1
|
Lavallée É, Roulet-Matton M, Giang V, Cardona Hurtado R, Chaput D, Gravel SP. Mitochondrial signatures shape phenotype switching and apoptosis in response to PLK1 inhibitors. Life Sci Alliance 2025; 8:e202402912. [PMID: 39658088 PMCID: PMC11632064 DOI: 10.26508/lsa.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
PLK1 inhibitors are emerging anticancer agents that are being tested as monotherapy and combination therapies for various cancers. Although PLK1 inhibition in experimental models has shown potent antitumor effects, translation to the clinic has been hampered by low antitumor activity and tumor relapse. Here, we report the identification of mitochondrial protein signatures that determine the sensitivity to approaches targeting PLK1 in human melanoma cell lines. In response to PLK1 inhibition or gene silencing, resistant cells adopt a pro-inflammatory and dedifferentiated phenotype, whereas sensitive cells undergo apoptosis. Mitochondrial DNA depletion and silencing of the ABCD1 transporter sensitize cells to PLK1 inhibition and attenuate the associated pro-inflammatory response. We also found that nonselective inhibitors of the p90 ribosomal S6 kinase (RSK) exert their antiproliferative and pro-inflammatory effects via PLK1 inhibition. Specific inhibition of RSK, on the other hand, is anti-inflammatory and promotes a program of antigen presentation. This study reveals the overlooked effects of PLK1 on phenotype switching and suggests that mitochondrial precision medicine can help improve the response to targeted therapies.
Collapse
Affiliation(s)
- Émilie Lavallée
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | | - Viviane Giang
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | | - Dominic Chaput
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | |
Collapse
|
2
|
Spirrison AN, Lannigan DA. RSK1 and RSK2 as therapeutic targets: an up-to-date snapshot of emerging data. Expert Opin Ther Targets 2024; 28:1047-1059. [PMID: 39632509 PMCID: PMC11801519 DOI: 10.1080/14728222.2024.2433123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION The four members of the p90 ribosomal S6 kinase (RSK) family are serine/threonine protein kinases, which are phosphorylated and activated by ERK1/2. RSK1/2/3 are further phosphorylated by PDK1. Receiving inputs from two major signaling pathways places RSK as a key signaling node in numerous pathologies. A plethora of RSK1/2 substrates have been identified, and in the majority of cases the causative roles these RSK substrates play in the pathology are unknown. AREAS COVERED The majority of studies have focused on RSK1/2 and their functions in a diverse group of cancers. However, RSK1/2 are known to have important functions in cardiovascular disease and neurobiological disorders. Based on the literature, we identified substrates that are common in these pathologies with the goal of identifying fundamental physiological responses to RSK1/2. EXPERT OPINION The core group of targets in pathologies driven by RSK1/2 are associated with the immune response. However, there is a paucity of the literature addressing RSK function in inflammation, which is critical to know as the pan RSK inhibitor, PMD-026, is entering phase II clinical trials for metastatic breast cancer. A RSK inhibitor has the potential to be used in numerous diverse diseases and disorders.
Collapse
Affiliation(s)
| | - Deborah A. Lannigan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
3
|
Luo M, Zhu J, Ren J, Tong Y, Wang L, Ma S, Wang J. Lactate increases tumor malignancy by promoting tumor small extracellular vesicles production via the GPR81-cAMP-PKA-HIF-1α axis. Front Oncol 2022; 12:1036543. [PMID: 36531060 PMCID: PMC9753130 DOI: 10.3389/fonc.2022.1036543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2023] Open
Abstract
Lactate and tumor cell-derived extracellular vesicles (TEVs) both contribute to tumor progression. However, it is still unclear whether lactate can accelerate tumor development by directly promoting TEV production. Here, we show that lactate decreases intracellular cAMP levels and subsequent PKA activation via GPR81, which inhibits the PKA-induced ubiquitination of HIF-1α that causes degradation. Then, the HIF-1α-mediated transcription of Rab27a is enhanced, leading to increased TEV release. In this way, lactate promotes lung metastasis by murine melanoma. In addition, we show that serum lactate levels are positively correlated with serum EV levels and Rab27a and HIF-1α protein levels in the tumor tissues of lung cancer patients. Thus, our results reveal a novel mechanism underlying lactate-mediated tumor progression induced by TEVs and provide new strategies for tumor therapy.
Collapse
Affiliation(s)
- Man Luo
- Department of Respiratory Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junqi Zhu
- The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Ren
- The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuxiao Tong
- The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Limin Wang
- Department of Respiratory Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenglin Ma
- Department of Translation Medicine Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Centre, Hangzhou, China
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaoli Wang
- Department of Respiratory Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Translation Medicine Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Centre, Hangzhou, China
| |
Collapse
|
4
|
Zhang S, Liu J, Lu ZY, Xue YT, Mu XR, Liu Y, Cao J, Li ZY, Li F, Xu KL, Wu QY. Combination of RSK inhibitor LJH-685 and FLT3 inhibitor FF-10101 promoted apoptosis and proliferation inhibition of AML cell lines. Cell Oncol (Dordr) 2022; 45:1005-1018. [PMID: 36036884 DOI: 10.1007/s13402-022-00703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE FLT3 mutations occurred in approximately one third of patients with acute myeloid leukemia (AML). FLT3-ITD mutations caused the constitutive activation of the RAS/MAPK signaling pathway. Ribosomal S6 Kinases (RSKs) were serine/threonine kinases that function downstream of the Ras/Raf/MEK/ERK signaling pathway. However, roles and mechanisms of RSKs inhibitor LJH-685, and combinational effects of LJH-685 and FLT3 inhibitor FF-10101 on AML cells were till unclear. METHODS Cell viability assay, CFSE assay, RT-qPCR, Colony formation assay, PI stain, Annexin-V/7-AAD double stain, Western blot, and Xenogeneic transplantation methods were used to used to investigate roles and mechanisms of LJH-685 in the leukemogenesis of AML. RESULTS LJH-685 inhibited the proliferation and clone formation of AML cells, caused cell cycle arrest and induced the apoptosis of AML cells via inhibiting the RSK-YB-1 signaling pathway. MV4-11 and MOLM-13 cells carrying FLT3-ITD mutations were more sensitive to LJH-685 than that of other AML cell lines. Further studies suggested that LJH-685 combined with Daunorubicin or FF- 10101 synergistically inhibited the cell viability, promoted the apoptosis and caused cycle arrest of AML cells carrying FLT3-ITD mutations. Moreover, in vivo experiments also indicated that LJH-685 combined with FF-10101 or Daunorubicin prolonged the survival time of NSG mice and reduced the leukemogenesis of AML. CONCLUSION Thus, these observations demonstrated combination of RSK inhibitor LJH-685 and FLT3 inhibitor FF-10101 showed synergism anti-leukemia effects in AML cell lines with FLT3-ITD mutations via inhibiting MAPK-RSKs-YB-1 pathway and provided new targets for therapeutic intervention especially for AML with FLT3-ITD mutations and Daunorubicin-resistant AML.
Collapse
Affiliation(s)
- Sen Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zi-Yi Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Tong Xue
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing-Ru Mu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
5
|
Zhang X, Guo Y, Xiao T, Li J, Guo A, Lei L, Jin C, Long Q, Su J, Yin M, Liu H, Chen C, Zhou Z, Zhu S, Tao J, Hu S, Chen X, Peng C. CD147 mediates epidermal malignant transformation through the RSK2/AP-1 pathway. J Exp Clin Cancer Res 2022; 41:246. [PMID: 35964097 PMCID: PMC9375950 DOI: 10.1186/s13046-022-02427-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Malignant transformation of the epidermis is an essential process in the pathogenesis of cutaneous squamous-cell carcinoma (cSCC). Although evidence has demonstrated that CD147 plays key roles in various tumors, the role of CD147 in epidermal malignant transformation in vivo remains unclear.
Methods
Epidermal CD147-overexpression or knockout (EpiCD147-OE or EpiCD147-KO) transgenic mouse models were generated for in vivo study. RNA-sequencing and q-PCR were performed to identify the differentially expressed genes. Immunohistochemistry and flow cytometry were performed to investigate the role of CD147 in regulating myeloid-derived suppressor cells (MDSCs). Immunoprecipitation, EMSA and ChIP assays were performed to investigate the mechanism of CD147 in cell transformation.
Results
We found that specific overexpression of CD147 in the epidermis (EpiCD147-OE) induces spontaneous tumor formation; moreover, a set of chemokines and cytokines including CXCL1, which play essential function in MDSC recruitment, were significantly upregulated in EpiCD147-OE transgenic mice. As expected, overexpression of CD147 in the epidermis remarkably facilitated tumorigenesis by increasing the rate of tumor initiation and the number and size of tumors in the DMBA/TPA mouse model. Interestingly, the expression of CXCL1 and the infiltration of MDSCs were dramatically increased in EpiCD147-OE transgenic mice. Our findings also showed that knockdown of CD147 attenuated EGF-induced malignant transformation as well as CXCL1 expression in HaCaT cells. Consistently, CD147 was found overexpressed in cutaneous squamous cell carcinoma (cSCC), and positively related with the expression of CD33, a myeloid-associated marker. We further identified RSK2, a serine/threonine kinase, as an interacting partner of CD147 at the binding site of CD147D207-230. The interaction of CD147 and RSK2 activated RSK2, thus enhancing AP-1 transcriptional activation. Furthermore, EMSAs and ChIP assays showed that AP-1 could associate with the CXCL1 promoter. Importantly, RSK2 inhibitor suppressed the tumor growth in DMBA/TPA mouse model by inhibiting the recruitment of MDSCs.
Conclusion
Our findings demonstrate that CD147 exerts a key function in epidermal malignant transformation in vivo by activating keratinocytes and recruiting MDSCs via the RSK2/AP-1 pathway.
Collapse
|
6
|
Shen W, Du W, Li Y, Huang Y, Jiang X, Yang C, Tang J, Liu H, Luo N, Zhang X, Zhang Z. TIFA promotes CRC cell proliferation via RSK- and PRAS40- dependent manner. Cancer Sci 2022; 113:3018-3031. [PMID: 35635239 PMCID: PMC9459298 DOI: 10.1111/cas.15432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/02/2022] [Accepted: 05/15/2022] [Indexed: 11/26/2022] Open
Abstract
Previous studies have reported that TIFA plays different roles in various tumor types. However, the function of TIFA in colorectal cancer (CRC) remains unclear. Here, we showed that the expression of TIFA was markedly increased in CRC versus normal tissue, and positively correlated with CRC TNM stages. In agreement, we found that the CRC cell lines show increased TIFA expression levels versus normal control. The knockdown of TIFA inhibited cell proliferation but had no effect on cell apoptosis in vitro or in vivo. Moreover, the ectopic expression of TIFA enhanced cell proliferation ability in vitro and in vivo. In contrast, the expression of mutant TIFA (T9A, oligomerization site mutation; D6, TRAF6 binding site deletion) abolished TIFA‐mediated cell proliferation enhancement. Exploration of the underlying mechanism revealed that the protein synthesis‐associated kinase RSK and PRAS40 activation were responsible for TIFA‐mediated CRC progression. In summary, these findings suggest that TIFA plays a role in mediating CRC progression. This could provide a promising target for CRC therapy.
Collapse
Affiliation(s)
- Wenzhi Shen
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Wenfei Du
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Yanping Li
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Yongming Huang
- Department of General Surgery, Affiliated Hospital of, Jining Medical University, Jining Medical University, Jining, 272067, China
| | - Xinyu Jiang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Chenglong Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Jiaping Tang
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Liu
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University, Jining, 272067, China
| | - Na Luo
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoyuan Zhang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Zhixin Zhang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong, China.,Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining 272029, China
| |
Collapse
|
7
|
Ruan J, Schlüter D, Naumann M, Waisman A, Wang X. Ubiquitin-modifying enzymes as regulators of colitis. Trends Mol Med 2022; 28:304-318. [PMID: 35177326 DOI: 10.1016/j.molmed.2022.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disorder of the gastrointestinal tract. Although the pathophysiology of IBD is multifaceted, ubiquitination, a post-translational modification, has been shown to have essential roles in its pathogenesis and development. Ubiquitin-modifying enzymes (UMEs) work in synergy to orchestrate the optimal ubiquitination of target proteins, thereby maintaining intestinal homeostasis. Genome-wide association studies (GWAS) have identified multiple UME genes as IBD susceptibility loci, implying the importance of UMEs in IBD. Furthermore, accumulative evidence demonstrates that UMEs affect intestinal inflammation by regulating various aspects, such as intestinal barrier functions and immune responses. Considering the significant functions of UMEs in IBD, targeting UMEs could become a favorable therapeutic approach for IBD.
Collapse
Affiliation(s)
- Jing Ruan
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Xu Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China; Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
8
|
Sun T, Wei C, Wang D, Wang X, Wang J, Hu Y, Mao X. The small RNA mascRNA differentially regulates TLR-induced proinflammatory and antiviral responses. JCI Insight 2021; 6:150833. [PMID: 34582376 PMCID: PMC8663567 DOI: 10.1172/jci.insight.150833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/22/2021] [Indexed: 01/05/2023] Open
Abstract
MALAT1-associated small cytoplasmic RNA (mascRNA) is a highly conserved transfer RNA-like (tRNA-like) noncoding RNA whose function remains largely unknown. We show here that this small RNA molecule played a role in the stringent control of TLR-mediated innate immune responses. mascRNA inhibited activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling and the production of inflammatory cytokines in macrophages stimulated with LPS, a TLR4 ligand. Furthermore, exogenous mascRNA alleviated LPS-induced lung inflammation. However, mascRNA potentiated the phosphorylation of IRF3 and STAT1 and the transcription of IFN-related genes in response to the TLR3 ligand poly(I:C) both in vitro and in vivo. Mechanistically, mascRNA was found to enhance K48-linked ubiquitination and proteasomal degradation of TRAF6, thereby negatively regulating TLR-mediated MyD88-dependent proinflammatory signaling while positively regulating TRIF-dependent IFN signaling. Additionally, heterogeneous nuclear ribonucleoprotein H (hnRNP H) and hnRNP F were found to interact with mascRNA, promote its degradation, and contribute to the fine-tuning of TLR-triggered immune responses. Taken together, our data identify a dual role of mascRNA in both negative and positive regulation of innate immune responses.
Collapse
Affiliation(s)
- Tao Sun
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease
| | - Chunxue Wei
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease
| | - Daoyong Wang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Xuxu Wang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Jiao Wang
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease
| | - Yuqing Hu
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Xiaohua Mao
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease.,Department of Biochemistry and Molecular Biology, School of Medicine.,and Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Negative Effects of SIGIRR on TRAF6 Ubiquitination in Acute Lung Injury In Vitro. J Immunol Res 2020; 2020:5097920. [PMID: 33123603 PMCID: PMC7584944 DOI: 10.1155/2020/5097920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, the effects of single immunoglobin IL-1 receptor-related protein (SIGIRR) on tumor necrosis factor- (TNF-) receptor-associated factor 6 (TRAF6) ubiquitination in acute lung injury (ALI) were evaluated in both alveolar epithelial cells and alveolar macrophage cells in vitro. Our results found that SIGIRR negatively regulated TRAF6 ubiquitination and such SIGIRR inhibition could enhance the TRAF6 expression in both alveolar epithelial cells (AECs) and alveolar macrophage cells (AMCs). SIGIRR knockdown may increase NF-κB activity via TRAF6 regulation by the classical but not the nonclassical NF-κB signaling pathway. Such modulation between TRAF6 and SIGIRR could affect cytokine secretion and exacerbate the immune response; the IL-8, NFKB1, and NFKBIA mRNA levels were reduced after SIGIRR overexpression. The current study reveals the molecular mechanisms of the negative regulatory roles of SIGIRR on the innate immune response related to the LPS/TLR-4 signaling pathway and provides evidence for strategies to clinically treat inflammatory diseases.
Collapse
|
10
|
Wang Q, Zhang T, Chang X, Lim DY, Wang K, Bai R, Wang T, Ryu J, Chen H, Yao K, Ma WY, Boardman LA, Bode AM, Dong Z. ARC Is a Critical Protector against Inflammatory Bowel Disease (IBD) and IBD-Associated Colorectal Tumorigenesis. Cancer Res 2020; 80:4158-4171. [PMID: 32816906 DOI: 10.1158/0008-5472.can-20-0469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/25/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
The key functional molecules involved in inflammatory bowel disease (IBD) and IBD-induced colorectal tumorigenesis remain unclear. In this study, we found that the apoptosis repressor with caspase recruitment domain (ARC) protein plays critical roles in IBD. ARC-deficient mice exhibited substantially higher susceptibility to dextran sulfate sodium (DSS)-induced IBD compared with wild-type mice. The inflammatory burden induced in ARC-deficient conditions was inversely correlated with CCL5 and CXCL5 levels in immune cells, especially CD4-positive T cells. Pathologically, ARC expression in immune cells was significantly decreased in clinical biopsy specimens from patients with IBD compared with normal subjects. In addition, ARC levels inversely correlated with CCL5 and CXCL5 levels in human biopsy specimens. ARC interacted with TNF receptor associated factor (TRAF) 6, regulating ubiquitination of TRAF6, which was associated with NF-κB signaling. Importantly, we identified a novel ubiquitination site at lysine 461, which was critical in the function of ARC in IBD. ARC played a critical role in IBD and IBD-associated colon cancer in a bone marrow transplantation model and azoxymethane/DSS-induced colitis cancer mouse models. Overall, these findings reveal that ARC is critically involved in the maintenance of intestinal homeostasis and protection against IBD through its ubiquitination of TRAF6 and subsequent modulation of NF-κB activation in T cells. SIGNIFICANCE: This study uncovers a crucial role of ARC in the immune system and IBD, giving rise to a novel strategy for IBD and IBD-associated colon cancer therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xiaoyu Chang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Do Young Lim
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Keke Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ruihua Bai
- The Hormel Institute, University of Minnesota, Austin, Minnesota
- The Henan Tumor Hospital, Zhengzhou, Henan, China
| | - Ting Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ke Yao
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Wei-Ya Ma
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Lisa A Boardman
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota.
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Zhang LH, Xiao B, Zhong M, Li Q, Chen JY, Huang JR, Rao H. LncRNA NEAT1 accelerates renal mesangial cell injury via modulating the miR-146b/TRAF6/NF-κB axis in lupus nephritis. Cell Tissue Res 2020; 382:627-638. [PMID: 32710276 DOI: 10.1007/s00441-020-03248-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/22/2020] [Indexed: 12/31/2022]
Abstract
Although growing advances have been made in the regulation of lupus nephritis recently, lupus nephritis is still one of the major causes of death in SLE patients and the pathogenesis remains largely unknown. Therefore, exploring the pathological mechanisms is urgently needed for designing and developing novel therapeutic strategies for lupus nephritis. Human renal mesangial cells (HRMCs) were transfected with sh-NEAT1, miR-146b mimic, pcDNA-NEAT1, miR-146b inhibitor, or sh-TRAF6 to modify their expression. Lipopolysaccharide (LPS) was used to induce inflammatory injury. Cell viability was examined with CCK8. Apoptosis was determined by flow cytometry and Hoechst staining. qRT-PCR and western blot were used to analyze gene expression. The secretion of inflammatory cytokines was examined with ELISA. The bindings of NEAT1 with miR-146b and miR-146b with TRAF6 were tested by dual-luciferase reporter assay. NEAT1 was upregulated in LPS-treated HRMCs. Both the knockdown of NEAT1 and TRAF6 suppressed the LPS-induced inflammatory injury in HRMCs. NEAT1 directly targeted miR-146b to control miR-146b-mediated regulation of TRAF6 expression in HRMCs. NEAT1 promoted the expression of TRAF6 via targeting miR-146b to accelerate the LPS-mediated renal mesangial cell injury in HRMCs. Moreover, TRAF6 activated the NF-κB signaling in HRMCs. NEAT1 accelerated renal mesangial cell injury via directly targeting miR-146b, promoting the expression of TRAF6, and activating the NF-κB signaling in lupus nephritis. Our investigation elucidated novel pathological mechanisms and provided potential therapeutic targets for lupus nephritis.
Collapse
Affiliation(s)
- Li-Hua Zhang
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No.89, Guhan Road, Furong District, Changsha, 410016, Hunan Province, People's Republic of China
| | - Bin Xiao
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No.89, Guhan Road, Furong District, Changsha, 410016, Hunan Province, People's Republic of China
| | - Miao Zhong
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No.89, Guhan Road, Furong District, Changsha, 410016, Hunan Province, People's Republic of China
| | - Qiao Li
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No.89, Guhan Road, Furong District, Changsha, 410016, Hunan Province, People's Republic of China
| | - Jian-Ying Chen
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No.89, Guhan Road, Furong District, Changsha, 410016, Hunan Province, People's Republic of China
| | - Jie-Rou Huang
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No.89, Guhan Road, Furong District, Changsha, 410016, Hunan Province, People's Republic of China
| | - Hui Rao
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No.89, Guhan Road, Furong District, Changsha, 410016, Hunan Province, People's Republic of China.
| |
Collapse
|
12
|
Kim S, Zhang Y, Jin C, Lee Y, Kim Y, Han K. Emerging roles of Lys63-linked polyubiquitination in neuronal excitatory postsynapses. Arch Pharm Res 2018; 42:285-292. [DOI: 10.1007/s12272-018-1081-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
|
13
|
Shi JH, Sun SC. Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways. Front Immunol 2018; 9:1849. [PMID: 30140268 PMCID: PMC6094638 DOI: 10.3389/fimmu.2018.01849] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the transcription factor nuclear factor κB (NF-κB) and the mitogen-activated protein kinases (MAPKs). In addition, some TRAF family members, particularly TRAF2 and TRAF3, serve as negative regulators of specific signaling pathways, such as the noncanonical NF-κB and proinflammatory toll-like receptor pathways. Thus, TRAFs possess important and complex signaling functions in the immune system and play an important role in regulating immune and inflammatory responses. This review will focus on the role of TRAF proteins in the regulation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Jian-Hong Shi
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
14
|
Romero-Garmendia I, Garcia-Etxebarria K, Hernandez-Vargas H, Santin I, Jauregi-Miguel A, Plaza-Izurieta L, Cros MP, Legarda M, Irastorza I, Herceg Z, Fernandez-Jimenez N, Bilbao JR. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease. Genes (Basel) 2018; 9:E245. [PMID: 29748492 PMCID: PMC5977185 DOI: 10.3390/genes9050245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models.
Collapse
Affiliation(s)
- Irati Romero-Garmendia
- University of the Basque Country (UPV-EHU) and Biocruces Health Research Institute, 48940 Leioa, Spain.
| | - Koldo Garcia-Etxebarria
- University of the Basque Country (UPV-EHU) and Biocruces Health Research Institute, 48940 Leioa, Spain.
| | - Hector Hernandez-Vargas
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Izortze Santin
- University of the Basque Country (UPV-EHU) and Biocruces Health Research Institute, 48940 Leioa, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain.
| | - Amaia Jauregi-Miguel
- University of the Basque Country (UPV-EHU) and Biocruces Health Research Institute, 48940 Leioa, Spain.
| | - Leticia Plaza-Izurieta
- University of the Basque Country (UPV-EHU) and Biocruces Health Research Institute, 48940 Leioa, Spain.
| | - Marie-Pierre Cros
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Maria Legarda
- Pediatric Gastroenterology Unit, Cruces University Hospital, University of the Basque Country-(UPV/EHU) and Biocruces Health Research Institute, 48903 Barakaldo, Spain.
| | - Iñaki Irastorza
- Pediatric Gastroenterology Unit, Cruces University Hospital, University of the Basque Country-(UPV/EHU) and Biocruces Health Research Institute, 48903 Barakaldo, Spain.
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Nora Fernandez-Jimenez
- University of the Basque Country (UPV-EHU) and Biocruces Health Research Institute, 48940 Leioa, Spain.
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Jose Ramon Bilbao
- University of the Basque Country (UPV-EHU) and Biocruces Health Research Institute, 48940 Leioa, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|