demonstrate that the classical mitogen-activated protein kinase, ERK5/MAPK7, is required for IL-6 production in tumor cells. Inhibition of ERK5 activity or depletion of ERK5 prevented IL-6 production in tumor cells, which could be exploited for enhancing antitumor immune responses.
Collapse
|
24
|
Tusa I, Gagliardi S, Tubita A, Pandolfi S, Menconi A, Lulli M, Dello Sbarba P, Stecca B, Rovida E. The Hedgehog-GLI Pathway Regulates MEK5-ERK5 Expression and Activation in Melanoma Cells. Int J Mol Sci 2021; 22:11259. [PMID: 34681917 PMCID: PMC8538987 DOI: 10.3390/ijms222011259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Malignant melanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. We recently showed that the extracellular signal-regulated kinase 5 (ERK5), encoded by the MAPK7 gene, plays a pivotal role in melanoma by regulating cell functions necessary for tumour development, such as proliferation. Hedgehog-GLI signalling is constitutively active in melanoma and is required for proliferation. However, no data are available in literature about a possible interplay between Hedgehog-GLI and ERK5 pathways. Here, we show that hyperactivation of the Hedgehog-GLI pathway by genetic inhibition of the negative regulator Patched 1 increases the amount of ERK5 mRNA and protein. Chromatin immunoprecipitation showed that GLI1, the major downstream effector of Hedgehog-GLI signalling, binds to a functional non-canonical GLI consensus sequence at the MAPK7 promoter. Furthermore, we found that ERK5 is required for Hedgehog-GLI-dependent melanoma cell proliferation, and that the combination of GLI and ERK5 inhibitors is more effective than single treatments in reducing cell viability and colony formation ability in melanoma cells. Together, these findings led to the identification of a novel Hedgehog-GLI-ERK5 axis that regulates melanoma cell growth, and shed light on new functions of ERK5, paving the way for new therapeutic options in melanoma and other neoplasms with active Hedgehog-GLI and ERK5 pathways.
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (I.T.); (A.T.); (A.M.); (M.L.); (P.D.S.)
| | - Sinforosa Gagliardi
- Core Research Laboratory-Institute for Cancer Research and Prevention (ISPRO), 50134 Florence, Italy; (S.G.); (S.P.)
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (I.T.); (A.T.); (A.M.); (M.L.); (P.D.S.)
| | - Silvia Pandolfi
- Core Research Laboratory-Institute for Cancer Research and Prevention (ISPRO), 50134 Florence, Italy; (S.G.); (S.P.)
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (I.T.); (A.T.); (A.M.); (M.L.); (P.D.S.)
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (I.T.); (A.T.); (A.M.); (M.L.); (P.D.S.)
| | - Persio Dello Sbarba
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (I.T.); (A.T.); (A.M.); (M.L.); (P.D.S.)
| | - Barbara Stecca
- Core Research Laboratory-Institute for Cancer Research and Prevention (ISPRO), 50134 Florence, Italy; (S.G.); (S.P.)
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (I.T.); (A.T.); (A.M.); (M.L.); (P.D.S.)
| |
Collapse
|
25
|
Ortega-Muelas M, Roche O, Fernández-Aroca DM, Encinar JA, Albandea-Rodríguez D, Arconada-Luque E, Pascual-Serra R, Muñoz I, Sánchez-Pérez I, Belandia B, Ruiz-Hidalgo MJ, Sánchez-Prieto R. ERK5 signalling pathway is a novel target of sorafenib: Implication in EGF biology. J Cell Mol Med 2021; 25:10591-10603. [PMID: 34655447 PMCID: PMC8581332 DOI: 10.1111/jcmm.16990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
Sorafenib is a multikinase inhibitor widely used in cancer therapy with an antitumour effect related to biological processes as proliferation, migration or invasion, among others. Initially designed as a Raf inhibitor, Sorafenib was later shown to also block key molecules in tumour progression such as VEGFR and PDGFR. In addition, sorafenib has been connected with key signalling pathways in cancer such as EGFR/EGF. However, no definitive clue about the molecular mechanism linking sorafenib and EGF signalling pathway has been established so far. Our data in HeLa, U2OS, A549 and HEK293T cells, based on in silico, chemical and genetic approaches demonstrate that the MEK5/ERK5 signalling pathway is a novel target of sorafenib. In addition, our data show how sorafenib is able to block MEK5-dependent phosphorylation of ERK5 in the Ser218/Tyr220, affecting the transcriptional activation associated with ERK5. Moreover, we demonstrate that some of the effects of this kinase inhibitor onto EGF biological responses, such as progression through cell cycle or migration, are mediated through the effect exerted onto ERK5 signalling pathway. Therefore, our observations describe a novel target of sorafenib, the ERK5 signalling pathway, and establish new mechanistic insights for the antitumour effect of this multikinase inhibitor.
Collapse
Affiliation(s)
- Marta Ortega-Muelas
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Olga Roche
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain.,Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Diego M Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - José A Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología de Elche (IDiBE) e Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain
| | - David Albandea-Rodríguez
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Unidad asociada de Biomedicina UCLM, Unidad asociada al CSIC, Madrid, Spain
| | - Elena Arconada-Luque
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Raquel Pascual-Serra
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Ismael Muñoz
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Unidad asociada de Biomedicina UCLM, Unidad asociada al CSIC, Madrid, Spain
| | - Isabel Sánchez-Pérez
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Unidad asociada de Biomedicina UCLM, Unidad asociada al CSIC, Madrid, Spain
| | - Borja Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Unidad asociada de Biomedicina UCLM, Unidad asociada al CSIC, Madrid, Spain
| | - María J Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain.,Área de Bioquímica y Biología Molecular. Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain.,Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (IIBM-CSIC)-Universidad de Castilla-La Mancha (UCLM), Albacete, Spain
| |
Collapse
|
26
|
Gentilini A, Lori G, Caligiuri A, Raggi C, Di Maira G, Pastore M, Piombanti B, Lottini T, Arcangeli A, Madiai S, Navari N, Banales JM, Di Matteo S, Alvaro D, Duwe L, Andersen JB, Tubita A, Tusa I, Di Tommaso L, Campani C, Rovida E, Marra F. Extracellular Signal-Regulated Kinase 5 Regulates the Malignant Phenotype of Cholangiocarcinoma Cells. Hepatology 2021; 74:2007-2020. [PMID: 33959996 PMCID: PMC8518067 DOI: 10.1002/hep.31888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is characterized by high resistance to chemotherapy and poor prognosis. Several oncogenic pathways converge on activation of extracellular signal-regulated kinase 5 (ERK5), whose role in CCA has not been explored. The aim of this study was to investigate the role of ERK5 in the biology of CCA. APPROACH AND RESULTS ERK5 expression was detected in two established (HuCCT-1 and CCLP-1) and two primary human intrahepatic CCA cell lines (iCCA58 and iCCA60). ERK5 phosphorylation was increased in CCA cells exposed to soluble mediators. In both HuCCT-1 and CCLP-1 cells, ERK5 was localized in the nucleus, and exposure to fetal bovine serum (FBS) further increased the amount of nuclear ERK5. In human CCA specimens, ERK5 mRNA expression was increased in tumor cells and positively correlated with portal invasion. ERK5 protein levels were significantly associated with tumor grade. Growth, migration, and invasion of CCA cells were decreased when ERK5 was silenced using specific short hairpin RNA (shRNA). The inhibitory effects on CCA cell proliferation, migration and invasion were recapitulated by treatment with small molecule inhibitors targeting ERK5. In addition, expression of the angiogenic factors VEGF and angiopoietin 1 was reduced after ERK5 silencing. Conditioned medium from ERK5-silenced cells had a lower ability to induce tube formation by human umbilical vein endothelial cells and to induce migration of myofibroblasts and monocytes/macrophages. In mice, subcutaneous injection of CCLP-1 cells silenced for ERK5 resulted in less frequent tumor development and smaller size of xenografts compared with cells transfected with nontargeting shRNA. CONCLUSIONS ERK5 is a key mediator of growth and migration of CCA cells and supports a protumorigenic crosstalk between the tumor and the microenvironment.
Collapse
Affiliation(s)
- Alessandra Gentilini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Giulia Lori
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Alessandra Caligiuri
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Chiara Raggi
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Giovanni Di Maira
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Mirella Pastore
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Benedetta Piombanti
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Tiziano Lottini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Annarosa Arcangeli
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Stefania Madiai
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Nadia Navari
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteCIBERehdIkerbasqueSan SebastianSpain
| | - Sabina Di Matteo
- Department of ImmunologyBambino Gesù Children’s HospitalIRCCSRomeItaly
| | - Domenico Alvaro
- Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeRomeItaly
| | - Lea Duwe
- Biotech Research and Innovation Centre (BRIC)Dept. of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jesper B. Andersen
- Biotech Research and Innovation Centre (BRIC)Dept. of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceItaly
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceItaly
| | - Luca Di Tommaso
- Pathology UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Claudia Campani
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceItaly
| | - Fabio Marra
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| |
Collapse
|
27
|
Small molecule ERK5 kinase inhibitors paradoxically activate ERK5 signalling: be careful what you wish for…. Biochem Soc Trans 2021; 48:1859-1875. [PMID: 32915196 PMCID: PMC7609025 DOI: 10.1042/bst20190338] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
ERK5 is a protein kinase that also contains a nuclear localisation signal and a transcriptional transactivation domain. Inhibition of ERK5 has therapeutic potential in cancer and inflammation and this has prompted the development of ERK5 kinase inhibitors (ERK5i). However, few ERK5i programmes have taken account of the ERK5 transactivation domain. We have recently shown that the binding of small molecule ERK5i to the ERK5 kinase domain stimulates nuclear localisation and paradoxical activation of its transactivation domain. Other kinase inhibitors paradoxically activate their intended kinase target, in some cases leading to severe physiological consequences highlighting the importance of mitigating these effects. Here, we review the assays used to monitor ERK5 activities (kinase and transcriptional) in cells, the challenges faced in development of small molecule inhibitors to the ERK5 pathway, and classify the molecular mechanisms of paradoxical activation of protein kinases by kinase inhibitors.
Collapse
|
28
|
Sahranavardfard P, Madjd Z, Emami Razavi AN, Ghanadan AR, Firouzi J, Khosravani P, Ghavami S, Ebrahimie E, Ebrahimi M. An Integrative Analysis of The Micro-RNAs Contributing in Stemness, Metastasis and B-Raf Pathways in Malignant Melanoma and Melanoma Stem Cell. CELL JOURNAL 2021; 23:261-272. [PMID: 34308569 PMCID: PMC8286452 DOI: 10.22074/cellj.2021.7311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/14/2020] [Indexed: 11/11/2022]
Abstract
Objective Epithelial-mesenchymal transition (EMT) and the stemness potency in association with BRAF mutation are
in dispensable to the progression of melanoma. Recently, microRNAs (miRNAs) have been introduced as the regulator
of a multitude of oncogenic functions in most of tumors. Therefore identifying and interpreting the expression patterns of
these miRNAs is essential. The present study sought to find common miRNAs regulating all three important pathways
in melanoma development.
Materials and Methods In this experimental study, 18 miRNAs that importantly contribute to EMT and have a role
in regulating self-renewal and the BRAF pathway were selected based on current literature and cross-analysis with
available databases. Subsequently, their expression patterns were evaluated in 20 melanoma patients, normal tissues,
serum from patients and control subjects, and melanospheres. Pattern discovery and integrative regulatory network
analysis were used to find the most important miRNAs in melanoma progression.
Results Among 18 selected miRNAs, miR-205, -141, -203, -15b, and -9 were differentially expressed in tumor samples
than normal tissues. Among them, miR-205, -15b, and -9 significantly expressed in serum samples and healthy donors.
Attribute Weighting and decision trees (DT) analysis presented evidence that the combination of miR-205, -203, -9, and
-15b can regulate self-renewal and EMT process, by affecting CDH1, CCND1, and VEGF expression.
Conclusion We suggested here that miR-205, -15b, -203, -9 pattern as the key miRNAs linked to melanoma status,
the pluripotency, proliferation, and motility of malignant cells. However, further investigations are required to find the
mechanisms underlying the combinatory effects of the above mentioned miRNAs.
Collapse
Affiliation(s)
- Parisa Sahranavardfard
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Madjd
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Nader Emami Razavi
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Ghanadan
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,Department of Dermatopathology, Razi Skin Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Firouzi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Pardis Khosravani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Manitoba, Canada. .,Biology of Breathing, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.,Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Research Institute in Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada
| | - Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia. .,Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
29
|
Paudel R, Fusi L, Schmidt M. The MEK5/ERK5 Pathway in Health and Disease. Int J Mol Sci 2021; 22:ijms22147594. [PMID: 34299213 PMCID: PMC8303459 DOI: 10.3390/ijms22147594] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
The MEK5/ERK5 mitogen-activated protein kinases (MAPK) cascade is a unique signaling module activated by both mitogens and stress stimuli, including cytokines, fluid shear stress, high osmolarity, and oxidative stress. Physiologically, it is mainly known as a mechanoreceptive pathway in the endothelium, where it transduces the various vasoprotective effects of laminar blood flow. However, it also maintains integrity in other tissues exposed to mechanical stress, including bone, cartilage, and muscle, where it exerts a key function as a survival and differentiation pathway. Beyond its diverse physiological roles, the MEK5/ERK5 pathway has also been implicated in various diseases, including cancer, where it has recently emerged as a major escape route, sustaining tumor cell survival and proliferation under drug stress. In addition, MEK5/ERK5 dysfunction may foster cardiovascular diseases such as atherosclerosis. Here, we highlight the importance of the MEK5/ERK5 pathway in health and disease, focusing on its role as a protective cascade in mechanical stress-exposed healthy tissues and its function as a therapy resistance pathway in cancers. We discuss the perspective of targeting this cascade for cancer treatment and weigh its chances and potential risks when considering its emerging role as a protective stress response pathway.
Collapse
|
30
|
Tubita A, Tusa I, Rovida E. Playing the Whack-A-Mole Game: ERK5 Activation Emerges Among the Resistance Mechanisms to RAF-MEK1/2-ERK1/2- Targeted Therapy. Front Cell Dev Biol 2021; 9:647311. [PMID: 33777953 PMCID: PMC7991100 DOI: 10.3389/fcell.2021.647311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Molecularly tailored therapies have opened a new era, chronic myeloid leukemia being the ideal example, in the treatment of cancer. However, available therapeutic options are still unsatisfactory in many types of cancer, and often fail due to the occurrence of resistance mechanisms. With regard to small-molecule compounds targeting the components of the Mitogen-Activated Protein Kinase (MAPK) cascade RAF-MEK1/2-ERK1/2, these drugs may result ineffective as a consequence of the activation of compensatory pro-survival/proliferative signals, including receptor tyrosine kinases, PI3K, as well as other components of the MAPK family such as TPL2/COT. The MAPK ERK5 has been identified as a key signaling molecule in the biology of several types of cancer. In this review, we report pieces of evidence regarding the activation of the MEK5-ERK5 pathway as a resistance mechanism to RAF-MEK1/2-ERK1/2 inhibitors. We also highlight the known and possible mechanisms underlying the cross-talks between the ERK1/2 and the ERK5 pathways, the characterization of which is of great importance to maximize, in the future, the impact of RAF-MEK1/2-ERK1/2 targeting. Finally, we emphasize the need of developing additional therapeutically relevant MEK5-ERK5 inhibitors to be used for combined treatments, thus preventing the onset of resistance to cancer therapies relying on RAF-MEK1/2-ERK1/2 inhibitors.
Collapse
Affiliation(s)
- Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
31
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
32
|
Bhatt AB, Patel S, Matossian MD, Ucar DA, Miele L, Burow ME, Flaherty PT, Cavanaugh JE. Molecular Mechanisms of Epithelial to Mesenchymal Transition Regulated by ERK5 Signaling. Biomolecules 2021; 11:biom11020183. [PMID: 33572742 PMCID: PMC7911413 DOI: 10.3390/biom11020183] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK5) is an essential regulator of cancer progression, tumor relapse, and poor patient survival. Epithelial to mesenchymal transition (EMT) is a complex oncogenic process, which drives cell invasion, stemness, and metastases. Activators of ERK5, including mitogen-activated protein kinase 5 (MEK5), tumor necrosis factor α (TNF-α), and transforming growth factor-β (TGF-β), are known to induce EMT and metastases in breast, lung, colorectal, and other cancers. Several downstream targets of the ERK5 pathway, such as myocyte-specific enhancer factor 2c (MEF2C), activator protein-1 (AP-1), focal adhesion kinase (FAK), and c-Myc, play a critical role in the regulation of EMT transcription factors SNAIL, SLUG, and β-catenin. Moreover, ERK5 activation increases the release of extracellular matrix metalloproteinases (MMPs), facilitating breakdown of the extracellular matrix (ECM) and local tumor invasion. Targeting the ERK5 signaling pathway using small molecule inhibitors, microRNAs, and knockdown approaches decreases EMT, cell invasion, and metastases via several mechanisms. The focus of the current review is to highlight the mechanisms which are known to mediate cancer EMT via ERK5 signaling. Several therapeutic approaches that can be undertaken to target the ERK5 pathway and inhibit or reverse EMT and metastases are discussed.
Collapse
Affiliation(s)
- Akshita B. Bhatt
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| | - Saloni Patel
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; (S.P.); (P.T.F.)
| | - Margarite D. Matossian
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.D.M.); (M.E.B.)
| | - Deniz A. Ucar
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.A.U.); (L.M.)
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.A.U.); (L.M.)
| | - Matthew E. Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.D.M.); (M.E.B.)
| | - Patrick T. Flaherty
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; (S.P.); (P.T.F.)
| | - Jane E. Cavanaugh
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
- Correspondence: ; Tel.: +1-412-760-3503
| |
Collapse
|
33
|
Zhao J, Galvez C, Beckermann KE, Johnson DB, Sosman JA. Novel insights into the pathogenesis and treatment of NRAS mutant melanoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:281-294. [PMID: 34485698 PMCID: PMC8415440 DOI: 10.1080/23808993.2021.1938545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION NRAS was the first mutated oncogene identified in melanoma and is currently the second most common driver mutation in this malignancy. For patients with NRASmutant advanced stage melanoma refractory to immunotherapy or with contraindications to immune-based regimens, there are few therapeutic options including low-efficacy chemotherapy regimens and binimetinib monotherapy. Here, we review recent advances in preclinical studies of molecular targets for NRAS mutant melanoma as well as the failures and successes of early-phase clinical trials. While there are no targeted therapies for NRAS-driven melanoma, there is great promise in approaches combining MEK inhibition with inhibitors of the focal adhesion kinase (FAK), inhibitors of autophagy pathways, and pan-RAF inhibitors. AREAS COVERED This review surveys new developments in all aspects of disease pathogenesis and potential treatment - including those that have failed, stalled, or progressed through various phases of preclinical and clinical development. EXPERT OPINION There are no currently approved targeted therapies for BRAF wild-type melanoma patients harboring NRAS driver mutations though an array of agents are in early phase clinical trials. The diverse strategies taken exploit combined MAP kinase signaling blockade with inhibition of cell cycle mediators, inhibition of the autophagy pathway, and alteration of kinases involved in actin cytoskeleton signaling. Future advances of developmental therapeutics into late stage trials may yield new options beyond immunotherapy for patients with advanced stage disease and NRAS mutation status.
Collapse
Affiliation(s)
- Jeffrey Zhao
- Northwestern University Feinberg School of Medicine
| | - Carlos Galvez
- Northwestern Medicine, Division of Hematology and Oncology.,Robert H. Lurie Comprehensive Cancer Center
| | - Kathryn Eby Beckermann
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology and Oncology, 1301 Medical Center Drive, Nashville, 37232, USA
| | - Douglas B Johnson
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology and Oncology, 1301 Medical Center Drive, Nashville, 37232, USA
| | - Jeffrey A Sosman
- Northwestern Medicine, Division of Hematology and Oncology.,Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
34
|
Kedika SR, Shukla SP, Udugamasooriya DG. Design of a dual ERK5 kinase activation and autophosphorylation inhibitor to block cancer stem cell activity. Bioorg Med Chem Lett 2020; 30:127552. [DOI: 10.1016/j.bmcl.2020.127552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
|
35
|
Lee B, Sahoo A, Sawada J, Marchica J, Sahoo S, Layng FIAL, Finlay D, Mazar J, Joshi P, Komatsu M, Vuori K, de Jong PR, Ray A, Perera RJ. MicroRNA-211 Modulates the DUSP6-ERK5 Signaling Axis to Promote BRAF V600E-Driven Melanoma Growth In Vivo and BRAF/MEK Inhibitor Resistance. J Invest Dermatol 2020; 141:385-394. [PMID: 32888955 DOI: 10.1016/j.jid.2020.06.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRs) are important posttranscriptional regulators of cell fate in both normal and disease states. miR-211 has previously been shown to be a direct regulator of metabolism in BRAFV600E-mutant melanoma cells in vitro. Here, we report that miR-211 expression promotes the aggressive growth of BRAFV600E-mutant melanoma xenografts in vivo. miR-211 promoted proliferation through the posttranscriptional activation of extracellular signal-regulated kinase (ERK) 5 signaling, which has recently been implicated in the resistance to BRAF and MAPK/ERK kinase inhibitors. We therefore examined whether miR-211 similarly modulated melanoma resistance to the BRAF inhibitor vemurafenib and the MAPK/ERK kinase inhibitor cobimetinib. Consistent with this model, miR-211 expression increased melanoma cell resistance to both the inhibitors, and this resistance was associated with an increased ERK5 phosphorylation. miR-211 mediates these effects by directly inhibiting the expression of DUSP6, an ERK5 pathway-specific phosphatase and now shown to be an miR-211 target gene. These results dissect the role of the miR-211-DUSP6-ERK5 axis in melanoma tumor growth and suggest a mechanism for the development of drug-resistant tumors and a target for overcoming resistance.
Collapse
Affiliation(s)
- Bongyong Lee
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Anupama Sahoo
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Junko Sawada
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA; Department of Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - John Marchica
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Sanjay Sahoo
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Fabiana I A L Layng
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, La Jolla, California, USA
| | - Darren Finlay
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, La Jolla, California, USA
| | - Joseph Mazar
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Piyush Joshi
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Masanobu Komatsu
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA; Department of Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Kristiina Vuori
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, La Jolla, California, USA
| | - Petrus R de Jong
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, La Jolla, California, USA
| | - Animesh Ray
- Keck Graduate Institute, Claremont, California, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ranjan J Perera
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA; Department of Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA; Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, La Jolla, California, USA.
| |
Collapse
|
36
|
Arakaki K, Uehara A, Higa-Nakamine S, Kakinohana M, Yamamoto H. Increased expression of EGR1 and KLF4 by polysulfide via activation of the ERK1/2 and ERK5 pathways in cultured intestinal epithelial cells. Biomed Res 2020; 41:119-129. [PMID: 32522929 DOI: 10.2220/biomedres.41.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sodium trisulfide (Na2S3) releases hydrogen polysulfide (H2Sn) and is useful for the investigation of the effects of H2Sn on the cell functions. In the present study, we first examined the effects of Na2S3 on the gene expression of IEC-6 cells, a rat intestinal epithelial cell line. Microarray analysis and reverse transcription-polymerase chain reaction analysis revealed that Na2S3 increased the gene expression of early growth response 1 (EGR1) and Kruppel-like transcription factor 4 (KLF4). It was interesting that U0126, an inhibitor of the activation of extracellular signal-regulated kinase 1 (ERK1), ERK2, and ERK5, inhibited the Na2S3-induced gene expression of EGR1 and KLF4. Na2S3 activated ERK1 and ERK2 (ERK1/2) within 15 min. In addition to ERK1/2, Na2S3 activated ERK5. We noticed that the electrophoretic mobility of ERK5 was decreased after Na2S3 treatment. Phos-tag analysis and in vitro dephosphorylation of the cell extracts indicated that the gel-shift of ERK5 was due to its phosphorylation. The gel-shift of ERK5 was inhibited completely by both U0126 and ERK5-IN-1, a specific inhibitor of ERK5. From these results, we concluded that the gel-shift of ERK5 was induced through autophosphorylation by activated ERK5 after Na2S3 treatment. The present study suggested that H2Sn affected various functions of intestinal epithelial cells through the activation of the ERK1/2 and ERK5 pathways.
Collapse
Affiliation(s)
- Kaoru Arakaki
- Departments of Biochemistry, Graduate School of Medicine, University of the Ryukyus.,Departments of Anesthesiology, Graduate School of Medicine, University of the Ryukyus
| | - Ayako Uehara
- Departments of Biochemistry, Graduate School of Medicine, University of the Ryukyus.,Departments of Anesthesiology, Graduate School of Medicine, University of the Ryukyus
| | - Sayomi Higa-Nakamine
- Departments of Biochemistry, Graduate School of Medicine, University of the Ryukyus
| | - Manabu Kakinohana
- Departments of Anesthesiology, Graduate School of Medicine, University of the Ryukyus
| | - Hideyuki Yamamoto
- Departments of Biochemistry, Graduate School of Medicine, University of the Ryukyus
| |
Collapse
|
37
|
Efficient Suppression of NRAS-Driven Melanoma by Co-Inhibition of ERK1/2 and ERK5 MAPK Pathways. J Invest Dermatol 2020; 140:2455-2465.e10. [PMID: 32376279 DOI: 10.1016/j.jid.2020.03.972] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/24/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
Cutaneous melanoma is a highly malignant tumor typically driven by somatic mutation in the oncogenes BRAF or NRAS, leading to uncontrolled activation of the MEK/ERK MAPK pathway. Despite the availability of immunotherapy, MAPK pathway‒targeting regimens are still a valuable treatment option for BRAF-mutant melanoma. Unfortunately, patients with NRAS mutation do not benefit from such therapies owing to the lack of targetable BRAF mutations and a high degree of intrinsic and acquired resistance toward MEK inhibition. Here, we demonstrate that concomitant inhibition of ERK5 removes this constraint and effectively sensitizes NRAS-mutant melanoma cells for MAPK pathway‒targeting therapy. Using approved MEK inhibitors or a pharmacologic ERK inhibitor, we demonstrate that MAPK inhibition triggers a delayed activation of ERK5 through a PDGFR inhibitor-sensitive pathway in NRAS-mutant melanoma cells, resulting in sustained proliferation and survival. ERK5 phosphorylation also occurred naturally in NRAS-mutant melanoma cells and correlated with nuclear localization of its stem cell-associated effector KLF2. Importantly, MEK/ERK5 co-inhibition prevented long-term growth of human NRAS-mutant melanoma cells in vitro and effectively repressed tumor progression in a xenotransplant mouse model. Our findings suggest MEK/ERK5 cotargeting as a potential treatment option for NRAS-mutant melanoma, which currently is not amenable for targeted therapies.
Collapse
|
38
|
Are Parallel Proliferation Pathways Redundant? Trends Biochem Sci 2020; 45:554-563. [PMID: 32345469 DOI: 10.1016/j.tibs.2020.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
Are the receptor tyrosine kinase (RTK) and JAK-STAT-driven proliferation pathways 'parallel' or 'redundant'? And what about those of K-Ras4B versus N-Ras? 'Parallel' proliferation pathways accomplish a similar drug resistance outcome. Thus, are they 'redundant'? In this paper, it is argued that there is a fundamental distinction between 'parallel' and 'redundant'. Cellular proliferation pathways are influenced by the genome sequence, 3D organization and chromatin accessibility, and determined by protein availability prior to cancer emergence. In the opinion presented, if they operate the same downstream protein families, they are redundant; if evolutionary-independent, they are parallel. Thus, RTK and JAK-STAT-driven proliferation pathways are parallel; those of Ras isoforms are redundant. Our Precision Medicine Call to map cancer proliferation pathways is vastly important since it can expedite effective therapeutics.
Collapse
|
39
|
Magnelli L, Schiavone N, Staderini F, Biagioni A, Papucci L. MAP Kinases Pathways in Gastric Cancer. Int J Mol Sci 2020; 21:ijms21082893. [PMID: 32326163 PMCID: PMC7215608 DOI: 10.3390/ijms21082893] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is turning out today to be one of the most important welfare issues for both Asian and European countries. Indeed, while the vast majority of the disease burden is located in China and in Pacific and East Asia, GC in European countries still account for about 100,000 deaths per year. With this review article, we aim to focus the attention on one of the most complex cellular pathways involved in GC proliferation, invasion, migration, and metastasis: the MAP kinases. Such large kinases family is to date constantly studied, since their discovery more than 30 years ago, due to the important role that it plays in the regulation of physiological and pathological processes. Interactions with other cellular proteins as well as miRNAs and lncRNAs may modulate their expression influencing the cellular biological features. Here, we summarize the most important and recent studies involving MAPK in GC. At the same time, we need to underly that, differently from cancers arising from other tissues, where MAPK pathways seems to be a gold target for anticancer therapies, GC seems to be unique in any aspect. Our aim is to review the current knowledge in MAPK pathways alterations leading to GC, including H. pylori MAPK-triggering to derail from gastric normal epithelium to GC and to encourage researches involved in MAPK signal transduction, that seems to definitely sustain GC development.
Collapse
Affiliation(s)
- Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
- Correspondence: ; Tel.: +39-055-2751397
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
| | - Fabio Staderini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy;
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
| |
Collapse
|
40
|
Lochhead PA, Tucker JA, Tatum NJ, Wang J, Oxley D, Kidger AM, Johnson VP, Cassidy MA, Gray NS, Noble MEM, Cook SJ. Paradoxical activation of the protein kinase-transcription factor ERK5 by ERK5 kinase inhibitors. Nat Commun 2020; 11:1383. [PMID: 32170057 PMCID: PMC7069993 DOI: 10.1038/s41467-020-15031-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
The dual protein kinase-transcription factor, ERK5, is an emerging drug target in cancer and inflammation, and small-molecule ERK5 kinase inhibitors have been developed. However, selective ERK5 kinase inhibitors fail to recapitulate ERK5 genetic ablation phenotypes, suggesting kinase-independent functions for ERK5. Here we show that ERK5 kinase inhibitors cause paradoxical activation of ERK5 transcriptional activity mediated through its unique C-terminal transcriptional activation domain (TAD). Using the ERK5 kinase inhibitor, Compound 26 (ERK5-IN-1), as a paradigm, we have developed kinase-active, drug-resistant mutants of ERK5. With these mutants, we show that induction of ERK5 transcriptional activity requires direct binding of the inhibitor to the kinase domain. This in turn promotes conformational changes in the kinase domain that result in nuclear translocation of ERK5 and stimulation of gene transcription. This shows that both the ERK5 kinase and TAD must be considered when assessing the role of ERK5 and the effectiveness of anti-ERK5 therapeutics.
Collapse
Affiliation(s)
- Pamela A Lochhead
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Julie A Tucker
- York Biomedical Research Institute and Department of Biology, University of York, York, YO10 5DD, UK
| | - Natalie J Tatum
- CRUK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Newcastle University, Newcastle, NE2 4HH, UK
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - David Oxley
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Andrew M Kidger
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Victoria P Johnson
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Megan A Cassidy
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Martin E M Noble
- CRUK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Newcastle University, Newcastle, NE2 4HH, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
41
|
Targeted Avenues for Cancer Treatment: The MEK5-ERK5 Signaling Pathway. Trends Mol Med 2020; 26:394-407. [PMID: 32277933 DOI: 10.1016/j.molmed.2020.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Twenty years have passed since extracellular signal-regulated kinase 5 (ERK5) and its upstream activator, mitogen-activated protein kinase 5 (MEK5), first emerged onto the cancer research scene. Although we have come a long way in defining the liaison between dysregulated MEK5-ERK5 signaling and the pathogenesis of epithelial and nonepithelial malignancies, selective targeting of this unique pathway remains elusive. Here, we provide an updated review of the existing evidence for a correlation between aberrant MEK5-ERK5 (phospho)proteomic/transcriptomic profiles, aggressive cancer states, and poor patient outcomes. We then focus on emerging insights from preclinical models regarding the relevance of upregulated ERK5 activity in promoting tumor growth, metastasis, therapy resistance, undifferentiated traits, and immunosuppression, highlighting the opportunities, prospects, and challenges of selectively blocking this cascade for antineoplastic treatment and chemosensitization.
Collapse
|
42
|
Pearson AJ, Fullwood P, Toro Tapia G, Prise I, Smith MP, Xu Q, Jordan A, Giurisato E, Whitmarsh AJ, Francavilla C, Tournier C. Discovery of a Gatekeeper Residue in the C-Terminal Tail of the Extracellular Signal-Regulated Protein Kinase 5 (ERK5). Int J Mol Sci 2020; 21:E929. [PMID: 32023819 PMCID: PMC7037328 DOI: 10.3390/ijms21030929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 01/17/2023] Open
Abstract
The extracellular signal-regulated protein kinase 5 (ERK5) is a non-redundant mitogen-activated protein kinase (MAPK) that exhibits a unique C-terminal extension which comprises distinct structural and functional properties. Here, we sought to elucidate the significance of phosphoacceptor sites in the C-terminal transactivation domain of ERK5. We have found that Thr732 acted as a functional gatekeeper residue controlling C-terminal-mediated nuclear translocation and transcriptional enhancement. Consistently, using a non-bias quantitative mass spectrometry approach, we demonstrated that phosphorylation at Thr732 conferred selectivity for binding interactions of ERK5 with proteins related to chromatin and RNA biology, whereas a number of metabolic regulators were associated with full-length wild type ERK5. Additionally, our proteomic analysis revealed that phosphorylation of the Ser730-Glu-Thr732-Pro motif could occur independently of dual phosphorylation at Thr218-Glu-Tyr220 in the activation loop. Collectively, our results firmly establish the significance of C-terminal phosphorylation in regulating ERK5 function. The post-translational modification of ERK5 on its C-terminal tail might be of particular relevance in cancer cells where ERK5 has be found to be hyperphosphoryated.
Collapse
Affiliation(s)
- Adam J. Pearson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (A.J.P.); (Q.X.); (E.G.)
| | - Paul Fullwood
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (P.F.); (G.T.T.); (M.P.S.); (A.J.W.); (C.F.)
| | - Gabriela Toro Tapia
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (P.F.); (G.T.T.); (M.P.S.); (A.J.W.); (C.F.)
| | - Ian Prise
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (P.F.); (G.T.T.); (M.P.S.); (A.J.W.); (C.F.)
| | - Qiuping Xu
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (A.J.P.); (Q.X.); (E.G.)
| | - Allan Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M13 9PT, UK;
| | - Emanuele Giurisato
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (A.J.P.); (Q.X.); (E.G.)
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alan J. Whitmarsh
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (P.F.); (G.T.T.); (M.P.S.); (A.J.W.); (C.F.)
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (P.F.); (G.T.T.); (M.P.S.); (A.J.W.); (C.F.)
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (A.J.P.); (Q.X.); (E.G.)
| |
Collapse
|
43
|
Beyond Kinase Activity: ERK5 Nucleo-Cytoplasmic Shuttling as a Novel Target for Anticancer Therapy. Int J Mol Sci 2020; 21:ijms21030938. [PMID: 32023850 PMCID: PMC7038028 DOI: 10.3390/ijms21030938] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/18/2023] Open
Abstract
The importance of mitogen-activated protein kinases (MAPK) in human pathology is underlined by the relevance of abnormalities of MAPK-related signaling pathways to a number of different diseases, including inflammatory disorders and cancer. One of the key events in MAPK signaling, especially with respect to pro-proliferative effects that are crucial for the onset and progression of cancer, is MAPK nuclear translocation and its role in the regulation of gene expression. The extracellular signal-regulated kinase 5 (ERK5) is the most recently discovered classical MAPK and it is emerging as a possible target for cancer treatment. The bigger size of ERK5 when compared to other MAPK enables multiple levels of regulation of its expression and activity. In particular, the phosphorylation of kinase domain and C-terminus, as well as post-translational modifications and chaperone binding, are involved in ERK5 regulation. Likewise, different mechanisms control ERK5 nucleo-cytoplasmic shuttling, underscoring the key role of ERK5 in the nuclear compartment. In this review, we will focus on the mechanisms involved in ERK5 trafficking between cytoplasm and nucleus, and discuss how these processes might be exploited to design new strategies for cancer treatment.
Collapse
|
44
|
Broustas CG, Duval AJ, Chaudhary KR, Friedman RA, Virk RK, Lieberman HB. Targeting MEK5 impairs nonhomologous end-joining repair and sensitizes prostate cancer to DNA damaging agents. Oncogene 2020; 39:2467-2477. [PMID: 31980741 PMCID: PMC7085449 DOI: 10.1038/s41388-020-1163-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/13/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022]
Abstract
Radiotherapy is commonly used to treat a variety of solid human tumors, including localized prostate cancer. However, treatment failure often ensues due to tumor intrinsic or acquired radioresistance. Here we find that the MEK5/ERK5 signaling pathway is associated with resistance to genotoxic stress in aggressive prostate cancer cells. MEK5 knockdown by RNA interference sensitizes prostate cancer cells to ionizing radiation (IR) and etoposide treatment, as assessed by clonogenic survival and short-term proliferation assays. Mechanistically, MEK5 downregulation impairs phosphorylation of the catalytic subunit of DNA-PK at serine 2056 in response to IR or etoposide treatment. Although MEK5 knockdown does not influence the initial appearance of radiation- and etoposide-induced γH2AX and 53BP1 foci, it markedly delays their resolution, indicating a DNA repair defect. A cell-based assay shows that non-homologous end joining (NHEJ) is compromised in cells with ablated MEK5 protein expression. Finally, MEK5 silencing combined with focal irradiation causes strong inhibition of tumor growth in mouse xenografts, compared with MEK5 depletion or radiation alone. These findings reveal a convergence between MEK5 signaling and DNA repair by NHEJ in conferring resistance to genotoxic stress in advanced prostate cancer and suggest targeting MEK5 as an effective therapeutic intervention in the management of this disease.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Axel J Duval
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Kunal R Chaudhary
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Howard B Lieberman
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
45
|
Zhuang M, Chen X, Du D, Shi J, Deng M, Long Q, Yin X, Wang Y, Rao L. SPION decorated exosome delivery of TNF-α to cancer cell membranes through magnetism. NANOSCALE 2020; 12:173-188. [PMID: 31803890 DOI: 10.1039/c9nr05865f] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor necrosis factor (TNF-α) is capable of inducing apoptosis and is a promising candidate for genetic engineering drugs in cancer therapy; however, the serious side-effects of TNF-α hinder their clinical application. In the present study, a method for preparing fusion proteins of cell-penetrating peptides (CPP) and TNF-α (CTNF-α)-anchored exosomes coupled with superparamagnetic iron oxide nanoparticles (CTNF-α-exosome-SPIONs) with membrane targeting anticancer activity has been demonstrated. To acquire exosomes with TNF-α anchored in its membrane, a CTNF-α expression vector was constructed and a stable mesenchymal stem cell cell line that expressed CTNF-α was established. Conjugating transferrin-modified SPIONs (Tf-SPIONs) onto CTNF-α-exosomes through transferrin-transferrin receptor (Tf-TfR) interaction yields CTNF-α-exosome-SPIONs with good water dispersibility. The incorporation of TNF-α into exosomes and the conjugation of SPIONs significantly enhanced the binding capacity of TNF-α to its membrane-bound receptor TNFR I, thus increasing the therapeutic effects. CTNF-α-exosome-SPIONs significantly enhanced tumor cell growth inhibition via induction of the TNFR I-mediated apoptotic pathway. In vivo studies using murine melanoma subcutaneous cancer models showed that TNF-α-loaded exosome-based vehicle delivery enhanced cancer targeting under an external magnetic field and suppressed tumor growth with mitigating toxicity. Taken together, our results suggest that CTNF-α-exosome-SPIONs showed great potential in membrane targeting therapy.
Collapse
Affiliation(s)
- Manjiao Zhuang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xuelian Chen
- Department of Biomedicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China.
| | - Dan Du
- Department of Biomedicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China.
| | - Jiamei Shi
- Department of Biomedicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China.
| | - Mian Deng
- Department of Biomedicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China.
| | - Qian Long
- Department of Biomedicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China.
| | - Xiaofei Yin
- Department of Biomedicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China.
| | - Yayu Wang
- Department of Cell Biology, Institute of Biological Medicine, Jinan University, Guangzhou 510632, China
| | - Lei Rao
- Department of Biomedicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
46
|
Koncar RF, Dey BR, Stanton ACJ, Agrawal N, Wassell ML, McCarl LH, Locke AL, Sanders L, Morozova-Vaske O, Myers MI, Hamilton RL, Carcaboso AM, Kohanbash G, Hu B, Amankulor NM, Felker J, Kambhampati M, Nazarian J, Becher OJ, James CD, Hashizume R, Broniscer A, Pollack IF, Agnihotri S. Identification of Novel RAS Signaling Therapeutic Vulnerabilities in Diffuse Intrinsic Pontine Gliomas. Cancer Res 2019; 79:4026-4041. [DOI: 10.1158/0008-5472.can-18-3521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/05/2019] [Accepted: 06/11/2019] [Indexed: 11/16/2022]
|
47
|
Impact of ERK5 on the Hallmarks of Cancer. Int J Mol Sci 2019; 20:ijms20061426. [PMID: 30901834 PMCID: PMC6471124 DOI: 10.3390/ijms20061426] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) belongs to the mitogen-activated protein kinase (MAPK) family that consists of highly conserved enzymes expressed in all eukaryotic cells and elicits several biological responses, including cell survival, proliferation, migration, and differentiation. In recent years, accumulating lines of evidence point to a relevant role of ERK5 in the onset and progression of several types of cancer. In particular, it has been reported that ERK5 is a key signaling molecule involved in almost all the biological features of cancer cells so that its targeting is emerging as a promising strategy to suppress tumor growth and spreading. Based on that, in this review, we pinpoint the hallmark-specific role of ERK5 in cancer in order to identify biological features that will potentially benefit from ERK5 targeting.
Collapse
|
48
|
Benito-Jardón L, Díaz-Martínez M, Arellano-Sánchez N, Vaquero-Morales P, Esparís-Ogando A, Teixidó J. Resistance to MAPK Inhibitors in Melanoma Involves Activation of the IGF1R-MEK5-Erk5 Pathway. Cancer Res 2019; 79:2244-2256. [PMID: 30833419 DOI: 10.1158/0008-5472.can-18-2762] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/14/2019] [Accepted: 02/27/2019] [Indexed: 11/16/2022]
Abstract
Combined treatment of metastatic melanoma with BRAF and MEK inhibitors has improved survival, but the emergence of resistance represents an important clinical challenge. Targeting ERK is a suitable strategy currently being investigated in melanoma and other cancers. To anticipate possible resistance to ERK inhibitors (ERKi), we used SCH772984 (SCH) as a model ERKi to characterize resistance mechanisms in two BRAF V600E melanoma cell lines. The ERKi-resistant cells were also resistant to vemurafenib (VMF), trametinib (TMT), and combined treatment with either VMF and SCH or TMT and SCH. Resistance to SCH involved stimulation of the IGF1R-MEK5-Erk5 signaling pathway, which counteracted inhibition of Erk1/2 activation and cell growth. Inhibition of IGF1R with linsitinib blocked Erk5 activation in SCH-resistant cells and decreased their growth in 3D spheroid growth assays as well as in NOD scid gamma (NSG) mice. Cells doubly resistant to VMF and TMT or to VMF and SCH also exhibited downregulated Erk1/2 activation linked to stimulation of the IGF1R-MEK5-Erk5 pathway, which accounted for resistance. In addition, we found that the decreased Erk1/2 activation in SCH-resistant cells involved reduced expression and function of TGFα. These data reveal an escape signaling route that melanoma cells use to bypass Erk1/2 blockade during targeted melanoma treatment and offer several possible targets whose disruption may circumvent resistance. SIGNIFICANCE: Activation of the IGF1R-MEK5-Erk5 signaling pathway opposes pharmacologic inhibition of Erk1/2 in melanoma, leading to the reactivation of cell proliferation and acquired resistance.
Collapse
Affiliation(s)
- Lucía Benito-Jardón
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Marta Díaz-Martínez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Nohemi Arellano-Sánchez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Paloma Vaquero-Morales
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, IBSAL, and CIBERONC, Salamanca, Spain
| | - Joaquin Teixidó
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
49
|
Tusa I, Cheloni G, Poteti M, Gozzini A, DeSouza NH, Shan Y, Deng X, Gray NS, Li S, Rovida E, Dello Sbarba P. Targeting the Extracellular Signal-Regulated Kinase 5 Pathway to Suppress Human Chronic Myeloid Leukemia Stem Cells. Stem Cell Reports 2018; 11:929-943. [PMID: 30245209 PMCID: PMC6178886 DOI: 10.1016/j.stemcr.2018.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022] Open
Abstract
Tyrosine kinase inhibitors (TKi) are effective against chronic myeloid leukemia (CML), but their inefficacy on leukemia stem cells (LSCs) may lead to relapse. To identify new druggable targets alternative to BCR/ABL, we investigated the role of the MEK5/ERK5 pathway in LSC maintenance in low oxygen, a feature of bone marrow stem cell niches. We found that MEK5/ERK5 pathway inhibition reduced the growth of CML patient-derived cells and cell lines in vitro and the number of leukemic cells in vivo. Treatment in vitro of primary CML cells with MEK5/ERK5 inhibitors, but not TKi, strikingly reduced culture repopulation ability (CRA), serial colony formation ability, long-term culture-initiating cells (LTC-ICs), and CD26-expressing cells. Importantly, MEK5/ERK5 inhibition was effective on CML cells regardless of the presence or absence of imatinib, and did not reduce CRA or LTC-ICs of normal CD34+ cells. Thus, targeting MEK/ERK5 may represent an innovative therapeutic approach to suppress CML progenitor/stem cells. ERK5 is constitutively active in chronic myeloid leukemia (CML) cells ERK5 pathway inhibition reduces the growth of CML cells in vitro and in vivo ERK5 pathway inhibition strikingly reduces CML progenitor/stem cell maintenance The combination of ERK5i with imatinib reduces the expression of stem cell proteins
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, viale G.B. Morgagni, 50, Firenze 50134, Italy; Istituto Toscano Tumori (ITT), Firenze 50134, Italy
| | - Giulia Cheloni
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, viale G.B. Morgagni, 50, Firenze 50134, Italy; Istituto Toscano Tumori (ITT), Firenze 50134, Italy
| | - Martina Poteti
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, viale G.B. Morgagni, 50, Firenze 50134, Italy
| | - Antonella Gozzini
- Hematology Unit, Careggi University Hospital (AOUC), Firenze 50134, Italy
| | - Ngoc Ho DeSouza
- Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA
| | - Yi Shan
- Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA
| | - Xianming Deng
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael S Gray
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaoguang Li
- Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, viale G.B. Morgagni, 50, Firenze 50134, Italy; Istituto Toscano Tumori (ITT), Firenze 50134, Italy.
| | - Persio Dello Sbarba
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, viale G.B. Morgagni, 50, Firenze 50134, Italy; Istituto Toscano Tumori (ITT), Firenze 50134, Italy.
| |
Collapse
|
50
|
MicroRNA-143 targets ERK5 in granulopoiesis and predicts outcome of patients with acute myeloid leukemia. Cell Death Dis 2018; 9:814. [PMID: 30050105 PMCID: PMC6062564 DOI: 10.1038/s41419-018-0837-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Hematopoiesis, the formation of blood cells from hematopoietic stem cells (HSC), is a highly regulated process. Since the discovery of microRNAs (miRNAs), several studies have shown their significant role in the regulation of the hematopoietic system. Impaired expression of miRNAs leads to disrupted cellular pathways and in particular causes loss of hematopoietic ability. Here, we report a previously unrecognized function of miR-143 in granulopoiesis. Hematopoietic cells undergoing granulocytic differentiation exhibited increased miR-143 expression. Overexpression or ablation of miR-143 expression resulted in accelerated granulocytic differentiation or block of differentiation, respectively. The absence of miR-143 in mice resulted in a reduced number of mature granulocytes in blood and bone marrow. Additionally, we observed an association of high miR-143 expression levels with a higher probability of survival in two different cohorts of patients with acute myeloid leukemia (AML). Overexpression of miR-143 in AML cells impaired cell growth, partially induced differentiation, and caused apoptosis. Argonaute2-RNA-Immunoprecipitation assay revealed ERK5, a member of the MAPK-family, as a target of miR-143 in myeloid cells. Further, we observed an inverse correlation of miR-143 and ERK5 in primary AML patient samples, and in CD34+ HSPCs undergoing granulocytic differentiation and we confirmed functional relevance of ERK5 in myeloid cells. In conclusion, our data describe miR-143 as a relevant factor in granulocyte differentiation, whose expression may be useful as a prognostic and therapeutic factor in AML therapy.
Collapse
|