1
|
Bhamidipati D, Schram AM. Emerging Tumor-Agnostic Molecular Targets. Mol Cancer Ther 2024; 23:1544-1554. [PMID: 39279103 DOI: 10.1158/1535-7163.mct-23-0725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/30/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Advances in tumor molecular profiling have uncovered shared genomic and proteomic alterations across tumor types that can be exploited therapeutically. A biomarker-driven, disease-agnostic approach to oncology drug development can maximize the reach of novel therapeutics. To date, eight drug-biomarker pairs have been approved for the treatment of patients with advanced solid tumors with specific molecular profiles. Emerging biomarkers with the potential for clinical actionability across tumor types include gene fusions involving NRG1, FGFR1/2/3, BRAF, and ALK and mutations in TP53 Y220C, KRAS G12C, FGFR2/3, and BRAF non-V600 (class II). We explore the growing evidence for clinical actionability of these biomarkers in patients with advanced solid tumors.
Collapse
Affiliation(s)
| | - Alison M Schram
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| |
Collapse
|
2
|
Westphalen CB, Martins-Branco D, Beal JR, Cardone C, Coleman N, Schram AM, Halabi S, Michiels S, Yap C, André F, Bibeau F, Curigliano G, Garralda E, Kummar S, Kurzrock R, Limaye S, Loges S, Marabelle A, Marchió C, Mateo J, Rodon J, Spanic T, Pentheroudakis G, Subbiah V. The ESMO Tumour-Agnostic Classifier and Screener (ETAC-S): a tool for assessing tumour-agnostic potential of molecularly guided therapies and for steering drug development. Ann Oncol 2024; 35:936-953. [PMID: 39187421 DOI: 10.1016/j.annonc.2024.07.730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Advances in precision oncology led to approval of tumour-agnostic molecularly guided treatment options (MGTOs). The minimum requirements for claiming tumour-agnostic potential remain elusive. METHODS The European Society for Medical Oncology (ESMO) Precision Medicine Working Group (PMWG) coordinated a project to optimise tumour-agnostic drug development. International experts examined and summarised the publicly available data used for regulatory assessment of the tumour-agnostic indications approved by the US Food and Drug Administration and/or the European Medicines Agency as of December 2023. Different scenarios of minimum objective response rate (ORR), number of tumour types investigated, and number of evaluable patients per tumour type were assessed for developing a screening tool for tumour-agnostic potential. This tool was tested using the tumour-agnostic indications approved during the first half of 2024. A taxonomy for MGTOs and a framework for tumour-agnostic drug development were conceptualised. RESULTS Each tumour-agnostic indication had data establishing objective response in at least one out of five patients (ORR ≥ 20%) in two-thirds (≥4) of the investigated tumour types, with at least five evaluable patients in each tumour type. These minimum requirements were met by tested indications and may serve as a screening tool for tumour-agnostic potential, requiring further validation. We propose a conceptual taxonomy classifying MGTOs based on the therapeutic effect obtained by targeting a driver molecular aberration across tumours and its modulation by tumour-specific biology: tumour-agnostic, tumour-modulated, or tumour-restricted. The presence of biology-informed mechanistic rationale, early regulatory advice, and adequate trial design demonstrating signs of biology-driven tumour-agnostic activity, followed by confirmatory evidence, should be the principles for tumour-agnostic drug development. CONCLUSION The ESMO Tumour-Agnostic Classifier (ETAC) focuses on the interplay of targeted driver molecular aberration and tumour-specific biology modulating the therapeutic effect of MGTOs. We propose minimum requirements to screen for tumour-agnostic potential (ETAC-S) as part of tumour-agnostic drug development. Definition of ETAC cut-offs is warranted.
Collapse
Affiliation(s)
- C B Westphalen
- Comprehensive Cancer Center Munich & Department of Medicine III, University Hospital, LMU Munich, Munich; German Cancer Consortium (DKTK), partner site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - D Martins-Branco
- Scientific and Medical Division, European Society for Medical Oncology (ESMO), Lugano, Switzerland
| | - J R Beal
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - C Cardone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Naples, Italy
| | - N Coleman
- School of Medicine, Trinity College Dublin, Dublin; Medical Oncology Department, St. James's Hospital, Dublin; Trinity St. James's Cancer Institute, Dublin, Ireland
| | - A M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City; Weill Cornell Medical College, New York City
| | - S Halabi
- Department of Biostatistics and Bioinformatics, Duke University, Durham; Duke Cancer Institute, Duke University, Durham, USA
| | - S Michiels
- Oncostat U1018, Inserm, Université Paris-Saclay, labeled Ligue Contre le Cancer, Villejuif; Service de Biostatistique et Epidémiologie, Gustave Roussy, Villejuif, France
| | - C Yap
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - F André
- INSERM U981, Gustave Roussy, Villejuif; Department of Cancer Medicine, Gustave Roussy, Villejuif; Faculty of Medicine, Université Paris-Saclay, Kremlin Bicêtre
| | - F Bibeau
- Service d'Anatomie Pathologique, CHU Besançon, Université de Bourgogne Franche-Comté, Besançon, France
| | - G Curigliano
- Istituto Europeo di Oncologia, IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - E Garralda
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - S Kummar
- Division of Hematology and Medical Oncology, Department of Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland
| | - R Kurzrock
- Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, USA
| | - S Limaye
- Medical & Precision Oncology, Sir H. N. Reliance Foundation Hospital & Research Centre, Mumbai, India
| | - S Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - A Marabelle
- Drug Development Department (DITEP) and Laboratory for Translational Research in Immunotherapy (LRTI), Gustave Roussy, INSERM U1015 & CIC1428, Université Paris-Saclay, Villejuif, France
| | - C Marchió
- Department of Medical Sciences, University of Turin, Turin; Division of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - J Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - J Rodon
- Department of Investigational Cancer Therapeutics, UT MD Anderson, Houston, USA
| | - T Spanic
- Europa Donna Slovenia, Ljubljana, Slovenia
| | - G Pentheroudakis
- Scientific and Medical Division, European Society for Medical Oncology (ESMO), Lugano, Switzerland
| | - V Subbiah
- Early-Phase Drug Development, Sarah Cannon Research Institute (SCRI), Nashville, USA
| |
Collapse
|
3
|
Guimarães GM, Tesser-Gamba F, Petrilli AS, Alves MTS, Garcia-Filho RJ, Oliveira R, Toledo SRC. IGFBP5 in osteosarcoma tumorigenesis: Gene expression profile among metastatic and non-metastatic patients. Gene 2024; 934:149026. [PMID: 39442824 DOI: 10.1016/j.gene.2024.149026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Osteosarcoma (OS) is the most frequent primary malignant bone tumor among children and adolescents, with a peak of incidence in the second decade of life. The presence of metastasis at diagnosis in OS patients significantly decreases the chances of survival and new therapy approaches are needed. The IGFBP5 gene is related to osteoblasts metabolism and some studies have pointed out a role of its low expressions in OS development and metastasis. In this study, we aimed to establish an IGFBP5 gene expression profile among metastatic and non-metastatic OS patients throughout the treatment and development of the disease. Fresh-frozen tumor samples were obtained from 40 patients admitted to treatment at the Pediatric Oncology Institute (IOP/GRAACC/UNIFESP) and divided by clinical status: metastatic or non-metastatic disease. For each patient, samples before and after chemotherapy treatment were obtained, as well as metastasis and lung tissue surrounding metastasis samples from the metastatic patients. A quantitative real-time PCR was used to investigate IGFBP5 expression. Our analyses demonstrate that non-metastatic patients presented lower IGFBP5 expression in their pre-chemotherapy samples compared with metastatic patients, suggesting that low expressions of this gene could help triggering the OS tumorigenesis but that its action alone is not sufficient to activate the metastatic process. Heterogeneity in IGFBP5 expressions within groups was also seen. We observed that IGFBP5 and two MAPK genes, a downstream pathway in the IGFBP5 axis, are differentially expressed in OS samples of non-metastatic patients. Further investigation about these genes' modulations might lead to a better understanding of metastasis development in OS.
Collapse
Affiliation(s)
- G M Guimarães
- Pediatrics Department, Pediatric Oncology Institute/GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil; Morphology and Genetics Department, Genetics Discipline, Federal University of São Paulo, São Paulo, SP, Brazil
| | - F Tesser-Gamba
- Pediatrics Department, Pediatric Oncology Institute/GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Brazil.
| | - A S Petrilli
- Pediatrics Department, Pediatric Oncology Institute/GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - M T S Alves
- Pediatrics Department, Pediatric Oncology Institute/GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil; Pathology Department, Federal University of São Paulo, São Paulo, SP, Brazil
| | - R J Garcia-Filho
- Pediatrics Department, Pediatric Oncology Institute/GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil; Orthopedics and Traumatology Department, Oncology Orthopedics Group, Federal University of São Paulo, São Paulo, SP, Brazil
| | - R Oliveira
- Pediatrics Department, Pediatric Oncology Institute/GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil; Surgery Department, Federal University of São Paulo, São Paulo, SP, Brazil
| | - S R C Toledo
- Pediatrics Department, Pediatric Oncology Institute/GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil; Morphology and Genetics Department, Genetics Discipline, Federal University of São Paulo, São Paulo, SP, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Brazil
| |
Collapse
|
4
|
Webster A, Elshazli RM, Pinion D, Clark RDE, Kelly G, Issa PP, Hussein MH, Fawzy MS, Toraih EA, Kandil E. The Prevalence and Prognostic Implications of BRAF K601E Mutations in Thyroid Neoplasms: A Systematic Review and Meta-Analysis. Head Neck 2024. [PMID: 39400963 DOI: 10.1002/hed.27950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Activating mutations in the BRAF oncogene occur in 45% of papillary thyroid carcinomas (PTCs). Though less studied, K601E may identify a clinically distinct subset of thyroid neoplasms. METHODS A bioinformatics assessment was conducted using the COSMIC database and in silico data analysis. A systematic search was conducted through August 2024 to identify studies reporting BRAF mutation in thyroid neoplasms. Pooled prevalence, histopathological subtype distribution, extrathyroidal extension, lymph node metastasis, recurrence, and survival were extracted/analyzed from 32 studies (13 191 patients). RESULTS In the COSMIC database, BRAF K601E was found in various tissue types but mainly in the thyroid. In silico data analysis revealed a structural and functional basis for differences between K601E and V600E. Upon systematic review, the BRAF K601E mutation was identified in 2.8% of PTCs compared to 22% with V600E. The stratified analysis revealed geographical differences, with higher rates in Italy (5.23%) and the United States of America (3.31%). The K601E mutant was enriched for follicular-patterned variants like NIFTP (11.2% of cases). Meta-analysis demonstrated significantly reduced extrathyroidal extension for K601E versus V600E mutants (RR = 0.22, 95% CI = 0.10-0.50, p = 0.0003). CONCLUSION K601E-mutated neoplasms could be a unique clinicopathological entity associated with low-risk histology and reduced extrathyroidal extension, consistent with a more indolent course than V600E mutants. Although detecting K601E may potentially guide conservative management, further prospective studies are needed.
Collapse
Affiliation(s)
- Alyssa Webster
- School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Rami M Elshazli
- Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Biological Sciences, Faculty of Science, New Mansoura University, New Mansoura City, Egypt
| | - Dylan Pinion
- School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Robert D E Clark
- School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Grace Kelly
- School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Peter P Issa
- School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Mohammad H Hussein
- Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Family Medicine, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Emad Kandil
- Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
5
|
Palacín-Aliana I, García-Romero N, Carrión-Navarro J, Puig-Serra P, Torres-Ruiz R, Rodríguez-Perales S, Viñal D, González-Rumayor V, Ayuso-Sacido Á. ddPCR Overcomes the CRISPR-Cas13a-Based Technique for the Detection of the BRAF p.V600E Mutation in Liquid Biopsies. Int J Mol Sci 2024; 25:10902. [PMID: 39456686 PMCID: PMC11507125 DOI: 10.3390/ijms252010902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The isolation of circulating tumoral DNA (ctDNA) present in the bloodstream brings about the opportunity to detect genomic aberrations from the tumor of origin. However, the low amounts of ctDNA present in liquid biopsy samples makes the development of highly sensitive techniques necessary to detect targetable mutations for the diagnosis, prognosis, and monitoring of cancer patients. Here, we employ standard genomic DNA (gDNA) and eight liquid biopsy samples from different cancer patients to examine the newly described CRISPR-Cas13a-based technology in the detection of the BRAF p.V600E actionable point mutation and appraise its diagnostic capacity with two PCR-based techniques: quantitative Real-Time PCR (qPCR) and droplet digital PCR (ddPCR). Regardless of its lower specificity compared to the qPCR and ddPCR techniques, the CRISPR-Cas13a-guided complex was able to detect inputs as low as 10 pM. Even though the PCR-based techniques have similar target limits of detection (LoDs), only the ddPCR achieved a 0.1% variant allele frequency (VAF) detection with elevated reproducibility, thus standing out as the most powerful and suitable tool for clinical diagnosis purposes. Our results also demonstrate how the CRISPR-Cas13a can detect low amounts of the target of interest, but its base-pair specificity failed in the detection of actionable point mutations at a low VAF; therefore, the ddPCR is still the most powerful and suitable technique for these purposes.
Collapse
Affiliation(s)
- Irina Palacín-Aliana
- Atrys Health, 08025 Barcelona, Spain; (I.P.-A.); (V.G.-R.)
- Fundación de Investigación HM Hospitales, HM Hospitales, 28015 Madrid, Spain
- Faculty of Science, Universidad de Alcalá, 28801 Madrid, Spain
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Pilar Puig-Serra
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (R.T.-R.); (S.R.-P.)
| | - Raul Torres-Ruiz
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (R.T.-R.); (S.R.-P.)
- Centro de Investigación Energéticas Medioambientales y Tecnológicas (CIEMAT), Advanced Therapies Unit, Hematopoietic Innovative Therapies Division, Instituto de Investigación Sanitaria Fundación Jimenez Diaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Sandra Rodríguez-Perales
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (R.T.-R.); (S.R.-P.)
| | - David Viñal
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | | | - Ángel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|
6
|
Zhang M, Zhang X, Xu Y, Xiang Y, Zhang B, Xie Z, Wu Q, Lou C. High-resolution and programmable RNA-IN and RNA-OUT genetic circuit in living mammalian cells. Nat Commun 2024; 15:8768. [PMID: 39384754 PMCID: PMC11464720 DOI: 10.1038/s41467-024-52962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
RNAs and their encoded proteins intricately regulate diverse cell types and states within the human body. Dysregulated RNA expressions or mutations can lead to various diseased cell states, including tumorigenesis. Detecting and manipulating these endogenous RNAs offers significant promise for restoring healthy cell states and targeting tumors both in research and clinical contexts. This study presents an RNA-IN and RNA-OUT genetic circuit capable dynamically sensing and manipulating any RNA target in a programmable manner. The RNA-IN module employes a programmable CRISPR-associated protease (CASP) complex for RNA detection, while the RNA-OUT module utilizes an engineered protease-responsive dCas9-VPR activator. Additionally, the CASP module can detect point mutations by harnessing an uncovered dual-nucleotide synergistic switching effect within the CASP complex, resulting in the amplification of point-mutation signals from initially undetectable levels (1.5-fold) to a remarkable 94-fold. We successfully showcase the circuit's ability to rewire endogenous RNA-IN signals to activate endogenous progesterone biosynthesis pathway, dynamically monitor adipogenic differentiation of mesenchymal stem cells (MSCs) and the epithelial-to-mesenchmal trans-differentiation, as well as selective killing of tumor cells. The programmable RNA-IN and RNA-OUT circuit exhibits tremendous potential for applications in gene therapy, biosensing and design of synthetic regulatory networks.
Collapse
Affiliation(s)
- Min Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xue Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yongyue Xu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanhui Xiang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bo Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chunbo Lou
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Awada G, Dirven I, Schwarze JK, Tijtgat J, Fasolino G, Kockx M, Neyns B. Phase II Clinical Trial of Trametinib and Low-Dose Dabrafenib in Advanced, Previously Treated BRAFV600/NRASQ61 Wild-Type Melanoma (TraMel-WT). JCO Precis Oncol 2024; 8:e2300493. [PMID: 39374099 DOI: 10.1200/po.23.00493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 10/09/2024] Open
Abstract
PURPOSE Patients with BRAFV600/NRASQ61 wild-type melanoma who progress after immune checkpoint inhibitors (ICIs) have a poor prognosis. MEK inhibition has shown activity in this patient population but is associated with treatment-limiting skin toxicity. Combining a BRAF inhibitor with a MEK inhibitor is associated with less skin toxicity. METHODS This phase II trial investigated trametinib (2 mg once daily) in patients with advanced BRAFV600/NRASQ61 wild-type, ICI-refractory melanoma. In case of treatment-limiting skin toxicity, low-dose dabrafenib (50 mg twice daily) was added to trametinib. After a trial amendment, both drugs were combined up-front. The confirmed objective response rate (cORR) served as the primary end point. RESULTS Twenty-four patients were included (50% male; median age 57 years; 92% Eastern Cooperative Oncology Group Performance Status 0-2; 75% stage IV-M1c/stage IV-M1d; median number of prior therapies: two [range, 1-5]). Three patients were enrolled before and 21 patients after the amendment, respectively. Seven confirmed and one unconfirmed partial responses (PRs) were observed (cORR, 29.2%). The median duration of response was 16.6 weeks (95% CI, 5.5 to 27.7). Stable disease (SD) was the best response in an additional five patients. Among the responding patients, genetic alterations causing mitogen-activated protein kinase (MAPK) pathway activation were documented in six patients. The disease control rate in patients with MAPK pathway-activating alterations was 64.3% (five confirmed PR, one unconfirmed PR, and three SD). The median progression-free survival was 13.3 weeks (95% CI, 3.5 to 23.1), and the median overall survival was 54.3 weeks (95% CI, 37.9 to 70.6). Adding low-dose dabrafenib to trametinib effectively mitigated or prevented treatment-limiting trametinib-related skin toxicity. CONCLUSION The combination of trametinib plus low-dose dabrafenib demonstrated encouraging efficacy and effective mitigation of skin toxicity in patients with advanced, ICI-pretreated BRAFV600/NRASQ61 wild-type melanoma patients. MAPK pathway-activating alterations hold promise as a predictive biomarker.
Collapse
Affiliation(s)
- Gil Awada
- Department of Medical Oncology, Vrije Universiteit Brussel/Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Iris Dirven
- Department of Medical Oncology, Vrije Universiteit Brussel/Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Julia Katharina Schwarze
- Department of Medical Oncology, Vrije Universiteit Brussel/Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jens Tijtgat
- Department of Medical Oncology, Vrije Universiteit Brussel/Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Giuseppe Fasolino
- Department of Ophthalmology, Vrije Universiteit Brussel/Universitair Ziekenhuis Brussel, Brussels, Belgium
| | | | - Bart Neyns
- Department of Medical Oncology, Vrije Universiteit Brussel/Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
8
|
Li Y, Zeng H, Qi C, Tan S, Huang Q, Pu X, Li W, Planchard D, Tian P. Features and efficacy of triple-targeted therapy for patients with EGFR-mutant non-small-cell lung cancer with acquired BRAF alterations who are resistant to epidermal growth factor receptor tyrosine kinase inhibitors. ESMO Open 2024; 9:103935. [PMID: 39389004 PMCID: PMC11490925 DOI: 10.1016/j.esmoop.2024.103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/03/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The recommended first-line treatment for advanced epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) patients is EGFR-tyrosine kinase inhibitors (EGFR-TKIs). BRAF alterations have been identified as resistance mechanisms. We aimed to identify features of and subsequent treatment strategies for such patients. PATIENTS AND METHODS We conducted a systematic literature review of NSCLC patients harboring acquired BRAF alterations. Additionally, BRAF-altered NSCLC patients who progressed from EGFR-TKIs at West China Hospital of Sichuan University were screened. Patient characteristics, treatment options, and outcomes were analyzed. RESULTS A total of 104 patients were included, 2 of whom came from our center. Seventy-five patients (72.1%) harbored BRAF mutations (57 class I mutations, 7 class II mutations, 9 class III mutations, and 2 non-class I-III mutations), and 29 (27.9%) harbored BRAF fusions. Eighteen patients received triple-targeted therapy, including prior EGFR-TKIs plus dabrafenib and trametinib, and 23 patients received other treatments. The median progression-free survival was significantly longer in patients receiving triple-targeted therapy than in those receiving other treatments (8.0 versus 2.5 months, P < 0.001). Similar findings were observed in patients with BRAF mutations (9.0 versus 2.8 months, P = 0.004), particularly in those with BRAF class I mutations (9.0 versus 2.5 months, P < 0.001). A potential benefit was also observed among patients with BRAF fusions (5.0 versus 2.0 months, P = 0.230). Twenty patients (48.8%) experienced adverse events. Dose reduction of RAF or MEK inhibitor was required in five patients (12.2%). Five patients (12.2%) permanently discontinued treatment (three on triple-targeted therapy; one on prior EGFR-TKI plus vemurafenib; one on prior EGFR-TKI plus trametinib). CONCLUSIONS BRAF alterations, specifically BRAF mutations and BRAF fusions, facilitate resistance to EGFR-TKIs. Triple-targeted therapy is effective and safe for patients with EGFR-mutant NSCLC with acquired BRAF alterations, mainly among patients with BRAF class I mutations and potentially in patients with BRAF fusions.
Collapse
Affiliation(s)
- Y Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - H Zeng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - C Qi
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - S Tan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Q Huang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - X Pu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - W Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu
| | - D Planchard
- Department of Medical Oncology, Institut Gustave Roussy, Thoracic Group and International Center for Thoracic Cancers, Villejuif; The Faculty of Medicine, Paris-Saclay University, Paris, France.
| | - P Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
9
|
Mirek J, Bal W, Olbryt M. Melanoma genomics - will we go beyond BRAF in clinics? J Cancer Res Clin Oncol 2024; 150:433. [PMID: 39340537 PMCID: PMC11438618 DOI: 10.1007/s00432-024-05957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
In the era of next-generation sequencing, the genetic background of cancer, including melanoma, appears to be thoroughly established. However, evaluating the oncogene BRAF mutation in codon V600 is still the only companion diagnostic genomic test commonly implemented in clinics for molecularly targeted treatment of advanced melanoma. Are we wasting the collected genomic data? Will we implement our current genomic knowledge of melanoma in clinics soon? This question is rather urgent because new therapeutic targets and biomarkers are needed to implement more personalized, patient-tailored therapy in clinics. Here, we provide an update on the molecular background of melanoma, including a description of four already established molecular subtypes: BRAF+, NRAS+, NF1+, and triple WT, as well as relatively new NGS-derived melanoma genes such as PREX2, ERBB4, PPP6C, FBXW7, PIK3CA, and IDH1. We also present a comparison of genomic profiles obtained in recent years with a focus on the most common melanoma genes. Finally, we propose our melanoma gene panel consisting of 22 genes that, in our opinion, are "must-have" genes in both melanoma-specific genomic tests and pan-cancer tests established to improve the treatment of melanoma further.
Collapse
Affiliation(s)
- Justyna Mirek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Wiesław Bal
- Chemotherapy Day Unit, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland.
| |
Collapse
|
10
|
Yu L, Yang R, Long Z, Tao Q, Liu B. Targeted therapy of non-small cell lung cancer: mechanisms and clinical trials. Front Oncol 2024; 14:1451230. [PMID: 39391239 PMCID: PMC11464343 DOI: 10.3389/fonc.2024.1451230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths globally, and traditional chemotherapy has limited efficacy in treating advanced non-small cell lung cancer (NSCLC). In recent years, the prognosis for patients with NSCLC has significantly improved due to the development of new treatment modalities, including targeted therapies. Targeted therapies utilize monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), or small molecule tyrosine kinase inhibitors (TKIs) directed against specific mutated genes such as EGFR and ALK. The development of these drugs has deepened our understanding of NSCLC and improved treatment outcomes for patients. This review aims to summarize the mechanisms and current status of targeted therapy for NSCLC, discuss strategies to overcome acquired resistance, and address current challenges in the field.
Collapse
Affiliation(s)
- Le Yu
- Sichuan Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ruoyi Yang
- Sichuan Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zeng Long
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingxiu Tao
- Sichuan Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bin Liu
- Sichuan Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
11
|
von Ammon JL, Machado GJR, da Matta RRC, Telles AC, Carrijo F, dos Santos BAF, Brandão JCD, da Silva TM, Hecht F, Colozza-Gama GA, Tezzei JH, Cerutti JM, Ramos HE. Follicular cell-derived thyroid carcinomas harboring novel genetic BRAFNON-V600E mutations: real-world data obtained using a multigene panel. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240067. [PMID: 39420942 PMCID: PMC11460960 DOI: 10.20945/2359-4292-2024-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/08/2024] [Indexed: 10/19/2024]
Abstract
Objectives To assess the molecular profile of follicular cell-derived thyroid carcinomas (FCDTCs) and correlate the identified mutations with the clinical and pathological features of the affected patients. Materials and methods Cross-sectional study of tumor samples from 100 adult patients diagnosed with FCDTC between 2010 and 2019. The patients' clinical and pathological data were collected. Genomic DNA was extracted from formalin-fixed, paraffin-embedded (FFPE) tumors using the ReliaPrep FFPE gDNA Miniprep System. Genotyping of target genomic regions (KRAS, NRAS, BRAF, EGFR, and PIK3CA) was performed using the AmpliSeq panel, while sequencing was performed on the iSeq 100 platform. Results The patients' mean age was 39 years. In all, 82% of the tumors were classic papillary thyroid carcinomas. Overall, 54 (54%) tumor samples yielded satisfactory results on next-generation sequencing (NGS), of which 31 harbored mutations. BRAF gene mutations were the most frequent, with the BRAF V600E mutation present in 10 tumors. Seven tumors had BRAF NON-V600E mutations not previously described in FCDTCs (G464E, G464R, G466E, S467L, G469E, G596D, and the T599Ifs*10 deletion) but described in other types of cancer (i.e., skin/melanoma, lung, colorectal, and others). One tumor had a previously reported BRAF A598V mutation. EGFR gene mutations were found in 16 (29%) and KRAS or NRAS alterations in 8 (14%) of the 54 tumors analyzed. Conclusion We described herein seven non-hotspot/novel variants in the BRAF gene, highlighting their potential role in expanding our understanding of FCDTC genetics.
Collapse
Affiliation(s)
- Juliana Lima von Ammon
- Universidade Federal da BahiaInstituto de Ciências da SaúdePrograma de Pós-graduação em Processos Interativos de Órgãos e SistemasSalvadorBABrasilPrograma de Pós-graduação em Processos Interativos de Órgãos e Sistemas, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Gabriel Jeferson Rodríguez Machado
- Universidade Federal da BahiaInstituto de Ciências da SaúdePrograma de Pós-graduação em Processos Interativos de Órgãos e SistemasSalvadorBABrasilPrograma de Pós-graduação em Processos Interativos de Órgãos e Sistemas, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Rafael Reis Campos da Matta
- Universidade Federal da BahiaInstituto de Ciências da SaúdePrograma de Pós-graduação em Processos Interativos de Órgãos e SistemasSalvadorBABrasilPrograma de Pós-graduação em Processos Interativos de Órgãos e Sistemas, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Ana Clara Telles
- Universidade Federal da BahiaInstituto de Ciências da SaúdePrograma de Pós-graduação em Processos Interativos de Órgãos e SistemasSalvadorBABrasilPrograma de Pós-graduação em Processos Interativos de Órgãos e Sistemas, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Fabiane Carrijo
- Universidade Federal da BahiaInstituto de Ciências da SaúdePrograma de Pós-graduação em Processos Interativos de Órgãos e SistemasSalvadorBABrasilPrograma de Pós-graduação em Processos Interativos de Órgãos e Sistemas, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Bruno Alexsander França dos Santos
- Universidade Federal da BahiaInstituto de Ciências da SaúdeDepartamento de BiorregulaçãoSalvadorBABrasilDepartamento de Biorregulação, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Juliana Cabral Duarte Brandão
- Serviço de Patologia do Hospital Aristides MaltezSalvadorBABrasilServiço de Patologia do Hospital Aristides Maltez, Salvador, BA, Brasil
| | - Thiago Magalhães da Silva
- Universidade Estadual do Sudoeste da BahiaDepartamento de Ciências BiológicasJequiéBABrasilDepartamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA, Brasil
| | - Fabio Hecht
- Universidade Federal do Rio de JaneiroInstituto de Biofísica Carlos Chagas FilhoRio de JaneiroRJBrasilInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Gabriel Avela Colozza-Gama
- Universidade Federal de São PauloDepartamento de Morfologia e GenéticaLaboratório de Bases Genéticas de Tumores de TireoideSão PauloSPBrasilLaboratório de Bases Genéticas de Tumores de Tireoide, Divisão de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Julia Helena Tezzei
- Universidade Federal de São PauloDepartamento de Morfologia e GenéticaLaboratório de Bases Genéticas de Tumores de TireoideSão PauloSPBrasilLaboratório de Bases Genéticas de Tumores de Tireoide, Divisão de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Janete Maria Cerutti
- Universidade Federal de São PauloDepartamento de Morfologia e GenéticaLaboratório de Bases Genéticas de Tumores de TireoideSão PauloSPBrasilLaboratório de Bases Genéticas de Tumores de Tireoide, Divisão de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Helton Estrela Ramos
- Universidade Federal da BahiaInstituto de Ciências da SaúdePrograma de Pós-graduação em Processos Interativos de Órgãos e SistemasSalvadorBABrasilPrograma de Pós-graduação em Processos Interativos de Órgãos e Sistemas, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
- Universidade Federal da BahiaInstituto de Ciências da SaúdeDepartamento de BiorregulaçãoSalvadorBABrasilDepartamento de Biorregulação, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| |
Collapse
|
12
|
Christen D, Lauinger M, Brunner M, Dengjel J, Brummer T. The mTOR pathway controls phosphorylation of BRAF at T401. Cell Commun Signal 2024; 22:428. [PMID: 39223665 PMCID: PMC11370054 DOI: 10.1186/s12964-024-01808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
BRAF serves as a gatekeeper of the RAS/RAF/MEK/ERK pathway, which plays a crucial role in homeostasis. Since aberrant signalling of this axis contributes to cancer and other diseases, it is tightly regulated by crosstalk with the PI3K/AKT/mTOR pathway and ERK mediated feedback loops. For example, ERK limits BRAF signalling through phosphorylation of multiple residues. One of these, T401, is widely considered as an ERK substrate following acute pathway activation by growth factors. Here, we demonstrate that prominent T401 phosphorylation (pT401) of endogenous BRAF is already observed in the absence of acute stimulation in various cell lines of murine and human origin. Importantly, the BRAF/RAF1 inhibitor naporafenib, the MEK inhibitor trametinib and the ERK inhibitor ulixertinib failed to reduce pT401 levels in these settings, supporting an alternative ERK-independent pathway to T401 phosphorylation. In contrast, the mTOR inhibitor torin1 and the dual-specific PI3K/mTOR inhibitor dactolisib significantly suppressed pT401 levels in all investigated cell types, in both a time and concentration dependent manner. Conversely, genetic mTOR pathway activation by oncogenic RHEB (Q64L) and mTOR (S2215Y and R2505P) mutants substantially increased pT401, an effect that was reverted by dactolisib and torin1 but not by trametinib. We also show that shRNAmir mediated depletion of the mTORC1 complex subunit Raptor significantly enhanced the suppression of T401 phosphorylation by a low torin1 dose, while knockdown of the mTORC2 complex subunit Rictor was less effective. Using mass spectrometry, we provide further evidence that torin1 suppresses the phosphorylation of T401, S405 and S409 but not of other important regulatory phosphorylation sites such as S446, S729 and S750. In summary, our data identify the mTOR axis and its inhibitors of (pre)clinical relevance as novel modulators of BRAF phosphorylation at T401.
Collapse
Affiliation(s)
- Daniel Christen
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Freiburg and, Heidelberg, 69120, Germany
| | - Manuel Lauinger
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Brunner
- Department of Biology, University of Fribourg, Chemin du Museé 10, 1700, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Museé 10, 1700, Fribourg, Switzerland
| | - Tilman Brummer
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany.
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Freiburg and, Heidelberg, 69120, Germany.
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, 79106, Freiburg, Germany.
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
13
|
Jin B, Lv B, Yan Z, Li W, Song H, Cui H, Liu Y, Zhong B, Shen X, Li X, Zhang B, Chen S, Zheng W, Liu J, Luo F, Luo Z. Molecular characterization of Chinese patients with small bowel adenocarcinoma. Clin Transl Oncol 2024; 26:2205-2216. [PMID: 38512449 DOI: 10.1007/s12094-024-03441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Small bowel adenocarcinoma (SBA) is a rare malignancy of the gastrointestinal tract, and its unique location within the small intestine presents difficulties in obtaining tissue samples from the lesions. This limitation hinders the research and development of effective clinical treatment methods. Circulating tumor DNA (ctDNA) analysis holds promise as an alternative approach for investigating SBA and guiding treatment decisions, thereby improving the prognosis of SBA. METHODS Between January 2017 and August 2021, a total of 336 tissue or plasma samples were obtained and the corresponding mutation status in tissue or blood was evaluated with NGS. RESULTS AND CONCLUSIONS The study found that in SBA tissues, the most commonly alternated genes were TP53, KRAS, and APC, and the most frequently affected pathways were RTK-RAS-MAPK, TP53, and WNT. Notably, the RTK-RAS-MAPK pathway was identified as a potential biomarker that could be targeted for treatment. Then, we validated the gene mutation profiling of ctDNA extracted from SBA patients exhibited the same characteristics as tissue samples for the first time. Subsequently, we applied ctDNA analysis on a terminal-stage patient who had shown no response to previous chemotherapy. After detecting alterations in the RTK-RAS-MAPK pathway in the ctDNA, the patient was treated with MEK + EGFR inhibitors and achieved a tumor shrinkage rate of 76.33%. Our study utilized the largest Chinese SBA cohort to uncover the molecular characteristics of this disease, which might facilitate clinical decision making for SBA patients.
Collapse
Affiliation(s)
- Bryan Jin
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Bin Lv
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Zhengqing Yan
- The Medical Department, 3D Medicines Inc., Shanghai, 200120, China
| | - Wenshuai Li
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Huan Song
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Haoshu Cui
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Yao Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Bin Zhong
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Xin Shen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Xiao Li
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Bei Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, 200120, China
| | - Shiqing Chen
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, 200120, China
| | - Wanwei Zheng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Zhongguang Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
14
|
Nigam A, Krishnamoorthy GP, Chatila WK, Berman K, Saqcena M, Walch H, Venkatramani M, Ho AL, Schultz N, Fagin JA, Untch BR. Cooperative genomic lesions in HRAS-mutant cancers predict resistance to farnesyltransferase inhibitors. Oncogene 2024; 43:2806-2819. [PMID: 39152269 DOI: 10.1038/s41388-024-03095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 08/19/2024]
Abstract
In the clinical development of farnesyltransferase inhibitors (FTIs) for HRAS-mutant tumors, responses varied by cancer type. Co-occurring mutations may affect responses. We aimed to uncover cooperative genetic events specific to HRAS-mutant tumors and to study their effect on sensitivity to FTIs. Using targeted sequencing data from the MSK-IMPACT and Dana-Farber Cancer Institute Genomic Evidence Neoplasia Information Exchange databases, we identified comutations that were observed predominantly in HRAS-mutant versus KRAS-mutant or NRAS-mutant cancers. HRAS-mutant cancers had a higher frequency of coaltered mutations (48.8%) in the MAPK, PI3K, or RTK pathway genes, compared with KRAS-mutant (41.4%) and NRAS-mutant (38.4%) cancers (p < 0.05). Class 3 BRAF, NF1, PTEN, and PIK3CA mutations were more prevalent in HRAS-mutant lineages. To study the effects of comutations on sensitivity to FTIs, HrasG13R was transfected into "RASless" (Kraslox/lox/Hras-/-/Nras-/-/RERTert/ert) mouse embryonic fibroblasts (MEFs), which sensitized nontransfected MEFs to tipifarnib. Comutation in the form of Pten or Nf1 deletion and Pik3caH1047R transduction led to resistance to tipifarnib in HrasG13R-transfected MEFs in the presence or absence of KrasWT, whereas BrafG466E transduction led to resistance to tipifarnib only in the presence of KrasWT. Combined treatment with tipifarnib and MEK inhibition sensitized cells to tipifarnib in all settings, including in MEFs with PI3K pathway comutations. HRAS-mutant tumors demonstrate lineage-dependent MAPK or PI3K pathway alterations, which confer resistance to tipifarnib. The combined use of FTIs and MEK inhibition is a promising strategy for HRAS-mutant tumors.
Collapse
Affiliation(s)
- Aradhya Nigam
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gnana P Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Walid K Chatila
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Berman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Henry Walch
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mandakini Venkatramani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Chaudhary HA, Cannon TL, Winer A. Targeting Non-V600 Mutations in BRAF: A Single Institution Retrospective Analysis and Review of the Literature. Drugs R D 2024; 24:395-403. [PMID: 39177935 PMCID: PMC11455815 DOI: 10.1007/s40268-024-00475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVE While successful treatment paradigms for BRAF V600 mutations have been developed, 10% of BRAF mutations are not at V600 and lack a standard treatment regimen. This study summarizes the current body of knowledge on the treatment of non-V600 mutations and reports a single institution experience. METHODS We conducted a literature review to summarize relevant preclinical and clinical published data on the response of non-V600 mutations to targeted therapies. We performed a retrospective analysis of INOVA Schar Cancer patients registered in our Molecular Tumor Board database with non-V600 BRAF mutations who were recipients of targeted therapy and assessed their time to next treatment and best response. RESULTS Published preclinical and clinical data have demonstrated limiting results in the response of non-V600 mutated cancers to targeted therapies. Response rates were variable for the major classes of BRAF mutations including class II and class III mutations as well as, BRAF fusions. Data collected from our INOVA cohort offered promising results with one patient achieving partial remission and two patients achieving stable disease. CONCLUSIONS This article reflects the current understanding of targeted therapies in non-V600 mutations. Further large-scale studies separating BRAF mutations based on their mechanism of activation will expand our understanding.
Collapse
Affiliation(s)
- Hirra A Chaudhary
- INOVA, Schar Cancer Institute, Fairfax, VA, USA.
- UVA School of Medicine, INOVA Fairfax Medical Campus, Fairfax, VA, USA.
| | | | | |
Collapse
|
16
|
Liu D, Ding K, Yin K, Peng Z, Li X, Pan Y, Jin X, Xu Y. A real world analysis of secondary BRAF variations after targeted therapy resistance in driver gene positive NSCLC. Sci Rep 2024; 14:20302. [PMID: 39218919 PMCID: PMC11366755 DOI: 10.1038/s41598-024-71143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Secondary BRAF variations have been identified as a mechanism of resistance to tyrosine kinase inhibitors (TKIs) in patients with driver gene-positive NSCLC. Nevertheless, there is still a lack of consensus regarding the characteristics and subsequent treatment strategies for these patients. We retrospectively reviewed the medical records of patients with driver gene-positive NSCLC who received TKIs therapy at Zhejiang Cancer Hospital between May 2016 and December 2023. The clinical and genetic characteristics of these patients were assessed, along with the impact of various treatment strategies on survival. This study enrolled 27 patients with advanced NSCLC, in whom BRAF variations occurred at a median time of 28 months after the initiation of targeted therapy. The multivariate accelerated failure time (AFT) model revealed that, compared to chemotherapy-based regimens group, the combined targeted therapy group (p < 0.001) and the combined local treatment group for oligo-progression (p < 0.001) significantly extended patient survival. In contrast, continuing the original signaling pathway's targeted monotherapy was associated with shorter survival (p = 0.034). The median global OS for each treatment group was as follows: chemotherapy-based regimens group, 45 months; combined targeted therapy group, 59 months; combined local treatment group for patients with oligo-progression, 46 months; and targeted monotherapy group, 36 months. Study results indicate that the combination targeted therapy group (including TKIs, BRAF inhibitors, and/or MEK inhibitors) and the localized treatment group are more effective than traditional chemotherapy-based regimens in improving survival. Additionally, continuing targeted monotherapy along the original signaling pathway proves less effective than chemotherapy-based regimens.
Collapse
Affiliation(s)
- DuJiang Liu
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - KaiBo Ding
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - KaiLai Yin
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - ZhongSheng Peng
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Xinyue Li
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
| | - Yang Pan
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Pulmonary Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - XuanHong Jin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - YanJun Xu
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
17
|
Maji L, Teli G, Raghavendra NM, Sengupta S, Pal R, Ghara A, Matada GSP. An updated literature on BRAF inhibitors (2018-2023). Mol Divers 2024; 28:2689-2730. [PMID: 37470921 DOI: 10.1007/s11030-023-10699-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BRAF is the most common serine-threonine protein kinase and regulates signal transduction from RAS to MEK inside the cell. The BRAF is a highly active isoform of RAF kinase. BRAF has two domains such as regulatory and kinase domains. The BRAF inhibitors bind in the c-terminus of the kinase domain and inhibit the downstream pathways. The mutation occurs mainly in the A-loop of the kinase domain. The mutation occurs due to a conversion of valine to glutamate/lysine/arginine/aspartic acid at 600th position. Among the diverse mutations, BRAFV600E is the most common and responsible for numerous cancer such as melanoma, colorectal, ovarian, and thyroid cancer. Due to mutations in RAC1, loss of PTEN, NF1, CCND1, USP28-FBW7 complex, COT overexpression, and CCND1 amplification, the BRAF kinase enzyme developed resistance over the commercially available BRAF inhibitors. There is still unmute urgence for the development of BRAF inhibitors to overcome the persistent limitation such as resistance, mutation, and adverse effects of drugs. In the current study, we described the structure, activation, downstream signaling pathway, and mutation of BRAF. Our group also provided a detailed review of BRAF inhibitors from the last five years (2018-2023) highlighting the structure-activity relationship, mechanistic study, and molecular docking studies. We hope that the current analysis will be a useful resource for researchers and provide chemists a glimpse into the future as design and development of more effective and secure BRAF kinase inhibitors.
Collapse
Affiliation(s)
- Lalmohan Maji
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Ghanshyam Teli
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sindhuja Sengupta
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Abhishek Ghara
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
18
|
Vander Mijnsbrugge AS, Cerckel J, Dirven I, Tijtgat J, Vounckx M, Claes N, Neyns B. Regorafenib in patients with pretreated advanced melanoma: a single-center case series. Melanoma Res 2024; 34:366-375. [PMID: 38801446 DOI: 10.1097/cmr.0000000000000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Melanoma patients failing all approved treatment options have a poor prognosis. The antimelanoma activity of regorafenib (REGO), a multitargeted kinase inhibitor, has not been investigated in this patient population. The objective response rate and safety of REGO treatment in advanced melanoma patients was investigated retrospectively. Twenty-seven patients received REGO treatment. All patients had progressed on anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) checkpoint inhibition and BRAF/MEK inhibitors (in case of a BRAF V600 mutation). REGO was administered in continuous dosing and combined (upfront or sequentially) with nivolumab ( n = 5), trametinib ( n = 8), binimetinib ( n = 2), encorafenib ( n = 1), dabrafenib/trametinib ( n = 9), or encorafenib/binimetinib ( n = 7). The best overall response was partial response (PR) in five patients (18.5%) and stable disease in three patients (11.1%). Three of seven (42.8%) BRAF V600mut patients treated with REGO in combination with BRAF/MEK inhibitors obtained a PR (including regression of brain metastases in all three patients). In addition, PR was documented in a BRAF V600mut patient treated with REGO plus anti-PD-1, and a NRASQ61mut patient treated with REGO plus a MEK inhibitor. Common grade 3-4 treatment-related adverse events included arterial hypertension ( n = 7), elevated transaminase levels ( n = 5), abdominal pain ( n = 3), colitis ( n = 2), anorexia ( n = 1), diarrhea ( n = 1), fever ( n = 1), duodenal perforation ( n = 1), and colonic bleeding ( n = 1). Median progression-free survival was 11.0 weeks (95% confidence interval, 7.1-14.9); median overall survival was 23.1 weeks (95% confidence interval, 13.0-33.3). REGO has a manageable safety profile in advanced melanoma patients, in monotherapy as well as combined with BRAF/MEK inhibitors or PD-1 blocking monoclonal antibodies. The triplet combination of REGO with BRAF/MEK inhibitors appears most active, particularly in the BRAF V600mut patients.
Collapse
Affiliation(s)
- An-Sofie Vander Mijnsbrugge
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB)/University Hospital of Brussels (UZ Brussel), Brussels
| | - Justine Cerckel
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB)/University Hospital of Brussels (UZ Brussel), Brussels
| | - Iris Dirven
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB)/University Hospital of Brussels (UZ Brussel), Brussels
| | - Jens Tijtgat
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB)/University Hospital of Brussels (UZ Brussel), Brussels
| | - Manon Vounckx
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB)/University Hospital of Brussels (UZ Brussel), Brussels
| | - Nele Claes
- Department of Medical Oncology, AZ Sint-Jan Hospital Bruges, Bruges, Belgium
| | - Bart Neyns
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB)/University Hospital of Brussels (UZ Brussel), Brussels
| |
Collapse
|
19
|
Takeda H, Yamamoto H, Oikawa R, Umemoto K, Arai H, Mizukami T, Ogawa K, Uchida Y, Nagata Y, Kubota Y, Doi A, Horie Y, Ogura T, Izawa N, Moore JA, Sokol ES, Sunakawa Y. Genomic Profiling of Small Intestine Cancers From a Real-World Data Set Identifies Subgroups With Actionable Alterations. JCO Precis Oncol 2024; 8:e2300425. [PMID: 39116356 DOI: 10.1200/po.23.00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
PURPOSE Panel-based comprehensive genomic profiling (CGP) is used in clinical practice worldwide; however, large real-world data (RWD) of patients with advanced small intestine cancer have not been characterized. We investigated differences in the prevalence of clinically relevant alterations across molecularly defined or age-stratified subgroups. PATIENTS AND METHODS This was a collaborative biomarker study of RWD from CGP testing (Foundation Medicine, Inc). Hybrid capture was conducted on at least 324 cancer-related genes and select introns from up to 31 genes frequently rearranged in cancer. Overall, 1,364 patients with advanced small intestine cancer were available for analyses and were stratified by age (≥40 years/<40 years), microsatellite instability (MSI) status, tumor mutational burden (TMB) status (high ≥10/low <10 Muts/Mb), and select gene alterations. The frequency of alterations was analyzed using a chi-square test with Yate's correction. RESULTS Genes with frequent alterations included TP53 (59.8%), KRAS (54.8%), APC (27.7%), and CDKN2A (22.4%). Frequent genes with amplifications were MYC (6.7%), MDM2 (5.9%), GATA6 (5.5%), and CCND1 (3.4%). Patients younger than 40 years had significantly lower frequency of APC mutations than those 40 years and older (10.4% v 28.7%; P = .0008). Druggable genomic alterations were detected in 22.3% of patients: BRAF V600E (1.2%), BRCA1 (1.8%), BRCA2 (3.2%), ERBB2 amplification (3.2%), KRAS G12C (3.3%), NTRK1/2/3 fusion (0.07%), MSI-high (7.0%), and TMB-high (12.2%), with no significant differences in the frequency according to age (<40 years v ≥40 years; 22.1% v 22.3%). TMB of 10-20 Mut/Mb was observed in 4.8% of patients, and TMB ≥20 Mut/Mb was seen in 7.3% of the cohort. CONCLUSION RWD from clinical panel testing revealed the genomic landscape in small intestine cancer by subgroup. These findings provide insights for the future development of treatments in advanced small intestine cancer.
Collapse
Affiliation(s)
- Hiroyuki Takeda
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroyuki Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St Marianna University School of Medicine, Kawasaki, Japan
- Department of Bioinformatics, St Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Ritsuko Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St Marianna University School of Medicine, Kawasaki, Japan
| | - Kumiko Umemoto
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroyuki Arai
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Takuro Mizukami
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Kazuki Ogawa
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshiyasu Uchida
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Yusuke Nagata
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Yohei Kubota
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Ayako Doi
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshiki Horie
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Takashi Ogura
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Naoki Izawa
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Jay A Moore
- Cancer Genomics Research, Foundation Medicine, Cambridge, MA
| | - Ethan S Sokol
- Cancer Genomics Research, Foundation Medicine, Cambridge, MA
| | - Yu Sunakawa
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
20
|
Sasaki M, Shimura T, Nishie H, Kuroyanagi K, Kanno T, Fukusada S, Sugimura N, Mizuno Y, Nukui T, Uno K, Kojima Y, Nishigaki R, Tanaka M, Ozeki K, Kubota E, Kataoka H. BRAF K601E-mutated metastatic colorectal cancer in response to combination therapy with encorafenib, binimetinib, and cetuximab: A case report. World J Gastrointest Oncol 2024; 16:3357-3363. [PMID: 39072179 PMCID: PMC11271762 DOI: 10.4251/wjgo.v16.i7.3357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND BRAF mutation has been recognized as a negative prognostic marker for metastatic colorectal cancer (mCRC), but these data are from common BRAF V600E-mutated mCRC. Combination therapy of BRAF inhibitor and anti-epidermal growth factor receptor (EGFR) antibody has been approved for BRAF V600E-mutated mCRC. However, BRAF non-V600 mutations are rare mutations, and their clinical behavior is not understood. Moreover, the BRAF K601E mutation is extremely rare in mCRC, and there have been no reports on its specific treatment. CASE SUMMARY Herein, we report the case of a 59-year-old female with super aggressive mCRC with multiple metastases, which extended to whole body including mediastinal to abdominal lymph nodes, bones, pleura, and peritoneum. The companion diagnostics of tumor tissues showed RAS/BRAF wild-type without microsatellite instability. She received chemotherapy with mFOLFOX6 (oxaliplatin plus infusional 5-fluorouracil [5-FU] and leucovorin) plus panitumumab, following FOLFIRI (irinotecan plus infusional 5-FU and leucovorin) plus ramucirumab. For the next regimen selection, a comprehensive genomic profiling panel was performed and revealed a BRAF K601E mutation, which was not covered in the initial companion diagnostics. After disease progression, a combination of encorafenib, binimetinib, and cetuximab was selected as third-line chemotherapy. The serum levels of tumor markers were immediately decreased accompanied by improvements in pleural effusion and ascites. However, the disease progressed again, and best supportive care was done instead. CONCLUSION This case offers novel insights into the clinical behaviors of BRAF non-V600E-mCRC, potentially advancing personalized therapy for rare and aggressive cases.
Collapse
Affiliation(s)
- Makiko Sasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Hirotada Nishie
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Keita Kuroyanagi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Takuya Kanno
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Shigeki Fukusada
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Naomi Sugimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Yusuke Mizuno
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Takayuki Nukui
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Konomu Uno
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Yuki Kojima
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Ruriko Nishigaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Keiji Ozeki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Japan
| |
Collapse
|
21
|
Liu Y, Li M, Guo Y, Zhang Z, Du L, Zhang X, Wang Y, Zhang D, Xue L, Lei B, Su J, Zhang R, Chen J, Zhang X, Jia Q, Tian C. A patient with BRAF N581S mutation-positive lung adenocarcinoma demonstrates durable response to combined anlotinib and tislelizumab: A case report and literature review. Pathol Res Pract 2024; 259:155371. [PMID: 38820929 DOI: 10.1016/j.prp.2024.155371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Targeted therapy with combined dabrafenib and trametinib has been proven to provide clinical benefits in patients with BRAF V600E mutation-positive NSCLC. Nevertheless, the treatment strategy for NSCLC patients with BRAF non-V600E mutations remains limited. CASE PRESENTATION Here, we present a NSCLC patient with a BRAF N581S mutation, which is a class III BRAF mutation, and this patient had a durable response to targeted therapy with combined anlotinib and tislelizumab. CONCLUSION We hope to bring more attention to rare non-V600 BRAF mutations by presenting this case of NSCLC.
Collapse
Affiliation(s)
- Ying Liu
- Department of Precision Medicine Center, Sanmenxia Central Hospital, Sanmenxia, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yu Guo
- Department of Precision Medicine Center, Sanmenxia Central Hospital, Sanmenxia, China
| | - Zhiyong Zhang
- Department of Traditional Chinese Medicine, Sanmenxia Central Hospital, Sanmenxia, China
| | - Liuyang Du
- Department of Statistics Branch, Sanmenxia Central Hospital, Sanmenxia, China
| | - Xiaotong Zhang
- Department of Oncology, Sanmenxia Central Hospital, Sanmenxia, China
| | - Yingping Wang
- Department of Oncology, Sanmenxia Central Hospital, Sanmenxia, China
| | - Dong Zhang
- Department of Oncology, Sanmenxia Central Hospital, Sanmenxia, China
| | - Lingfei Xue
- Department of Oncology, Sanmenxia Central Hospital, Sanmenxia, China
| | - Binhua Lei
- Department of Oncology, Sanmenxia Central Hospital, Sanmenxia, China
| | - Jing Su
- Department of Oncology, Sanmenxia Central Hospital, Sanmenxia, China
| | - Ruiwen Zhang
- Department of Oncology, Sanmenxia Central Hospital, Sanmenxia, China
| | - Jiaohong Chen
- Department of Oncology, Sanmenxia Central Hospital, Sanmenxia, China
| | - Xiangqian Zhang
- Department of Oncology, Sanmenxia Central Hospital, Sanmenxia, China
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| | - Chuntao Tian
- Department of Oncology, Sanmenxia Central Hospital, Sanmenxia, China.
| |
Collapse
|
22
|
Imyanitov EN, Mitiushkina NV, Kuligina ES, Tiurin VI, Venina AR. Pathways and targeting avenues of BRAF in non-small cell lung cancer. Expert Opin Ther Targets 2024; 28:613-622. [PMID: 38941191 DOI: 10.1080/14728222.2024.2374742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024]
Abstract
INTRODUCTION BRAF is a serine-threonine kinase implicated in the regulation of MAPK signaling cascade. BRAF mutation-driven activation occurs in approximately 2-4% of treatment-naive non-small cell carcinomas (NSCLCs). BRAF upregulation is also often observed in tumors with acquired resistance to receptor tyrosine kinase inhibitors (TKIs). AREAS COVERED This review describes the spectrum of BRAF mutations and their functional roles, discusses treatment options available for BRAF p.V600 and non-V600 mutated NSCLCs, and identifies some gaps in the current knowledge. EXPERT OPINION Administration of combined BRAF/MEK inhibitors usually produces significant, although often a short-term, benefit to NSCLC patients with BRAF V600 (class 1) mutations. There are no established treatments for BRAF class 2 (L597, K601, G464, G469A/V/R/S, fusions, etc.) and class 3 (D594, G596, G466, etc.) mutants, which account for up to two-thirds of BRAF-driven NSCLCs. Many important issues related to the use of immune therapy for the management of BRAF-mutated NSCLC deserve further investigation. The rare occurrence of BRAF mutations in NSCLC is compensated by high overall incidence of lung cancer disease; therefore, clinical studies on BRAF-associated NSCLC are feasible.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| | - Natalia V Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Ekatherina Sh Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Vladislav I Tiurin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Aigul R Venina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| |
Collapse
|
23
|
Karras F, Kunz M. Patient-derived melanoma models. Pathol Res Pract 2024; 259:155231. [PMID: 38508996 DOI: 10.1016/j.prp.2024.155231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Melanoma is a very aggressive, rapidly metastasizing tumor that has been studied intensively in the past regarding the underlying genetic and molecular mechanisms. More recently developed treatment modalities have improved response rates and overall survival of patients. However, the majority of patients suffer from secondary treatment resistance, which requires in depth analyses of the underlying mechanisms. Here, melanoma models based on patients-derived material may play an important role. Consequently, a plethora of different experimental techniques have been developed in the past years. Among these are 3D and 4D culture techniques, organotypic skin reconstructs, melanoma-on-chip models and patient-derived xenografts, Every technique has its own strengths but also weaknesses regarding throughput, reproducibility, and reflection of the human situation. Here, we provide a comprehensive overview of currently used techniques and discuss their use in different experimental settings.
Collapse
Affiliation(s)
- Franziska Karras
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg 39120, Germany.
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, Leipzig 04103, Germany
| |
Collapse
|
24
|
Scotece M, Drosten M. A new BRAF inhibitor breaks resistance barriers. Trends Cancer 2024; 10:576-578. [PMID: 38866669 DOI: 10.1016/j.trecan.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Approved BRAF inhibitors have shown limited clinical benefit due to recurrent disease progression. In a recent Cancer Discovery paper, Yaeger et al. show that a next-generation BRAF inhibitor, PF-07799933, has widespread therapeutic activity in experimental models and patients who were refractory to treatment with approved BRAF inhibitors.
Collapse
Affiliation(s)
- Morena Scotece
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-USAL, Salamanca, Spain
| | - Matthias Drosten
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-USAL, Salamanca, Spain.
| |
Collapse
|
25
|
Dorighi KM, Zhu A, Fortin JP, Hung-Hao Lo J, Sudhamsu J, Wendorff TJ, Durinck S, Callow M, Foster SA, Haley B. Accelerated drug-resistant variant discovery with an enhanced, scalable mutagenic base editor platform. Cell Rep 2024; 43:114313. [PMID: 38838224 DOI: 10.1016/j.celrep.2024.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Personalized cancer therapeutics bring directed treatment options to patients based on their tumor's genetic signature. Unfortunately, tumor genomes are remarkably adaptable, and acquired resistance through gene mutation frequently occurs. Identifying mutations that promote resistance within drug-treated patient populations can be cost, resource, and time intensive. Accordingly, base editing, enabled by Cas9-deaminase domain fusions, has emerged as a promising approach for rapid, large-scale gene variant screening in situ. Here, we adapt and optimize a conditional activation-induced cytidine deaminase (AID)-dead Cas9 (dCas9) system, which demonstrates greater heterogeneity of edits with an expanded footprint compared to the most commonly utilized cytosine base editor, BE4. In combination with a custom single guide RNA (sgRNA) library, we identify individual and compound variants in epidermal growth factor receptor (EGFR) and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) that confer resistance to established EGFR inhibitors. This system and analytical pipeline provide a simple, highly scalable platform for cis or trans drug-modifying variant discovery and for uncovering valuable insights into protein structure-function relationships.
Collapse
Affiliation(s)
- Kristel M Dorighi
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Anqi Zhu
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jean-Philippe Fortin
- Department of Data Science and Statistical Computing, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jerry Hung-Hao Lo
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Timothy J Wendorff
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Steffen Durinck
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Marinella Callow
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Scott A Foster
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
26
|
Castrejon N, Martin R, Carrasco A, Castillo P, Garcia A, Albero-González R, García M, Marginet M, Palau N, Hernández M, Montironi C, Clot G, Arance A, Alos L, Teixido C. Feasibility and Impact of Embedding an Extended DNA and RNA Tissue-Based Sequencing Panel for the Routine Care of Patients with Advanced Melanoma in Spain. Int J Mol Sci 2024; 25:6942. [PMID: 39000050 PMCID: PMC11241382 DOI: 10.3390/ijms25136942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Targeted NGS allows a fast and efficient multi-gene analysis and the detection of key gene aberrations in melanoma. In this study, we aim to describe the genetic alterations in a series of 87 melanoma cases using the oncomine focus assay (OFA), relate these results with the clinicopathological features of the patients, and compare them with our previous study results in which we used a smaller panel, the oncomine solid tumor (OST) DNA kit. Patients diagnosed with advanced melanoma at our center from 2020 to 2022 were included and DNA and RNA were extracted for sequencing. Common mutated genes were BRAF (29%), NRAS (28%), ALK, KIT, and MAP2K1 (5% each). Co-occurring mutations were detected in 29% of the samples, including BRAF with KIT, CTNNB1, EGFR, ALK, HRAS, or MAP2K1. Amplifications and rearrangements were detected in 5% of cases. Only BRAF mutation showed a significant statistical association with sun exposure. For patients with a given genetic profile, the melanoma survival and recurrence-free survival rates were equivalent, but not for stage and LDH values. This expanded knowledge of molecular alterations has helped to more comprehensively characterize our patients and has provided relevant information for deciding the best treatment strategy.
Collapse
Affiliation(s)
- Natalia Castrejon
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Roberto Martin
- Department of Medical Oncology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Antonio Carrasco
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Paola Castillo
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Adriana Garcia
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Raquel Albero-González
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Mireia García
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Marta Marginet
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Núria Palau
- Molecular Biology Core Facility, Hospital Clínic, 08036 Barcelona, Spain
| | - Mónica Hernández
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Carla Montironi
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Molecular Biology Core Facility, Hospital Clínic, 08036 Barcelona, Spain
| | - Guillem Clot
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Llucia Alos
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Cristina Teixido
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Molecular Biology Core Facility, Hospital Clínic, 08036 Barcelona, Spain
| |
Collapse
|
27
|
Tóth LJ, Mokánszki A, Méhes G. The rapidly changing field of predictive biomarkers of non-small cell lung cancer. Pathol Oncol Res 2024; 30:1611733. [PMID: 38953007 PMCID: PMC11215025 DOI: 10.3389/pore.2024.1611733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Lung cancer is a leading cause of cancer-related death worldwide in both men and women, however mortality in the US and EU are recently declining in parallel with the gradual cut of smoking prevalence. Consequently, the relative frequency of adenocarcinoma increased while that of squamous and small cell carcinomas declined. During the last two decades a plethora of targeted drug therapies have appeared for the treatment of metastasizing non-small cell lung carcinomas (NSCLC). Personalized oncology aims to precisely match patients to treatments with the highest potential of success. Extensive research is done to introduce biomarkers which can predict the effectiveness of a specific targeted therapeutic approach. The EGFR signaling pathway includes several sufficient targets for the treatment of human cancers including NSCLC. Lung adenocarcinoma may harbor both activating and resistance mutations of the EGFR gene, and further, mutations of KRAS and BRAF oncogenes. Less frequent but targetable genetic alterations include ALK, ROS1, RET gene rearrangements, and various alterations of MET proto-oncogene. In addition, the importance of anti-tumor immunity and of tumor microenvironment has become evident recently. Accumulation of mutations generally trigger tumor specific immune defense, but immune protection may be upregulated as an aggressive feature. The blockade of immune checkpoints results in potential reactivation of tumor cell killing and induces significant tumor regression in various tumor types, such as lung carcinoma. Therapeutic responses to anti PD1-PD-L1 treatment may correlate with the expression of PD-L1 by tumor cells. Due to the wide range of diagnostic and predictive features in lung cancer a plenty of tests are required from a single small biopsy or cytology specimen, which is challenged by major issues of sample quantity and quality. Thus, the efficacy of biomarker testing should be warranted by standardized policy and optimal material usage. In this review we aim to discuss major targeted therapy-related biomarkers in NSCLC and testing possibilities comprehensively.
Collapse
Affiliation(s)
- László József Tóth
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
28
|
Raemy A, May L, Sala N, Diezi M, Beck-Popovic M, Broome M. Anti-MAPK Targeted Therapy for Ameloblastoma: Case Report with a Systematic Review. Cancers (Basel) 2024; 16:2174. [PMID: 38927880 PMCID: PMC11201667 DOI: 10.3390/cancers16122174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Ameloblastoma, a benign yet aggressive odontogenic tumor known for its recurrence and the severe morbidity from radical surgeries, may benefit from advancements in targeted therapy. We present a case of a 15-year-old girl with ameloblastoma successfully treated with targeted therapy and review the literature with this question: Is anti-MAPK targeted therapy safe and effective for treating ameloblastoma? This systematic review was registered in PROSPERO, adhered to PRISMA guidelines, and searched multiple databases up to December 2023, identifying 13 relevant studies out of 647 records, covering 23 patients treated with MAPK inhibitor therapies. The results were promising as nearly all patients showed a positive treatment response, with four achieving complete radiological remission and others showing substantial reductions in primary, recurrent, and metastatic ameloblastoma sizes. Side effects were mostly mild to moderate. This study presents anti-MAPK therapy as a significant shift from invasive surgical treatments, potentially enhancing life quality and clinical outcomes by offering a less invasive yet effective treatment alternative. This approach could signify a breakthrough in managing this challenging tumor, emphasizing the need for further research into molecular-targeted therapies.
Collapse
Affiliation(s)
- Anton Raemy
- Department of Maxillofacial Surgery, Lausanne University Hospital, 1011 Lausanne, Switzerland; (L.M.); (M.B.)
| | - Laurence May
- Department of Maxillofacial Surgery, Lausanne University Hospital, 1011 Lausanne, Switzerland; (L.M.); (M.B.)
| | - Nathalie Sala
- Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland;
| | - Manuel Diezi
- Department of Paediatric Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (M.D.); (M.B.-P.)
| | - Maja Beck-Popovic
- Department of Paediatric Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (M.D.); (M.B.-P.)
| | - Martin Broome
- Department of Maxillofacial Surgery, Lausanne University Hospital, 1011 Lausanne, Switzerland; (L.M.); (M.B.)
| |
Collapse
|
29
|
Khoury JVE, Wehbe S, Attieh F, Boutros M, Kesrouani C, Kourie HR. A critical review of RAF inhibitors in BRAF-mutated glioma treatment. Pharmacogenomics 2024; 25:343-355. [PMID: 38884947 PMCID: PMC11404696 DOI: 10.1080/14622416.2024.2355859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
BRAF gliomas have garnered significant attention in research due to the lack of effective treatments and their notable incidence, constituting 3% of all gliomas. This underlines the importance of investigating this area and the impact that targeted therapies could hold. This review discusses the development of targeted therapies for these tumors, examining the effectiveness of first-generation BRAF inhibitors such as Vemurafenib, Dabrafenib and Encorafenib, while addressing the challenges posed by paradoxical ERK activation. The advent of pan-RAF inhibitors, notably Tovorafenib, offers a promising advance, demonstrating enhanced efficacy and better penetration of the blood-brain barrier, without the issue of paradoxical activation. Nevertheless, continued research is essential to refine therapeutic strategies for BRAF-mutated gliomas, given the evolving nature of targeted therapy development.
Collapse
Affiliation(s)
| | - Sophie Wehbe
- Université Saint-Joseph de Beyrouth, Beyrouth, 11-5076, Lebanon
| | - Fouad Attieh
- Université Saint-Joseph de Beyrouth, Beyrouth, 11-5076, Lebanon
| | - Marc Boutros
- Université Saint-Joseph de Beyrouth, Beyrouth, 11-5076, Lebanon
| | - Carole Kesrouani
- Department of Pathology, Université Saint-Joseph de Beyrouth, Beyrouth, 11-5076, Lebanon
| | - Hampig Raphaël Kourie
- Department of Hematology-Oncology, Université Saint-Joseph de Beyrouth, Beyrouth, 11-5076, Lebanon
| |
Collapse
|
30
|
Jha P, Pengal R, Shah M, Kulkarni PM, Mishra R, Menon N, Vikkath N, Menon S, Ramachandran V, Prakash G, Noronha V, Prabhash K, Kumar P. Identification of Rare EIF3E::RSPO2 Fusion in Recurrent and Aggressive Urachal Adenocarcinoma. Genes Chromosomes Cancer 2024; 63:e23250. [PMID: 38884183 DOI: 10.1002/gcc.23250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
INTRODUCTION Urachal cancer (UC) is a rare genitourinary malignancy arising from the urachus, an embryonic remnant of the placental allantois. Its diagnosis remains ambiguous with late-stage cancer detection and represents a highly aggressive disease. Due to its rarity, there is no clear consensus on molecular signatures and appropriate clinical management of UC. CASE REPORT We report a 45-year-old man with recurrent urachal adenocarcinoma (UA) treated with cystectomies, chemotherapy, and radiotherapy. The patient initially presented with hematuria and abdominal pain. Imaging revealed a nodular mass arising from the superior wall of the urinary bladder and extending to the urachus. Biopsy results suggested moderately differentiated UA with muscle layer involvement. The tumor recurred after 20 months, following which, another partial cystectomy was performed. Repeat progression was noted indicating highly aggressive disease. Targeted next-generation sequencing revealed the presence of EIF3E::RSPO2 fusion, along with BRAF and TP53 mutations, and EGFR gene amplification. This is the first case reporting the presence of this fusion in UA. Palliative medication and radiotherapy were administered to manage the disease. CONCLUSION Current treatment modality of surgery may be effective in the early stages of recurrent UA; however, a standard chemotherapy and radiotherapy regimen is yet to be determined for advanced stages. The detection of the rare EIF3E::RSPO2 fusion warrants further studies on the significance of this variant as a possible therapeutic target for improved clinical management.
Collapse
Affiliation(s)
- Prerana Jha
- Advance Centre for Cancer Diagnostics and Research, Karkinos Healthcare Pvt Ltd, Navi Mumbai, Maharashtra, India
- Karkinos Foundation, Mumbai, Maharashtra, India
| | - Ruma Pengal
- Advance Centre for Cancer Diagnostics and Research, Karkinos Healthcare Pvt Ltd, Navi Mumbai, Maharashtra, India
- Karkinos Foundation, Mumbai, Maharashtra, India
| | - Minit Shah
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Pooja Mahesh Kulkarni
- Advance Centre for Cancer Diagnostics and Research, Karkinos Healthcare Pvt Ltd, Navi Mumbai, Maharashtra, India
| | - Rohit Mishra
- Advance Centre for Cancer Diagnostics and Research, Karkinos Healthcare Pvt Ltd, Navi Mumbai, Maharashtra, India
| | - Nandini Menon
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Narendranath Vikkath
- Advance Centre for Cancer Diagnostics and Research, Karkinos Healthcare Pvt Ltd, Navi Mumbai, Maharashtra, India
| | - Santosh Menon
- Department of Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Venkataramanan Ramachandran
- Advance Centre for Cancer Diagnostics and Research, Karkinos Healthcare Pvt Ltd, Navi Mumbai, Maharashtra, India
- Karkinos Foundation, Mumbai, Maharashtra, India
- Department of Surgery, Tata Memorial Hospital and Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Gagan Prakash
- Department of Surgery, Tata Memorial Hospital and Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Vanita Noronha
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Prashant Kumar
- Advance Centre for Cancer Diagnostics and Research, Karkinos Healthcare Pvt Ltd, Navi Mumbai, Maharashtra, India
- Karkinos Foundation, Mumbai, Maharashtra, India
- Centre of Excellence for Cancer, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
31
|
Scardaci R, Berlinska E, Scaparone P, Vietti Michelina S, Garbo E, Novello S, Santamaria D, Ambrogio C. Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node. Mol Oncol 2024; 18:1355-1377. [PMID: 38362705 PMCID: PMC11161739 DOI: 10.1002/1878-0261.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the RAS-RAF-MEK-ERK pathway are frequent alterations in cancer and RASopathies, and while RAS oncogene activation alone affects 19% of all patients and accounts for approximately 3.4 million new cases every year, less frequent alterations in the cascade's downstream effectors are also involved in cancer etiology. RAS proteins initiate the signaling cascade by promoting the dimerization of RAF kinases, which can act as oncoproteins as well: BRAFV600E is the most common oncogenic driver, mutated in the 8% of all malignancies. Research in this field led to the development of drugs that target the BRAFV600-like mutations (Class I), which are now utilized in clinics, but cause paradoxical activation of the pathway and resistance development. Furthermore, they are ineffective against non-BRAFV600E malignancies that dimerize and could be either RTK/RAS independent or dependent (Class II and III, respectively), which are still lacking an effective treatment. This review discusses the recent advances in anti-RAF therapies, including paradox breakers, dimer-inhibitors, immunotherapies, and other novel approaches, critically evaluating their efficacy in overcoming the therapeutic limitations, and their putative role in blocking the RAS pathway.
Collapse
Affiliation(s)
- Rossella Scardaci
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Edoardo Garbo
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - Silvia Novello
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - David Santamaria
- Centro de Investigación del CáncerCSIC‐Universidad de SalamancaSpain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| |
Collapse
|
32
|
Murphy ZR, Bianchini EC, Smith A, Körner LI, Russell T, Reinecke D, Wang Y, Snuderl M, Orringer DA, Evrony GD. Ultra-Rapid Droplet Digital PCR Enables Intraoperative Tumor Quantification. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24308126. [PMID: 38854127 PMCID: PMC11160868 DOI: 10.1101/2024.05.29.24308126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The diagnosis and treatment of tumors often depends on molecular-genetic data. However, rapid and iterative access to molecular data is not currently feasible during surgery, complicating intraoperative diagnosis and precluding measurement of tumor cell burdens at surgical margins to guide resections. To address this gap, we developed Ultra-Rapid droplet digital PCR (UR-ddPCR), which can be completed in 15 minutes from tissue to result with an accuracy comparable to standard ddPCR. We demonstrate UR-ddPCR assays for the IDH1 R132H and BRAF V600E clonal mutations that are present in many low-grade gliomas and melanomas, respectively. We illustrate the clinical feasibility of UR-ddPCR by performing it intraoperatively for 13 glioma cases. We further combine UR-ddPCR measurements with UR-stimulated Raman histology intraoperatively to estimate tumor cell densities in addition to tumor cell percentages. We anticipate that UR-ddPCR, along with future refinements in assay instrumentation, will enable novel point-of-care diagnostics and the development of molecularly-guided surgeries that improve clinical outcomes.
Collapse
Affiliation(s)
- Zachary R. Murphy
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Laura and Isaac Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Emilia C. Bianchini
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Laura and Isaac Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Andrew Smith
- Department of Neurosurgery, New York University Grossman School of Medicine, USA
| | - Lisa I. Körner
- Department of Neurosurgery, New York University Grossman School of Medicine, USA
| | - Teresa Russell
- Department of Neurosurgery, New York University Grossman School of Medicine, USA
| | - David Reinecke
- Department of Neurosurgery, New York University Grossman School of Medicine, USA
| | - Yuxiu Wang
- Department of Pathology, New York University Grossman School of Medicine, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health
| | - Matija Snuderl
- Department of Pathology, New York University Grossman School of Medicine, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health
| | - Daniel A. Orringer
- Department of Neurosurgery, New York University Grossman School of Medicine, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health
| | - Gilad D. Evrony
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Laura and Isaac Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| |
Collapse
|
33
|
Mahipal A, Storandt MH, Teslow EA, Jaeger E, Stoppler MC, Jin Z, Chakrabarti S. Frequency of Common and Uncommon BRAF Alterations among Colorectal and Non-Colorectal Gastrointestinal Malignancies. Cancers (Basel) 2024; 16:1823. [PMID: 38791902 PMCID: PMC11119877 DOI: 10.3390/cancers16101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The predictive and prognostic role of BRAF alterations has been evaluated in colorectal cancer (CRC); however, BRAF alterations have not been fully characterized in non-CRC gastrointestinal (GI) malignancies. In the present study, we report the frequency and spectrum of BRAF alterations among patients with non-CRC GI malignancies. METHODS Patients with CRC and non-CRC GI malignancies who underwent somatic tumor profiling via a tissue-based or liquid-based assay were included in this study. Gain-of-function BRAF alterations were defined as pathogenic/likely pathogenic somatic short variants (SVs), copy number amplifications ≥8, or fusions (RNA or DNA). RESULTS Among 51,560 patients with somatic profiling, 40% had CRC and 60% had non-CRC GI malignancies. BRAF GOF alterations were seen more frequently in CRC (8.9%) compared to non-CRC GI malignancies (2.2%) (p < 0.001). Non-CRC GI malignancies with the highest prevalence of BRAF GOF alterations were bile duct cancers (4.1%) and small intestine cancers (4.0%). Among BRAF GOF alterations, class II (28% vs. 6.8%, p < 0.001) and class III (23% vs. 14%, p < 0.001) were more common in non-CRC GI malignancies. Among class II alterations, rates of BRAF amplifications (3.1% vs. 0.3%, p < 0.001) and BRAF fusions (12% vs. 2.2%, p < 0.001) were higher in non-CRC GI malignancies compared to CRC. CONCLUSIONS Non-CRC GI malignancies demonstrate a distinct BRAF alteration profile compared to CRC, with a higher frequency of class II and III mutations, and more specifically, a higher incidence of BRAF fusions. Future studies should evaluate clinical implications for the management of non-CRC GI patients with BRAF alterations, especially BRAF fusions.
Collapse
Affiliation(s)
- Amit Mahipal
- Department of Medical Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | | | - Emily A. Teslow
- Tempus AI, Chicago, IL 60654, USA; (E.A.T.); (E.J.); (M.C.S.)
| | - Ellen Jaeger
- Tempus AI, Chicago, IL 60654, USA; (E.A.T.); (E.J.); (M.C.S.)
| | | | - Zhaohui Jin
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sakti Chakrabarti
- Department of Medical Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
34
|
Fei F, Caporale C, Chang L, Fortini BK, Ali H, Bell D, Stein A, Marcucci G, Telatar M, Afkhami M. BRAF Mutations in Patients with Myeloid Neoplasms: A Cancer Center Multigene Next-Generation Sequencing Analysis Experience. Int J Mol Sci 2024; 25:5183. [PMID: 38791222 PMCID: PMC11121641 DOI: 10.3390/ijms25105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
BRAF mutations are rare in myeloid neoplasms and are reported to be associated with poor treatment outcomes. The purpose of our study is to characterize BRAF mutations in myeloid neoplasms using a next-generation sequencing (NGS) panel based on the experiences of a single cancer center. We conducted a retrospective review of patients with myeloid neoplasms who underwent the HopeSeq studies between January 2018 and September 2023. A total of 14 patients with myeloid neoplasms carrying BRAF mutations were included in our cohort. The clinical, pathological, and molecular features of these patients were investigated. Our study indicates that BRAF mutations are rare in myeloid neoplasms, constituting only 0.53% (14/2632) of all myeloid neoplasm cases, with the most common BRAF mutation being BRAF V600E (4/14; 28.6%). Interestingly, we observed that six out of seven patients with acute myeloid leukemia (AML) exhibited AML with monocytic differentiation, and all the patients with AML exhibited an extremely poor prognosis compared to those without BRAF mutations. TET2 (5/14; 35.7%), ASXL1 (4/14; 28.6%), and JAK2 (4/14; 28.6%) were the three most frequently co-mutated genes in these patients. Moreover, we noted concurrent KMT2A gene rearrangement with BRAF mutations in three patients with AML (3/7; 42.9%). Our study suggests that although BRAF mutations are rare in myeloid neoplasms, they play a crucial role in the pathogenesis of specific AML subtypes. Furthermore, RAS pathway alterations, including BRAF mutations, are associated with KMT2A gene rearrangement in AML. However, these findings warrant further validation in larger studies.
Collapse
Affiliation(s)
- Fei Fei
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.)
| | - Caitlin Caporale
- Breast Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Lisa Chang
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.)
| | | | - Haris Ali
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Diana Bell
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Anthony Stein
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Guido Marcucci
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Milhan Telatar
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.)
| | - Michelle Afkhami
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.)
| |
Collapse
|
35
|
Gou Q, Gou Q, Gan X, Xie Y. Novel therapeutic strategies for rare mutations in non-small cell lung cancer. Sci Rep 2024; 14:10317. [PMID: 38705930 PMCID: PMC11070427 DOI: 10.1038/s41598-024-61087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/30/2024] [Indexed: 05/07/2024] Open
Abstract
Lung cancer is still the leading cause of cancer-related mortality. Over the past two decades, the management of non-small cell lung cancer (NSCLC) has undergone a significant revolution. Since the first identification of activating mutations in the epidermal growth factor receptor (EGFR) gene in 2004, several genetic aberrations, such as anaplastic lymphoma kinase rearrangements (ALK), neurotrophic tropomyosin receptor kinase (NTRK) and hepatocyte growth factor receptor (MET), have been found. With the development of gene sequencing technology, the development of targeted drugs for rare mutations, such as multikinase inhibitors, has provided new strategies for treating lung cancer patients with rare mutations. Patients who harbor this type of oncologic driver might acquire a greater survival benefit from the use of targeted therapy than from the use of chemotherapy and immunotherapy. To date, more new agents and regimens can achieve satisfactory results in patients with NSCLC. In this review, we focus on recent advances and highlight the new approval of molecular targeted therapy for NSCLC patients with rare oncologic drivers.
Collapse
Affiliation(s)
- Qitao Gou
- Department of Radiation Oncology and Department of Head & Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Department of Radiation Oncology and Department of Head & Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaochuan Gan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxin Xie
- Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Watanabe H, Inoue Y, Karayama M, Yazawa S, Mochizuka Y, Yasui H, Hozumi H, Suzuki Y, Furuhashi K, Enomoto N, Fujisawa T, Shinmura K, Inui N, Suda T. Characterization of BRAFThr599dup Mutation as a Targetable Driver Mutation Identified in Lung Adenocarcinoma by Comprehensive Genomic Profiling. JCO Precis Oncol 2024; 8:e2300538. [PMID: 38662982 DOI: 10.1200/po.23.00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 04/30/2024] Open
Abstract
PURPOSE Understanding the function of BRAF mutants is crucial for determining the best treatment strategy. This study aimed to characterize a rare BRAF variant, BRAFThr599dup, which was identified in a patient with lung adenocarcinoma (LUAD) by comprehensive genomic profiling. MATERIALS AND METHODS We report a case of LUAD with BRAFThr599dup treated with dabrafenib and trametinib. We conditionally expressed wild-type BRAF, BRAFV600E, or BRAFThr599dup in Ba/F3 cells and BEAS-2B cells. Ba/F3 cells carrying double-mutant BRAF (BRAFThr599dup/R509H, BRAFV600E/R509H, or BRAFK601E/R509H) that lacked the dimerizing ability were also established. Knockout of endogenous BRAF or CRAF in Ba/F3-BRAFThr599dup cells and Ba/F3-BRAFV600E cells was performed using the CRISPR/Cas9 system. Cell viability, mitogen-activated protein kinase (MAPK) signaling activity, and sensitivity to dabrafenib and trametinib were evaluated. RESULTS The patient was revealed to have BRAFThr599dup-positive tumor cells as a predominant clone, and dabrafenib and trametinib treatment showed modest efficacy. In Ba/F3 cells, both BRAFThr599dup and BRAFV600E similarly caused interleukin-3-independent proliferation and activated the MAPK pathway. Moreover, BRAFThr599dup and BRAFV600E similarly caused a significant increase in the anchorage-independent growth ability of BEAS-2B cells. Along with Ba/F3-BRAFV600E cells, Ba/F3-BRAFThr599dup cells were highly sensitive to a monomer-specific BRAF inhibitor, dabrafenib, with a half-maximal inhibitory concentration value of 29.7 nM. In the absence of wild-type BRAF, wild-type CRAF, or an intact dimer interface, the ability to induce oncogenic addiction and MAPK pathway activation in Ba/F3-BRAFThr599dup cells was not affected, which was in contrast to the findings in the BRAFK601E/R509H double-mutant model. CONCLUSION BRAFThr599dup is a potent driver oncogene that activates the MAPK pathway without the requirement for dimerization in vitro. Because BRAFThr599dup has been recurrently reported across various cancer types, our findings should be further investigated both mechanistically and clinically.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Chemotherapy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shusuke Yazawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasutaka Mochizuka
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
37
|
Johnson D, Chee CE, Wong W, Lam RCT, Tan IBH, Ma BBY. Current advances in targeted therapy for metastatic colorectal cancer - Clinical translation and future directions. Cancer Treat Rev 2024; 125:102700. [PMID: 38422896 DOI: 10.1016/j.ctrv.2024.102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
The last two decades have witnessed major breakthroughs in the development of targeted therapy for patients with metastatic colorectal cancer (mCRC), an achievement which stems largely from advances in translational research. Precision medicine is now widely practiced in routine oncological care, where systemic therapy is individualized based on clinical factors such as primary tumor sidedness, location and number of metastases, as well as molecular factors such as the RAS and BRAF mutation status, mismatch repair / microsatellite status and presence of other actionable genomic alterations in the tumor. The optimal selection of patients with RAS and BRAF-wild type (WT), left-sided primary tumor for treatment with epidermal growth factor receptor (EGFR) and chemotherapy (chemo) has markedly improved survival in the first-line setting. The pivotal trials of cetuximab in combination with BRAF/ MEK inhibitor for BRAF V600E mutant mCRC, and panitumumab with KRAS G12C inhibitor in KRAS(G12C)-mutant mCRC have been practice-changing. Anti-HER2 small molecular inhibitor, antibodies and antibody-drug conjugates have significantly improved the treatment outcome of patients with HER2 amplified mCRC. Anti-angiogenesis agents are now used across all lines of treatment and novel combinations with immune-checkpoint inhibitors are under active investigation in MSS mCRC. The non-invasive monitoring of molecular resistance to targeted therapies using Next Generation Sequencing analysis of circulating tumor-derived DNA (ctDNA) and captured sequencing of tumors have improved patient selection for targeted therapies. This review will focus on how latest advances, challenges and future directions in the development of targeted therapies in mCRC.
Collapse
Affiliation(s)
- David Johnson
- Department of Clinical Oncology, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Cheng Ean Chee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore.
| | - Wesley Wong
- Department of Clinical Oncology, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Rachel C T Lam
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Iain Bee Huat Tan
- National Cancer Centre Singapore and Duke NUS, Graduate Medical School and Genome Institute of Singapore, Singapore.
| | - Brigette B Y Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
38
|
Hu J, Chen X, Sun F, Liu L, Liu L, Yang Z, Zhang H, Yu Z, Zhao R, Wang Y, Liu H, Yang X, Sun F, Han B. Identification of recurrent BRAF non-V600 mutations in intraductal carcinoma of the prostate in Chinese populations. Neoplasia 2024; 50:100983. [PMID: 38417222 PMCID: PMC10904907 DOI: 10.1016/j.neo.2024.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
While BRAF alterations have been established as a driver in various solid malignancies, the characterization of BRAF alterations in prostate cancer (PCa) has not been thoroughly interrogated. By bioinformatics analysis, we first found that BRAF alterations were associated with advanced PCa and exhibited mutually exclusive pattern with ERG alteration across multiple cohorts. Of the most interest, recurrent non-V600 BRAF mutations were found in 3 of 21 (14.3 %) PCa patients demonstrating IDC-P morphology. Furthermore, experimental overexpression of BRAFK601E and BRAFL597R exhibited emergence of oncogenic phenotypes with intensified MAPK signaling in vitro, which could be targeted by MEK inhibitors. Comparison of the incidence of BRAF alterations in IDC-P between western and Chinese ancestry revealed an increased prevalence in the Chinese population. The BRAF mutation may represent important genetic alteration in a subset of IDC-P, highlighting the role of MAPK signaling pathway in this subtype of PCa. To the best of knowledge, this is the first description of non-V600 BRAF mutation in setting of IDC-P, which may in part explain the aggressive phenotype seen in IDC-P and could also bring more treatment options for PCa patients with IDC-P harboring such mutations.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xinyi Chen
- Department of Pathology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group) Qingdao, Shandong, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Feifei Sun
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lili Liu
- Department of Pathology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group) Qingdao, Shandong, China
| | - Long Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Zimeng Yang
- Department of Taekwondo, Art, Design, & Physical Education, Chosun University, Gwangju, Republic of Korea
| | - Hanwen Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zeyuan Yu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ru Zhao
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yueyao Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fusheng Sun
- Department of Pathology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Bo Han
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
39
|
Shao J, Xiong B, Lei D, Chen X. Unveiling NRlncRNAs as prognostic biomarkers and therapeutic targets for head-and-neck squamous cell carcinoma through machine learning. ENVIRONMENTAL TOXICOLOGY 2024; 39:2439-2451. [PMID: 38205899 DOI: 10.1002/tox.24108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/02/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024]
Abstract
Head-and-neck squamous cell carcinoma (HNSCC) patients often exhibit insensitivity to immunotherapy, leading to treatment failure. Identifying potential biomarkers that can predict prognosis and improve the efficacy of treatment is crucial. In this study, we aimed to identify necroptosis-related long noncoding RNAs (NRlncRNAs) as potential therapeutic targets to improve the prognosis of HNSCC patients. By exploring the Genotype-Tissue Expression Project (GTEx) and the Cancer Genome Atlas (TCGA) databases, we identified NRlncRNAs and developed a risk model comprising 17 NRlncRNAs to predict the prognosis of HNSCC patients and to classify patients into two clusters based on their expression levels. We conducted various analyses, such as the Kaplan-Meier analysis, GSEA and IC50 prediction, to evaluate the differences in sensitivity to immunotherapy between the two clusters. Our findings suggest that NRlncRNAs have potential as therapeutic targets for improving the prognosis of HNSCC patients, and that individualized treatment approaches based on NRlncRNA expression levels can improve the sensitivity of immunotherapy and overall treatment outcomes. This study highlights new perspectives within clinical cancer informatics and provides insight into potential therapeutic strategies for HNSCC patients.
Collapse
Affiliation(s)
- Jiao Shao
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Xiong
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Deru Lei
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojian Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
40
|
Sahai V, Rothe M, Mangat PK, Garrett-Mayer E, Suhag V, Dib EG, Mehmi I, Kadakia KC, Pisick E, Duvivier HL, Le P, Li R, Michelin DP, Wilcox RE, Grantham GN, Hinshaw DC, Gregory A, Halabi S, Schilsky RL. Regorafenib in Patients With Solid Tumors With BRAF Alterations: Results From the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. JCO Precis Oncol 2024; 8:e2300527. [PMID: 38603652 PMCID: PMC10896467 DOI: 10.1200/po.23.00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 11/22/2023] [Indexed: 04/13/2024] Open
Abstract
PURPOSE Targeted Agent and Profiling Utilization Registry is a phase II basket trial evaluating the antitumor activity of commercially available targeted agents in patients with advanced cancer with genomic alterations known to be drug targets. Results of a cohort of patients with solid tumors with BRAF alterations treated with regorafenib are reported. METHODS Eligible patients had measurable disease (RECIST v.1.1), Eastern Cooperative Oncology Group performance status 0-1, adequate organ function, and no standard treatment options. The primary end point was disease control (DC), defined as investigator assessment of patients with complete or partial response (PR) or stable disease of at least 16-weeks duration (SD16+). Low accruing histology-specific cohorts with BRAF alterations treated with regorafenib were collapsed into a single histology-pooled cohort for this analysis. The results were evaluated on the basis of a one-sided exact binomial test with a null DC rate of 15% versus 35% (power, 0.84; α, .10). Secondary end points were objective response (OR), progression-free survival, overall survival, duration of response, duration of stable disease, and safety. RESULTS Twenty-eight patients with 12 tumor types with BRAF alterations were enrolled from June 2016 to June 2021. All patients were evaluable for efficacy. Two patients with PR and four with SD16+ were observed for DC and OR rates of 21% (90% CI, 12 to 100) and 7% (95% CI, 1 to 24), respectively. The null hypothesis of 15% DC rate was not rejected (P = .24). Eight patients had at least one grade 3 adverse event or serious adverse event at least possibly related to regorafenib. CONCLUSION Regorafenib did not meet prespecified criteria to declare a signal of activity in patients with solid tumors with BRAF alterations.
Collapse
Affiliation(s)
- Vaibhav Sahai
- University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Michael Rothe
- American Society of Clinical Oncology, Alexandria, VA
| | - Pam K. Mangat
- American Society of Clinical Oncology, Alexandria, VA
| | | | - Vijay Suhag
- Sutter Health Roseville Cancer Center, Roseville, CA
| | - Elie G. Dib
- Michigan Cancer Research Consortium, Ypsilanti, MI
| | - Inderjit Mehmi
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, CA
| | | | | | | | - Phat Le
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rui Li
- Providence Cancer Institute, Providence Portland Medical Center, Portland, OR
| | - David P. Michelin
- Munson Medical Center, Cancer Research Consortium of West Michigan, Traverse City, MI
| | | | | | | | | | | | | |
Collapse
|
41
|
Haugh AM, Osorio RC, Francois RA, Tawil ME, Tsai KK, Tetzlaff M, Daud A, Vasudevan HN. Targeted DNA Sequencing of Cutaneous Melanoma Identifies Prognostic and Predictive Alterations. Cancers (Basel) 2024; 16:1347. [PMID: 38611025 PMCID: PMC11011039 DOI: 10.3390/cancers16071347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cutaneous melanoma (CM) can be molecularly classified into four groups: BRAF mutant, NRAS mutant, NF1 mutant and triple wild-type (TWT) tumors lacking any of these three alterations. In the era of immune checkpoint inhibition (ICI) and targeted molecular therapy, the clinical significance of these groups remains unclear. Here, we integrate targeted DNA sequencing with comprehensive clinical follow-up in CM patients. METHODS This was a retrospective cohort study that assessed clinical and molecular features from patients with localized or metastatic CM who underwent targeted next-generation sequencing as part of routine clinical care. A total of 254 patients with CM who had a CLIA-certified targeted sequencing assay performed on their tumor tissue were included. RESULTS Of the 254 patients with cutaneous melanoma, 77 were BRAF mutant (30.3%), 77 were NRAS mutant (30.3%), 47 were NF1 mutant (18.5%), 33 were TWT (13.0%) and the remaining 20 (7.9%) carried mutations in multiple driver genes (BRAF/NRAS/NF1 co-mutated). The majority of this co-mutation group carried mutations in NF1 (n = 19 or 90%) with co-occurring mutations in BRAF or NRAS, often with a weaker oncogenic variant. Consistently, NF1 mutant tumors harbored numerous significantly co-altered genes compared to BRAF or NRAS mutant tumors. The majority of TWT tumors (n = 29, 87.9%) harbor a pathogenic mutation within a known Ras/MAPK signaling pathway component. Of the 154 cases with available TMB data, the median TMB was 20 (range 0.7-266 mutations/Mb). A total of 14 cases (9.1%) were classified as having a low TMB (≤5 mutations/Mb), 64 of 154 (41.6%) had an intermediate TMB (>5 and ≤20 mutations/Mb), 40 of 154 (26.0%) had a high TMB (>20 and ≤50 mutations/Mb) and 36 of 154 (23.4%) were classified as having a very high TMB (>50 mutations/Mb). NRAS mutant melanoma demonstrated significantly decreased overall survival on multivariable analysis (HR for death 2.95, 95% CI 1.13-7.69, p = 0.027, log-rank test) compared with other TCGA molecular subgroups. Of the 116 patients in our cohort with available treatment data, 36 received a combination of dual ICI with anti-CTLA4 and anti-PD1 inhibition as first-line therapy. Elevated TMB was associated with significantly longer progression-free survival following dual-agent ICI (HR 0.26, 95% CI 0.07-0.90, p = 0.033, log-rank test). CONCLUSIONS NRAS mutation in CMs correlated with significantly worse overall survival. Elevated TMB was associated with increased progression-free survival for patients treated with a combination of dual ICI, supporting the potential utility of TMB as a predictive biomarker for ICI response in melanoma.
Collapse
Affiliation(s)
- Alexandra M. Haugh
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94142, USA; (A.M.H.); (K.K.T.); (A.D.)
| | - Robert C. Osorio
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA (M.E.T.)
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Rony A. Francois
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michael E. Tawil
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA (M.E.T.)
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Katy K. Tsai
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94142, USA; (A.M.H.); (K.K.T.); (A.D.)
| | - Michael Tetzlaff
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Adil Daud
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94142, USA; (A.M.H.); (K.K.T.); (A.D.)
| | - Harish N. Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA (M.E.T.)
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
42
|
Lazar R, Fischbach C, Schott R, Somme L. Outcomes of non-small cell lung cancer patients with non-V600E BRAF mutations: a series of case reports and literature review. Front Oncol 2024; 14:1307882. [PMID: 38601760 PMCID: PMC11004365 DOI: 10.3389/fonc.2024.1307882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer, accounting for approximately 85% of cases of lung cancer. The standard first-line therapy for patients without oncogenic driver metastatic NSCLC is anti PD-L1 immune checkpoint inhibition (ICI) with platinum-based chemotherapy. Approximately 4% of NSCLC patients harbor BRAF mutations; the V600E mutation is the most common. Non-V600 mutations is an heterogeneous population and account for approximately 50% of BRAF-mutated NSCLC. BRAF mutations are classified into 3 functional classes based on their kinase activity and their signaling mechanism. The European Medicines Agency and the United States Food and Drug Administration have approved dabrafenib, an anti-BRAF tyrosine kinase inhibitor (TKI), in combination with trametinib, an anti-MEK TKI, for the treatment of patients with BRAF V600E-mutated metastatic NSCLC. The use of targeted therapies in NSCLC with BRAF non-V600E mutations remains controversial. There is a lack of guidelines regarding therapeutic options in non-V600E BRAF-mutated NSCLC. Herein, we presented 3 cases of NSCLC with BRAF non-V600E mutations and reviewed the current state of therapies for this particular population of lung cancer.
Collapse
Affiliation(s)
- Raluca Lazar
- Oncology Department, Institut De Cancérologie Strasbourg-Europe, Strasbourg, France
| | | | | | | |
Collapse
|
43
|
Nelson BE, Roszik J, Ahmed J, Barretto CMN, Nardo M, Campbell E, Johnson AM, Piha-Paul SA, Oliva ICG, Weathers SP, Cabanillas M, Javle M, Meric-Bernstam F, Subbiah V. RAF inhibitor re-challenge therapy in BRAF-aberrant pan-cancers: the RE-RAFFLE study. Mol Cancer 2024; 23:64. [PMID: 38532456 PMCID: PMC10964523 DOI: 10.1186/s12943-024-01982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Previous studies have shown the clinical benefit of rechallenging the RAF pathway in melanoma patients previously treated with BRAF inhibitors. 44 patients with multiple tumors harboring RAF alterations were rechallenged with a second RAF inhibitor, either as monotherapy or in combination with other therapies, after prior therapy with a first RAF inhibitor. This retrospective observational study results showed that rechallenging with RAFi(s) led to an overall response rate of 18.1% [PR in thyroid (1 anaplastic; 3 papillary), 1 ovarian, 2 melanoma, 1 cholangiocarcinoma, and 1 anaplastic astrocytoma]. The clinical benefit rate was 54.5%; more than 30% of patients had durable responses with PR and SD lasting > 6 months. The median progression-free survival on therapy with second RAF inhibitor in the rechallenge setting either as monotherapy or combination was shorter at 2.7 months (0.9-30.1 m) compared to 8.6 months (6.5-11.5 m) with RAF-1i. However, the median PFS with RAF-2i responders (PFS-2) improved at 12.8 months compared to 11.4 months with RAF-1i responders. The median OS from retreatment with RAF-2i was 15.5 months (11.1-30.8 m). Further prospective studies are needed to validate these results and expand targeted therapy options for RAF-aberrant cancers.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jason Roszik
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jibran Ahmed
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmelia Maria Noia Barretto
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erick Campbell
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber M Johnson
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiao-Pei Weathers
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Cabanillas
- Department of Endocrinology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Early-Phase Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA.
| |
Collapse
|
44
|
Capezzone M, Rossi M, Macerola E, Cantara S, Pepe F, Morabito EM, Dalmazio G, Bardi S, Ognibene A, Alessandri M, Materazzi G, De Napoli L, Cirianni M, Torregrossa L. Identification of a Novel Non-V600E BRAF Mutation in Papillary Thyroid Cancer. Case Rep Endocrinol 2024; 2024:6621510. [PMID: 38532782 PMCID: PMC10965284 DOI: 10.1155/2024/6621510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Papillary thyroid cancer (PTC) is a common endocrine malignancy, and its incidence is reported to be constantly increasing. BRAF mutation is detected in approximately 44% of PTCs, and the most common BRAF mutation is thymine (T) to adenine (A) missense mutation in nucleotide 1796 (T1796A, V600E). Although BRAFV600E represents 95% of all BRAF mutations, uncommon BRAF mutations have been reported in thyroid carcinomas and represent an alternative mechanism of BRAF activation with unclear clinical significance. We report a novel non-V600E mutation (c.1799_1812delinsAT, p.V600_W604delinsD), identified preoperatively with next-generation sequencing (NGS) on the material obtained with fine-needle aspiration cytology (FNAC) performed on a thyroid nodule cytologically suspicious for malignancy in a 35-year-old male patient. The presence of this new variant of BRAF mutation was subsequently confirmed in the postoperative phase by direct Sanger sequencing. In conclusion, we report a new non-V600E variant previously undetected in papillary thyroid cancer. In addition, this case report shows that the NGS technique on cytological tissue allows to detect the presence of rare mutations, thus increasing the diagnostic specificity of molecular analysis.
Collapse
Affiliation(s)
- Marco Capezzone
- UOSD of Endocrinology, Misericordia Hospital, Grosseto 58100, Italy
| | - Maja Rossi
- UOS Molecular Pathology, Hospital Misericordia, Grosseto 58100, Italy
| | - Elisabetta Macerola
- Department of Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa 56124, Italy
| | - Silvia Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena 53100, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Gilda Dalmazio
- UOSD of Endocrinology, Misericordia Hospital, Grosseto 58100, Italy
| | - Sara Bardi
- UOS Molecular Pathology, Hospital Misericordia, Grosseto 58100, Italy
| | - Agostino Ognibene
- UOS Molecular Pathology, Hospital Misericordia, Grosseto 58100, Italy
| | | | - Gabriele Materazzi
- Division of Endocrine Surgery, Department of Surgical Pathology, University Hospital of Pisa, Pisa 56124, Italy
| | - Luigi De Napoli
- Division of Endocrine Surgery, Department of Surgical Pathology, University Hospital of Pisa, Pisa 56124, Italy
| | - Michele Cirianni
- UOS Molecular Pathology, Hospital Misericordia, Grosseto 58100, Italy
| | - Liborio Torregrossa
- Department of Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa 56124, Italy
| |
Collapse
|
45
|
Timofeev O, Giron P, Lawo S, Pichler M, Noeparast M. ERK pathway agonism for cancer therapy: evidence, insights, and a target discovery framework. NPJ Precis Oncol 2024; 8:70. [PMID: 38485987 PMCID: PMC10940698 DOI: 10.1038/s41698-024-00554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
At least 40% of human cancers are associated with aberrant ERK pathway activity (ERKp). Inhibitors targeting various effectors within the ERKp have been developed and explored for over two decades. Conversely, a substantial body of evidence suggests that both normal human cells and, notably to a greater extent, cancer cells exhibit susceptibility to hyperactivation of ERKp. However, this vulnerability of cancer cells remains relatively unexplored. In this review, we reexamine the evidence on the selective lethality of highly elevated ERKp activity in human cancer cells of varying backgrounds. We synthesize the insights proposed for harnessing this vulnerability of ERK-associated cancers for therapeutical approaches and contextualize these insights within established pharmacological cancer-targeting models. Moreover, we compile the intriguing preclinical findings of ERK pathway agonism in diverse cancer models. Lastly, we present a conceptual framework for target discovery regarding ERKp agonism, emphasizing the utilization of mutual exclusivity among oncogenes to develop novel targeted therapies for precision oncology.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University, 35043, Marburg, Germany
| | - Philippe Giron
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Steffen Lawo
- CRISPR Screening Core Facility, Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Martin Pichler
- Translational Oncology, II. Med Clinics Hematology and Oncology, 86156, Augsburg, Germany
| | - Maxim Noeparast
- Translational Oncology, II. Med Clinics Hematology and Oncology, 86156, Augsburg, Germany.
| |
Collapse
|
46
|
Deng W, Liu X, Huang S, Wu Z, Alessandro F, Lin Q, Cai Z, Zhang Z, Huang Y, Wang H, Yuan Z. CXCL16 promotes tumor metastasis by regulating angiogenesis in the tumor micro-environment of BRAF V600E mutant colorectal cancer. Transl Oncol 2024; 41:101854. [PMID: 38232513 PMCID: PMC10827530 DOI: 10.1016/j.tranon.2023.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Patients of colorectal cancer (CRC) with BRAF V600E mutation obtain poor prognosis. This study aimed to explore the role and mechanism of BRAF V600E mutation in angiogenesis of tumor micro-environment (TME). It has been reported that CXCL16 expression in TME is closely related to BRAF mutation. Clinicopathological features of CRC with BRAF V600E mutant or wild type were collected in this study. Immunohistochemistry (IHC) assays were conducted to test the expressions of vascular endothelial growth factor (VEGF), CD31 and CXCL16. ROC curve was used to determine the optimal cut off values of CXCL16. A total of 680 patients including 141 BRAF V600E type and 679 wild type were included. BRAF V600E mutant tumors were presented with significant worse clinicopathological features and a shorter overall survival (OS) than wild-type. Besides, chemokines CXCL16 was up-regulated in BRAF V600E mutant tissues and was associated with poorer prognosis. In addition, VEGF levels and vascular endothelial cell density was significantly increased in BRAF mutation. At last, CXCL16 was positively correlated with VEGF expression and vascular endothelial cell density. In conclusion, BRAF V600E mutations may promote metastasis of CRC by regulating CXCL16 expression and promoting angiogenesis in the TME.
Collapse
Affiliation(s)
- Weihao Deng
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China
| | - Xiaoxia Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Department of General Surgery, Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, China
| | - Shuhui Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China
| | - Zhijie Wu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Department of General Surgery, Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, China
| | - Fichera Alessandro
- Colon and Rectal Surgery, Baylor University Medical Center, TX, United States of America
| | - Qingfeng Lin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Department of General Surgery, Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, China
| | - Zonglu Cai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Department of General Surgery, Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, China
| | - Zitong Zhang
- Department of General Surgery, Houjie Hospital, Dongguan, Guangdong, China.
| | - Yan Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China.
| | - Hui Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Department of General Surgery, Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, China.
| | - Zixu Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Department of General Surgery, Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, China.
| |
Collapse
|
47
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
48
|
de Jager VD, Timens W, Bayle A, Botling J, Brcic L, Büttner R, Fernandes MGO, Havel L, Hochmair MJ, Hofman P, Janssens A, Johansson M, van Kempen L, Kern I, Lopez-Rios F, Lüchtenborg M, Machado JC, Mohorcic K, Paz-Ares L, Popat S, Ryška A, Taniere P, Wolf J, Schuuring E, van der Wekken AJ. Developments in predictive biomarker testing and targeted therapy in advanced stage non-small cell lung cancer and their application across European countries. THE LANCET REGIONAL HEALTH. EUROPE 2024; 38:100838. [PMID: 38476742 PMCID: PMC10928289 DOI: 10.1016/j.lanepe.2024.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 01/08/2024] [Indexed: 03/14/2024]
Abstract
In the past two decades, the treatment of metastatic non-small cell lung cancer (NSCLC), has undergone significant changes due to the introduction of targeted therapies and immunotherapy. These advancements have led to the need for predictive molecular tests to identify patients eligible for targeted therapy. This review provides an overview of the development and current application of targeted therapies and predictive biomarker testing in European patients with advanced stage NSCLC. Using data from eleven European countries, we conclude that recommendations for predictive testing are incorporated in national guidelines across Europe, although there are differences in their comprehensiveness. Moreover, the availability of recently EMA-approved targeted therapies varies between European countries. Unfortunately, routine assessment of national/regional molecular testing rates is limited. As a result, it remains uncertain which proportion of patients with metastatic NSCLC in Europe receive adequate predictive biomarker testing. Lastly, Molecular Tumor Boards (MTBs) for discussion of molecular test results are widely implemented, but national guidelines for their composition and functioning are lacking. The establishment of MTB guidelines can provide a framework for interpreting rare or complex mutations, facilitating appropriate treatment decision-making, and ensuring quality control.
Collapse
Affiliation(s)
- Vincent D. de Jager
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arnaud Bayle
- Oncostat U1018, Inserm, Paris-Saclay University, Gustave Roussy, Villejuif, France
| | - Johan Botling
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy of University of Gothenburg, Gothenburg, Sweden
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Reinhard Büttner
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | | | - Libor Havel
- Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Maximilian J. Hochmair
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
- Department of Respiratory and Critical Care Medicine, Klinik Floridsdorf, Vienna Healthcare Group, Vienna, Austria
| | - Paul Hofman
- IHU RespirERA, FHU OncoAge, Nice University Hospital, Côte d’Azur University, Nice, France
| | - Annelies Janssens
- Department of Oncology, University Hospital Antwerp, University of Antwerp, Edegem, Belgium
| | - Mikael Johansson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Léon van Kempen
- Department of Pathology, University Hospital Antwerp, University of Antwerp, Edegem, Belgium
| | - Izidor Kern
- Laboratory for Cytology and Pathology, University Clinic Golnik, Golnik, Slovenia
| | - Fernando Lopez-Rios
- Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i+12), Ciberonc, Madrid, Spain
| | - Margreet Lüchtenborg
- National Disease Registration Service, NHS England, London, United Kingdom
- Centre for Cancer, Society & Public Health, King’s College London, London, United Kingdom
| | - José Carlos Machado
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Medicine of the University of Porto, Institute for Research and Innovation in Health (i3S), Porto, Portugal
| | - Katja Mohorcic
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, H12O-CNIO Lung Cancer Clinical Research Unit, Research Institute Hospital 12 de Octubre (i+12)/Spanish National Cancer Research Center (CNIO), Ciberonc, Madrid, Spain
| | - Sanjay Popat
- Lung Unit, Royal Marsden NHS Trust, London, United Kingdom
| | - Aleš Ryška
- The Fingerland Department of Pathology, Charles University Medical Faculty and University Hospital, Czech Republic
| | - Phillipe Taniere
- Department of Histopathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Jürgen Wolf
- Lung Cancer Group Cologne, Department I for Internal Medicine and Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anthonie J. van der Wekken
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
49
|
Maher NG, Vergara IA, Long GV, Scolyer RA. Prognostic and predictive biomarkers in melanoma. Pathology 2024; 56:259-273. [PMID: 38245478 DOI: 10.1016/j.pathol.2023.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 01/22/2024]
Abstract
Biomarkers help to inform the clinical management of patients with melanoma. For patients with clinically localised primary melanoma, biomarkers can help to predict post-surgical outcome (including via the use of risk prediction tools), better select patients for sentinel lymph node biopsy, and tailor catch-all follow-up protocols to the individual. Systemic drug treatments, including immune checkpoint inhibitor (ICI) therapies and BRAF-targeted therapies, have radically improved the prognosis of metastatic (stage III and IV) cutaneous melanoma patients, and also shown benefit in the earlier setting of stage IIB/C primary melanoma. Unfortunately, a response is far from guaranteed. Here, we review clinically relevant, established, and emerging, prognostic, and predictive pathological biomarkers that refine clinical decision-making in primary and metastatic melanoma patients. Gene expression profile assays and nomograms are emerging tools for prognostication and sentinel lymph node risk prediction in primary melanoma patients. Biomarkers incorporated into clinical practice guidelines include BRAF V600 mutations for the use of targeted therapies in metastatic cutaneous melanoma, and the HLA-A∗02:01 allele for the use of a bispecific fusion protein in metastatic uveal melanoma. Several predictive biomarkers have been proposed for ICI therapies but have not been incorporated into Australian clinical practice guidelines. Further research, validation, and assessment of clinical utility is required before more prognostic and predictive biomarkers are fluidly integrated into routine care.
Collapse
Affiliation(s)
- Nigel G Maher
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ismael A Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
50
|
Steiner S, Pliego-Mendieta A, Haberecker M, Hussung S, Kollár A, Fritsch R, Arnold F, Lenggenhager D, Planas-Paz L, Pauli C. Ex vivo modeling of acquired drug resistance in BRAF - mutated pancreatic cancer organoids uncovers individual therapeutic vulnerabilities. Cancer Lett 2024; 584:216650. [PMID: 38246222 DOI: 10.1016/j.canlet.2024.216650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis due to late detection and limited treatment options. Some PDAC patients harbor alterations that qualify for targeted treatment strategies but develop acquired resistance, leading to treatment failure. We here report the ex vivo modeling of acquired drug resistance by creating a PDAC patient-derived tumor organoid (PDTO) model harboring a rare BRAF R506_K507ins VLR mutation resulting in a resistance to trametinib, a MEK inhibitor. Genomic and transcriptomic analyses revealed upregulated WNT signaling in resistant PDTO clones compared to treatment-naïve parental control cells. By combining genomic and transcriptomic analysis with a functional drug testing approach, we uncovered a de novo upregulation and circumventive reliance on WNT signaling in resistant PDTO clones. Ex vivo models such as PDTOs represent valuable tools for resistance modelling and offer the discovery of novel therapeutic approaches for patients in need where clinical diagnostic tools are currently at the limit.
Collapse
Affiliation(s)
- Sabrina Steiner
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Alicia Pliego-Mendieta
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Martina Haberecker
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Saskia Hussung
- Department of Hematology and Oncology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Anna Kollár
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Ralph Fritsch
- Department of Hematology and Oncology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Fabian Arnold
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Lara Planas-Paz
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland; Medical Faculty, University of Zurich, Pestalozzistrasse 3, 8032, Zurich, Switzerland.
| |
Collapse
|