1
|
Wang Q, Chen F, He Y, Gao Y, Wang J, Chu S, Xie P, Zhong J, Shan H, Bai J, Hou P. Polypyrimidine tract-binding protein 3/insulin-like growth factor 2 mRNA-binding proteins 3/high-mobility group A1 axis promotes renal cancer growth and metastasis. iScience 2024; 27:109158. [PMID: 38405614 PMCID: PMC10884747 DOI: 10.1016/j.isci.2024.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
Polypyrimidine tract-binding protein 3 (PTBP3) plays an important role in the post-transcriptional regulation of gene expression, including mRNA splicing, translation, and stability. Increasing evidence has shown that PTBP3 promotes cancer progression in several tumor types. However, the molecular mechanisms of PTBP3 in renal cell carcinoma (RCC) remain unknown. Here, tissue microarrays (TMAs) suggested that PTBP3 expression was increased in human RCC and that high PTBP3 expression was correlated with poor five-year overall survival and disease-free survival. We also showed that PTBP3 binds with HMGA1 mRNA in the 3'UTR region and let-7 miRNAs. PTBP3 interacted with IGF2BP3, and the PTBP3/IGF2BP3 axis prevented let-7 mediated HMGA1 mRNA silencing. PTBP3 promotes renal cancer cell growth and metastasis in vitro and in vivo. Taken together, our findings indicate PTBP3 serves as a regulator of HMGA1 and suggest its potential as a therapeutic agent for RCC.
Collapse
Affiliation(s)
- Qianqing Wang
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Fang Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu He
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiawen Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Pei Xie
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Jiateng Zhong
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Haixia Shan
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Jin Bai
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
2
|
Luo H, Yang Y, Zhou Y, Bai X, Hou Y. 1,4,5,6,7,8‑Hexahydropyrido[4,3‑d]pyrimidine inhibits HepG2 cell proliferation, migration and invasion, and induces apoptosis through the upregulation of miR‑26b‑5p by targeting CDK8. Oncol Lett 2023; 25:260. [PMID: 37205919 PMCID: PMC10189852 DOI: 10.3892/ol.2023.13846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/28/2023] [Indexed: 05/21/2023] Open
Abstract
1,4,5,6,7,8-Hexahydropyrido[4,3-d]pyrimidine (PPM) promotes apoptosis of HepG2 cells and serves a role in tumor suppression. However, the role of microRNA (miRNA) regulation in initiating apoptosis remains unclear. Therefore, the present study performed reverse transcription-quantitative PCR to investigate the association between PPM and miRNA, which demonstrated that PPM upregulated the expression of miR-26b-5p. Wound healing and Transwell assays showed that PPM inhibited the migration and invasion of HepG2 cells, and EdU staining experiments showed that PPM inhibited the proliferation of HepG2 cells. Transfection with miR-26b-5p inhibitor reversed the effects of PPM on HepG2 cells. Flow cytometry results showed that PPM promoted apoptosis of HepG2 cells by upregulating miRNA (miR)-26b-5p, and Western blotting results showed that PPM promoted the expression of apoptosis-associated protein Bax and inhibited the expression of Bcl-2 by upregulating miR-26b-5p. Using a proteomic approach combined with bioinformatics analysis, CDK8 was identified as a potential target of miR-26b-5p and was downregulated by miR-26b-5p overexpression. However, PPM induced HepG2 cell cycle arrest without the involvement of miR-26b-5p. Western blotting results showed that PPM upregulation of miR-26b-5p suppresses NF-κB/p65 signaling pathway in HepG2 cells by targeting of CDK8. The present results suggested that miR-26b-5p may function as a target gene of PPM and may serve a role in hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Hanlin Luo
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yang Yang
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yanqiu Zhou
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xianyong Bai
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Correspondence to: Professor Yun Hou or Professor Xianyong Bai, Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong 264003, P.R. China, E-mail:
| | - Yun Hou
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Correspondence to: Professor Yun Hou or Professor Xianyong Bai, Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong 264003, P.R. China, E-mail:
| |
Collapse
|
3
|
An Updated Review of Contribution of Long Noncoding RNA-NEAT1 to the Progression of Human Cancers. Pathol Res Pract 2023; 245:154380. [PMID: 37043964 DOI: 10.1016/j.prp.2023.154380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) present pivotal roles in cancer tumorigenesis and progression. Recently, nuclear paraspeckle assembly transcript 1 (NEAT1) as a lncRNA has been shown to mediate cell proliferation, migration, and EMT in tumor cells. NEAT1 by targeting several miRNAs/mRNA axes could regulate cancer cell behavior. Therefore, NEAT1 may function as a potent biomarker for the prediction and treatment of some human cancers. In this review, we summarized various NEAT1-related signaling pathways that are critical in cancer initiation and progression.
Collapse
|
4
|
Li S, Shen S, Ge W, Cen Y, Zhang S, Cheng X, Wang X, Xie X, Lu W. Long non-coding RNA SLC25A21-AS1 inhibits the development of epithelial ovarian cancer by specifically inducing PTBP3 degradation. Biomark Res 2023; 11:12. [PMID: 36717926 PMCID: PMC9885650 DOI: 10.1186/s40364-022-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/03/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is a highly prevalent disease that rapidly metastasizes and has poor prognosis. Most women are in the middle or late stages when diagnosed and have low survival rates. Recently, long non-coding RNAs (lncRNAs) were recognized to play pivotal roles in the development of EOC. METHODS The expression of SLC25A21 antisense RNA 1 (SLC25A21-AS1) and Polypyrimidine Tract Binding Protein 3 (PTBP3) in EOC cells was assessed via qPCR. The proliferation activity of these cells was detected by EdU and Cell counting kit-8 (CCK8) assays, while the death rate of apoptotic cells and the cell cycle were detected by flow cytometry. Detection of cell transfer rate by transwell assay. Protein expression was measured through western blotting. Interactions between SLC25A21-AS1 and PTBP3 were detected through RNA immunoprecipitation (RIP), IF-FISH co-localization experiments and electrophoretic mobility shift assay (EMSA). The in vivo importance of SLC25A21-AS1 as a tumor suppressor modulator was assessed using murine xenograft models. RESULTS The lncRNA SLC25A21-AS1 has negligible expression in ovarian cancer tissues compared with that in normal ovarian tissues. A series of functional experiments revealed that the upregulation of SLC25A21-AS1 markedly blocked the proliferation and metastasis of EOC cells in vitro, while its downregulation had the opposite effect. Overexpression of SLC25A21-AS1 in a nude mouse model of EOC in vivo resulted in slower tumor growth and weakened metastatic potential. Moreover, SLC25A21-AS1 reduced the protein stability of PTBP3 and promoted its degradation. A series of subsequent experiments found that SLC25A21-AS1 inhibits EOC cell proliferation and metastasis by modulating PTBP3 through the ubiquitin-proteasome pathway and that the combination of SLC25A21-AS1 and PTBP3 provides the necessary conditions for the for the function to be realized. CONCLUSIONS Our research reveals the effect of SLC25A21-AS1 in EOC development and suggests SLC25A21-AS1 can serve as a prognostic target by promoting the degradation of PTBP3 to improve patient survival.
Collapse
Affiliation(s)
- Sihui Li
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Shizhen Shen
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Wanzhong Ge
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Division of Human Reproduction and Developmental Genetics, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Institute of Genetics, Zhejiang University, Hangzhou, 310058, China
| | - Yixuan Cen
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Songfa Zhang
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xiaodong Cheng
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xinyu Wang
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xing Xie
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Weiguo Lu
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China.
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Bai T, Liu N. RNA-binding protein PUM2 promotes T-cell acute lymphoblastic leukemia via competitively binding to RBM5 3'UTR with miR-28-5p. Eur J Haematol 2022; 110:498-509. [PMID: 36536516 DOI: 10.1111/ejh.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy, and T-ALL patients are prone to early disease relapse and suffer from poor outcomes. The crucial function of RNA-binding proteins (RBPs) has been reported in the progression of cancers by regulating the expression of transcripts. This study aimed to reveal the role and molecular regulatory mechanism of RBP Pumilio2 (PUM2) in T-ALL. METHODS The expression of genes was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The viability, proliferation, and apoptosis of T-ALL cells were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine, and flow cytometry analysis. Luciferase reporter, RNA pulldown, and RNA immunoprecipitation assays were performed to confirm the binding of PUM2 to RBM5. The combination between RNA-binding motif protein 5 (RBM5) and microRNA (miR)-28-5p was validated using luciferase reporter assay. RESULTS Our data revealed that PUM2 was highly expressed in T-ALL blood samples and cell lines. PUM2 knockdown suppressed the proliferation but accelerated the apoptosis of T-ALL cells in vitro. Additionally, RBM5 exhibited a low expression level in T-ALL samples and cells. PUM2 negatively regulated RBM5 via targeting its 3'untranslated region (3'UTR). Moreover, PUM2 competitively bound to RBM5 3'UTR with miR-28-5p. Rescue experiments showed that RBM5 knockdown reversed the anti-tumor effects mediated by PUM2 knockdown in T-ALL cells. CONCLUSION PUM2 plays as a novel oncogenic RBP in T-ALL by competitively binding to RBM5 mRNA with miR-28-5p.
Collapse
Affiliation(s)
- Taomin Bai
- Department of Pediatrics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Na Liu
- Department of Pediatrics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Liu ZC, Li LH, Li DY, Gao ZQ, Chen D, Song B, Jiang BH, Dang XW. KIAA1429 regulates alternative splicing events of cancer-related genes in hepatocellular carcinoma. Front Oncol 2022; 12:1060574. [PMID: 36505780 PMCID: PMC9732450 DOI: 10.3389/fonc.2022.1060574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most fatal malignancies with high morbidity and mortality rates in the world, whose molecular pathogenesis is incompletely understood. As an RNA-binding protein participating in the processing and modification of RNA, KIAA1429 has been proved to be implicated in the pathogenesis of multiple cancers. However, how KIAA1429 functions in alternative splicing is not fully reported. In the current study, multi-omics sequencing data were used to analyze and decipher the molecular functions and the underlying mechanisms of KIAA1429 in HCC samples. RNA sequencing data (RNA-seq) analysis demonstrated that in HCCLM3 cells, alternative splicing (AS) profiles were mediated by KIAA1429. Regulated AS genes (RASGs) by KIAA1429 were enriched in cell cycle and apoptosis-associated pathways. Furthermore, by integrating the RNA immunoprecipitation and sequencing data (RIP-seq) of KIAA1429, we found that KIAA1429-bound transcripts were highly overlapping with RASGs, indicating that KIAA1429 could globally regulate the alternative splicing perhaps by binding to their transcripts in HCCLM3 cells. The overlapping RASGs were also clustered in cell cycle and apoptosis-associated pathways. In particular, we validated the regulated AS events of three genes using clinical specimens from HCC patients, including the exon 6 of BPTF gene and a marker gene of HCC. In summary, our results shed light on the regulatory functions of KIAA1429 in the splicing process of pre-mRNA and provide theoretical basis for the targeted therapy of HCC.
Collapse
Affiliation(s)
- Zhao-chen Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu-Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding-Yang Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Qiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Chen
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co. Ltd, Zhengzhou, China
| | - Bin Song
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co. Ltd, Zhengzhou, China
| | - Bing-Hua Jiang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao-wei Dang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Xiao-wei Dang,
| |
Collapse
|
7
|
Huang T, Wu Z, Zhu S. The roles and mechanisms of the lncRNA-miRNA axis in the progression of esophageal cancer: a narrative review. J Thorac Dis 2022; 14:4545-4559. [PMID: 36524088 PMCID: PMC9745524 DOI: 10.21037/jtd-22-1449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Esophageal cancer is one of the most common malignant digestive tract tumors. Despite various treatment methods, the prognosis of patients remains unsatisfactory, largely due to an insufficient understanding of the mechanisms involved in the pathogenesis and progression of esophageal cancer. More than 98% of the nucleotide sequences in the human genome do not encode proteins, and their transcription products are noncoding RNAs (ncRNAs), mainly long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). Experiments have shown that lncRNAs and miRNAs play crucial roles in the occurrence and progression of various human malignancies. These ncRNAs influence the progression of esophageal cancer through an intricate regulatory network. We herein summarized the roles and mechanisms of the lncRNA-miRNA axis in esophageal cancer cell proliferation, apoptosis, epithelial-mesenchymal transition (EMT), invasion and metastasis, drug resistance, radiotherapy resistance, and angiogenesis. This review provides a rationale for anticancer therapy that targets the lncRNA-miRNA axis in esophageal cancer. METHODS Related articles published in the PubMed database between 05/30/2008 to 09/10/2022 were identified using the following terms: "lncRNA AND miRNA AND esophageal cancer", "lncRNA AND miRNA AND cell proliferation", "lncRNA AND miRNA AND apoptosis", "lncRNA AND miRNA AND EMT", "lncRNA AND miRNA AND invasion and metastasis", "lncRNA AND miRNA AND drug resistance", and "lncRNA AND miRNA AND radiotherapy resistance". Published articles written in English available to readers were considered. KEY CONTENT AND FINDINGS We summarized the roles of the lncRNA-miRNA axis in the progression of esophageal cancer, including cell proliferation, apoptosis, EMT, invasion and metastasis, drug resistance, radio resistance, and other progressions, and determined that the lncRNA-miRNA axis may serve as a potential clinical treatment target for esophageal cancer. CONCLUSIONS The lncRNA-miRNA axis is closely related to the progression of esophageal cancer and may act as a potential biological target for the clinical treatment of patients with esophageal cancer.
Collapse
Affiliation(s)
- Tao Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China
| | - Zhihao Wu
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Shaojin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| |
Collapse
|
8
|
Molecular Interactions of the Long Noncoding RNA NEAT1 in Cancer. Cancers (Basel) 2022; 14:cancers14164009. [PMID: 36011001 PMCID: PMC9406559 DOI: 10.3390/cancers14164009] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
As one of the best-studied long noncoding RNAs, nuclear paraspeckle assembly transcript 1 (NEAT1) plays a pivotal role in the progression of cancers. NEAT1, especially its isoform NEAT1-1, facilitates the growth and metastasis of various cancers, excluding acute promyelocytic leukemia. NEAT1 can be elevated via transcriptional activation or stability alteration in cancers changing the aggressive phenotype of cancer cells. NEAT1 can also be secreted from other cells and be delivered to cancer cells through exosomes. Hence, elucidating the molecular interaction of NEAT1 may shed light on the future treatment of cancer. Herein, we review the molecular function of NEAT1 in cancer progression, and explain how NEAT1 interacts with RNAs, proteins, and DNA promoter regions to upregulate tumorigenic factors.
Collapse
|
9
|
Xie P, Zhang Y, Chen R, Zheng J, Cui G. PTBP3 promotes tumorigenesis of glioblastoma by stabilizing Twist1. Transl Oncol 2022; 25:101520. [PMID: 35987089 PMCID: PMC9411677 DOI: 10.1016/j.tranon.2022.101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
PTBP3 is upregulated in GBM and predicts poor prognosis. PTBP3 promotes proliferation, EMT, migration, and invasion of GBM. PTBP3 stabilizes Twist1 by decreasing its ubiquitination and degradation.
Objective Glioblastoma (GBM) is the most common malignancy tumor of central nervous system. PTBP3 was closely associated with the development of tumor. However, the function and molecular mechanism of PTBP3 in GBM is little known. Methods qPCR and immunoblotting were used to detect PTBP3 expression levels in glioma tissues and cells. CCK8, Edu, flow cytometry, wound healing, and transwell assays were used to examined the function of PTBP3 in GBM. qPCR, Immunoblotting, and ubiquitination assays were performed to identify the mechanism of PTBP3. Results We found that PTBP3 was upregulated in GBM, and high expression of PTBP3 correlated with the poor survival of GBM patients. PTBP3 knockdown reduced proliferation, invasion, and migration of GBM. Conversely, overexpressing PTBP3 has an opposite effect. Moreover, PTBP3 had an effect on the EMT of GBM. More importantly, we found that PTBP3 stabilized Twist1 by decreasing its ubiquitination and degradation. Furthermore, orthotopic xenograft models were used to demonstrate the PTBP3 on the development of GBM in vivo. Conclusion This study proved that PTBP3 promoted tumorigenesis of GBM by stabilizing Twist1, which provided a new therapeutic target for GBM.
Collapse
Affiliation(s)
- Peng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China; Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Yueqing Zhang
- Department of Neurosurgery, Huai'an Cancer Hospital, No19 shanyang Road, Huai'an, Jiangsu 223200, P.R. China
| | - Rui Chen
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Jinyu Zheng
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.
| |
Collapse
|
10
|
RNA splicing: a dual-edged sword for hepatocellular carcinoma. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:173. [PMID: 35972700 DOI: 10.1007/s12032-022-01726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 10/15/2022]
Abstract
RNA splicing is the fundamental process that brings diversity at the transcriptome and proteome levels. The spliceosome complex regulates minor and major processes of RNA splicing. Aberrant regulation is often associated with different diseases, including diabetes, stroke, hypertension, and cancer. In the majority of cancers, dysregulated alternative RNA splicing (ARS) events directly affect tumor progression, invasiveness, and often lead to poor survival of the patients. Alike the rest of the gastrointestinal malignancies, in hepatocellular carcinoma (HCC), which alone contributes to ~ 75% of the liver cancers, a large number of ARS events have been observed, including intron retention, exon skipping, presence of alternative 3'-splice site (3'SS), and alternative 5'-splice site (5'SS). These events are reported in spliceosome and non-spliceosome complexes genes. Molecules such as MCL1, Bcl-X, and BCL2 in different isoforms can behave as anti-apoptotic or pro-apoptotic, making the spliceosome complex a dual-edged sword. The anti-apoptotic isoforms of such molecules bring in resistance to chemotherapy or cornerstone drugs. However, in contrast, multiple malignant tumors, including HCC that target the pro-apoptotic favoring isoforms/variants favor apoptotic induction and make chemotherapy effective. Herein, we discuss different splicing events, aberrations, and antisense oligonucleotides (ASOs) in modulating RNA splicing in HCC tumorigenesis with a possible therapeutic outcome.
Collapse
|
11
|
NEAT1 can be a diagnostic biomarker in the breast cancer and gastric cancer patients by targeting XIST, hsa-miR-612, and MTRNR2L8: integrated RNA targetome interaction and experimental expression analysis. Genes Environ 2022; 44:16. [PMID: 35581633 PMCID: PMC9112444 DOI: 10.1186/s41021-022-00244-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Background The most frequent malignancy in women is breast cancer (BC). Gastric cancer (GC) is also the leading cause of cancer-related mortality. Long non-coding RNAs (lncRNAs) are thought to be important neurotic regulators in malignant tumors. In this study, we aimed to evaluate the expression level of NEAT1 and the interaction of this non-coding RNA with correlated microRNAs, lncRNAs, and mRNAs or protein coding genes, experimentally and bioinformatically. Methods For the bioinformatics analyses, we performed RNA-RNA and protein–protein interaction analyses, using ENCORI and STRING. The expression analyses were performed by five tools: Microarray data analysis, TCGA data analysis (RNA-seq, R Studio), GEPIA2, ENCORI, and real-time PCR experiment. qRT-PCR experiment was performed on 50 GC samples and 50 BC samples, compared to adjacent control tissue. Results Based on bioinformatics and experimental analyses, lncRNA NEAT1 have a significant down-regulation in the breast cancer samples with tumor size lower than 2 cm. Also, it has a significant high expression in the gastric cancer patients. Furthermore, NEAT1 have a significant interaction with XIST, hsa-miR-612 and MTRNR2L8. High expression of NEAT1 have a correlation with the lower survival rate of breast cancer samples and higher survival rate of gastric cancer patients. Conclusion This integrated computational and experimental investigation revealed some new aspects of the lncRNA NEAT1 as a potential prognostic biomarker for the breast cancer and gastric cancer samples. Further investigations about NEA1 and correlated mRNAs, lncRNAs, and microRNAs – specially the mentioned RNAs in this study – can lead the researchers to more clear information about the role of NEAT1 in the breast cancer and gastric cancer.
Collapse
|
12
|
Dong C, Wu K, Gu S, Wang W, Xie S, Zhou Y. PTBP3 mediates TGF-β-induced EMT and metastasis of lung adenocarcinoma. Cell Cycle 2022; 21:1406-1421. [PMID: 35323096 PMCID: PMC9345618 DOI: 10.1080/15384101.2022.2052530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is associated with a poor prognosis due to early metastasis to distant organs. TGF-β potently induces epithelial-to-mesenchymal transition (EMT) and promotes invasion and metastasis of cancers. However, the mechanisms underlying this alteration are largely unknown. PTBP3 plays a critical role in RNA splicing and transcriptional regulation. Although accumulating evidence has revealed that PTBP3 exhibits a pro-oncogenic role in several cancers, whether and how PTBP3 mediates TGF-β-induced EMT and metastasis in LUAD remains unknown. The expression levels and prognostic value of PTBP3 were analyzed in human LUAD tissues and matched normal tissues. siRNAs and lentivirus-mediated vectors were used to transfect LUAD cell lines. Various in vitro experiments including western blot, qRT-PCR, a luciferase reporter assay, chromatin immunoprecipitation (ChIP), transwell migration and invasion assay and in vivo metastasis experiment were performed to determine the roles of PTBP3 in TGF-β-induced EMT and metastasis. PTBP3 expression was significantly upregulated in patients with LUAD, and high expression of PTBP3 indicated a poor prognosis. Intriguingly, we found that PTBP3 expression level in LUAD cell lines was significantly increased by exogenous TGF-β1 in a Smad-dependent manner. Mechanistically, p-Smad3 was recruited to the PTBP3 promoter and activated its transcription. In turn, PTBP3 knockdown abolished TGF-β1-mediated EMT through the inhibition of Smad2/3 expression. Furthermore, PTBP3 overexpression increased lung and liver metastasis of LUAD cells in vivo. PTBP3 is indispensable to TGF-β-induced EMT and metastasis of LUAD cells and is a novel potential therapeutic target for the treatment of LUAD.
Collapse
Affiliation(s)
- Chenglai Dong
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kaiqin Wu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaorui Gu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenli Wang
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiliang Xie
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
13
|
RNA-binding proteins and cancer metastasis. Semin Cancer Biol 2022; 86:748-768. [PMID: 35339667 DOI: 10.1016/j.semcancer.2022.03.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) can regulate gene expression through post-transcriptionally influencing all manner of RNA biology, including alternative splicing (AS), polyadenylation, stability, and translation of mRNAs, as well as microRNAs (miRNAs) and circular RNAs (circRNAs) processing. There is accumulating evidence reinforcing the perception that dysregulation or dysfunction of RBPs can lead to various human diseases, including cancers. RBPs influence diverse cancer-associated cellular phenotypes, such as proliferation, apoptosis, senescence, migration, invasion, and angiogenesis, contributing to the initiation and development of tumors, as well as clinical prognosis. Metastasis is the leading cause of cancer-related recurrence and death. Therefore, it is necessary to elucidate the molecular mechanisms behind tumor metastasis. In fact, a growing body of published research has proved that RBPs play pivotal roles in cancer metastasis. In this review, we will summarize the recent advances for helping us understand the role of RBPs in tumor metastasis, and discuss dysfunctions and dysregulations of RBPs affecting metastasis-associated processes including epithelial-mesenchymal transition (EMT), migration, and invasion of cancer cells. Furthermore, we will discuss emerging RBP-based strategy for the treatment of cancer metastasis.
Collapse
|
14
|
Fang Z, Li P, Li H, Chong W, Li L, Shang L, Li F. New Insights Into PTBP3 in Human Cancers: Immune Cell Infiltration, TMB, MSI, PDCD1 and m6A Markers. Front Pharmacol 2022; 13:811338. [PMID: 35359851 PMCID: PMC8960631 DOI: 10.3389/fphar.2022.811338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Polypyrimidine tract binding protein 3 (PTBP3) plays a critical role in post-transcriptional regulation. The role of PTBP3 in various human tumours was explored and analysed in this study based on the Cancer Genome Atlas and Gene Expression Omnibus datasets. PTBP3 was highly expressed in most tumours, such as breast invasive carcinoma, colon adenocarcinoma and hepatocellular carcinoma. PTBP3 overexpression generally predicts poor overall survival and disease-free survival in patients with adrenocortical carcinoma, lung squamous cell carcinoma, and pancreatic adenocarcinoma. However, low PTBP3 expression predicts poor prognosis in kidney renal clear cell carcinoma. We also explored PTBP3 genetic alterations in different tumour tissues. The result found that the frequency of PTBP3 alteration (>4%) was the highest in uterine tumours with “mutation” as the primary type. Furthermore, we found a significant correlation between PTBP3 expression and tumour mutational burden and microsatellite instability in various human tumours, and found that PTBP3 expression was positively correlated with TMB in ACC, STAD, PAAD, LUAD, and SARC. Two enhanced phosphorylation levels of S30 and S426 in colon cancer, ovarian cancer, and uterine corpus endometrial carcinoma were found. Further analysis indicated that PTBP3 expression was positively correlated with the cancer-associated fibroblasts for most tumour types. This study also found a relationship between immune checkpoints and N6-methyladenosine-related markers and PTBP3 expression. Moreover, the “mRNA surveillance pathway” and “RNA degradation” were involved in the functional mechanisms of PTBP3. These results provide new insights for molecular studies, and integrative analysis provided a framework for determining the predictive, prognostic, and therapeutic relevance of PTBP3 in cancer patients.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peijuan Li
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Han Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wei Chong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Liang Shang, ; Fei Li,
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liang Shang, ; Fei Li,
| |
Collapse
|
15
|
Xie C, Long F, Li L, Li X, Ma M, Lu Z, Wu R, Zhang Y, Huang L, Chou J, Gong N, Hu G, Lin C. PTBP3 modulates P53 expression and promotes colorectal cancer cell proliferation by maintaining UBE4A mRNA stability. Cell Death Dis 2022; 13:128. [PMID: 35136024 PMCID: PMC8826374 DOI: 10.1038/s41419-022-04564-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
The RNA binding protein PTBP3 was recently reported to play a critical role in multiple cancers, and the molecular mechanisms involved RNA splicing, 3' end processing and translation. However, the role of PTBP3 in colorectal cancer (CRC) remains poorly explored. Herein, PTBP3 was upregulated in CRC and associated with a poor prognosis. PTBP3 knockdown in colorectal cancer cell lines restricted CRC proliferative capacities in vitro and in vivo. Mechanistically, PTBP3 regulated the expression of the E3 ubiquitin ligase UBE4A by binding the 3' UTR of its mRNA, preventing its degradation. UBE4A participated in P53 degradation, and PTBP3 knockdown in colorectal cancer cell lines showed increased P53 expression. UBE4A overexpression rescued PTBP3 knockdown-induced inhibition of CRC cell proliferation and P53 expression. Our results demonstrated that PTBP3 plays an essential role in CRC cell proliferation by stabilizing UBE4A to regulate P53 expression and may serve as a new prognostic biomarker and effective therapeutic target for CRC.
Collapse
Affiliation(s)
- Canbin Xie
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Liang Li
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Zhixing Lu
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Runliu Wu
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Yi Zhang
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Lihua Huang
- Center for Experimental Medicine, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Jing Chou
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Ni Gong
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China.
- School of Life Sciences, Central South University, Changsha, Hunan, 410078, China.
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
16
|
Chen Y, Ji Y, Liu S, Liu Y, Feng W, Jin L. PTBP3 regulates proliferation of lung squamous cell carcinoma cells via CDC25A-mediated cell cycle progression. Cancer Cell Int 2022; 22:19. [PMID: 35016691 PMCID: PMC8753890 DOI: 10.1186/s12935-022-02448-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/01/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The roles of Polypyrimidine tract-binding protein 3 (PTBP3) in regulating lung squamous cell carcinoma (LUSC) cells progression is unclear. The aim of this study was to investigate the role of PTBP3 in LUSC. METHODS Expression and survival analysis of PTBP3 was firstly investigated using TCGA datasets. Quantitative reverse transcription PCR and Western blot were performed to detect PTBP3 expression in clinical samples. Moreover, cell counting kit 8 (CCK-8) assays, colony formation assays and in vivo tumor formation assays were used to examine the effects of PTBP3 on LUSC cell proliferation. RNA-sequence and analysis explores pathways regulated by PTBP3.Flow cytology was used analyzed cell cycle. Cell cycle-related markers were analyzed by Western blot. RESULTS PTBP3 was found to be overexpressed in LUSC tissues compared with normal tissues. High PTBP3 expression was significantly correlated with poor prognosis. In vitro and vivo experiments demonstrated that PTBP3 knockdown caused a significant decrease in the proliferation rate of cells. Bioinformatics analysis showed that PTBP3 involved in cell cycle pathway regulation in LUSC. Furthermore, PTBP3 knockdown arrested cell cycle progression at S phase via decreasing CDK2/Cyclin A2 complex. In addition, downregulation of PTBP3 significantly decreased the expression of CDC25A. CONCLUSIONS Our results suggest that PTBP3 regulated LUSC cell proliferation via cell cycle and might be a potential target for molecular therapy of LUSC.
Collapse
Affiliation(s)
- Yingji Chen
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China
| | - Ying Ji
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Suo Liu
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China
| | - Yicai Liu
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China
| | - Wei Feng
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China.
| | - Longyu Jin
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China.
| |
Collapse
|
17
|
Wu H, Dong D, Wang J, Yin S, Gong Y, Yang C, Bai Y, Wang J, Du Y. LncRNA NEAT1 Promotes the Malignant Progression of Colorectal Cancer by Targeting ZEB1 via miR-448. Technol Cancer Res Treat 2022; 21:15330338221085348. [PMID: 35695254 PMCID: PMC9201302 DOI: 10.1177/15330338221085348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Long noncoding RNAs have been associated with various
types of malignant tumors; however, the specific role of long noncoding RNAs in
tumorigenesis still remains unclear in colorectal cancer. Here, we aim to
elucidate the role of long noncoding RNA nuclear paraspeckle assembly transcript
1 in the malignant progression of colorectal cancer and investigate its
underlying mechanisms. Methods: Real-time polymerase chain reaction
was used to detect the expression of nuclear paraspeckle assembly transcript 1
in colorectal cancer tissues and cells. Cell Counting Kit-8 assay was used to
determine the effect of nuclear paraspeckle assembly transcript 1 in
proliferation. Transwell assay was used to explore the role of nuclear
paraspeckle assembly transcript 1 in metastasis. Bioinformatics method was used
to predict the core nuclear paraspeckle assembly transcript 1 interaction
network. Real-time polymerase chain reaction was used to detect nuclear
paraspeckle assembly transcript 1 and miR-448 expression levels. Western
blotting was used to detect the expression levels of ZEB1. Luciferase assay was
used to verify the relationship among nuclear paraspeckle assembly transcript 1,
miR-448, and ZEB1. The effect of nuclear paraspeckle assembly transcript 1 on
tumor growth was detected by tumorigenesis test in nude mice.
Results: Long noncoding RNA–nuclear paraspeckle assembly
transcript 1 was up-regulated in colorectal cancer tissues and cells. Knocking
down of nuclear paraspeckle assembly transcript 1 can suppress colorectal cancer
proliferation and invasion, and caused a reduction of ZEB1 expression and an
increase of miR-448 expression. Furthermore, knockdown of nuclear paraspeckle
assembly transcript 1 regulated miR-448/ZEB1 axis to inhibit the expression of
ZEB1. miR-448 silencing can reverse the effect of nuclear paraspeckle assembly
transcript 1 knockdown. Conclusion: Our result demonstrated that
long noncoding RNA nuclear paraspeckle assembly transcript 1 promotes
proliferation and invasion of colorectal cancer by targeting miR-448 to promote
the expression of ZEB1, which may play a significant role in the tumorigenesis
of colorectal cancer.
Collapse
Affiliation(s)
- Hanquan Wu
- Department of Colorectal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan, China
| | - Dengwen Dong
- Department of Cardiovascular Medicine, Jingshan Psychiatric Hospital of Hubei Province, Wuhan, China
| | - Jiwei Wang
- Department of Colorectal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan, China
| | - Shiwen Yin
- Department of Colorectal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan, China
| | - Yuanxiang Gong
- Department of Colorectal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan, China
| | - Chao Yang
- Department of Medicine, 1861Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yihan Bai
- Department of Colorectal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan, China
| | - Junyi Wang
- Department of Colorectal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan, China
| | - Yanhong Du
- Department of Colorectal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
18
|
Impact of Alternative Splicing Variants on Liver Cancer Biology. Cancers (Basel) 2021; 14:cancers14010018. [PMID: 35008179 PMCID: PMC8750444 DOI: 10.3390/cancers14010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Among the top ten deadly solid tumors are the two most frequent liver cancers, hepatocellular carcinoma, and intrahepatic cholangiocarcinoma, whose development and malignancy are favored by multifactorial conditions, which include aberrant maturation of pre-mRNA due to abnormalities in either the machinery involved in the splicing, i.e., the spliceosome and associated factors, or the nucleotide sequences of essential sites for the exon recognition process. As a consequence of cancer-associated aberrant splicing in hepatocytes- and cholangiocytes-derived cancer cells, abnormal proteins are synthesized. They contribute to the dysregulated proliferation and eventually transformation of these cells to phenotypes with enhanced invasiveness, migration, and multidrug resistance, which contributes to the poor prognosis that characterizes these liver cancers. Abstract The two most frequent primary cancers affecting the liver, whose incidence is growing worldwide, are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which are among the five most lethal solid tumors with meager 5-year survival rates. The common difficulty in most cases to reach an early diagnosis, the aggressive invasiveness of both tumors, and the lack of favorable response to pharmacotherapy, either classical chemotherapy or modern targeted therapy, account for the poor outcome of these patients. Alternative splicing (AS) during pre-mRNA maturation results in changes that might affect proteins involved in different aspects of cancer biology, such as cell cycle dysregulation, cytoskeleton disorganization, migration, and adhesion, which favors carcinogenesis, tumor promotion, and progression, allowing cancer cells to escape from pharmacological treatments. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the available information regarding the impact of AS on liver carcinogenesis and the development of malignant characteristics of HCC and iCCA, whose understanding is required to develop novel therapeutical approaches aimed at manipulating the phenotype of cancer cells.
Collapse
|
19
|
Du Y, Ma X, Wang D, Wang Y, Zhang T, Bai L, Liu Y, Chen S. Identification of heterogeneous nuclear ribonucleoprotein as a candidate biomarker for diagnosis and prognosis of hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:2361-2376. [PMID: 34790398 DOI: 10.21037/jgo-21-468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/02/2021] [Indexed: 12/09/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of liver cancer with a high mortality rate. However, spliceosomal genes are still lacking in the diagnosis and prognosis of HCC. Methods Identification of differentially expressed genes (DEGs) was performed using the limma package in R software. Modules highly related to HCC were obtained by weighted gene co-expression network analysis (WGCNA), and the module genes were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The biomarker for diagnosing HCC was determined by receiver operating characteristic (ROC) curve analysis, and the effect of the biomarker in the diagnosis of HCC was evaluated by performing five-fold cross-validation with logistic regression. HCC specimens from preoperatively treated patients were tested for biomarker by real-time quantitative polymerase chain reaction (RT-qPCR). Kaplan-Meier analysis was used to assess the relationship between biomarker and patient survival. The role of biomarker was evaluated using ESTIMATE analysis in the tumor microenvironment. Results In this study, 389 DEGs were screened out from three Gene Expression Omnibus (GEO) datasets. We also found that the turquoise module of 123 genes from The Cancer Genome Atlas (TCGA) data was the key module with the highest correlation with HCC traits. Then, 123 genes were analyzed using the KEGG enrichment pathway, and eight genes were found to be most significantly related to the spliceosome pathway. We selected 8 genes and 389 DEGs shared genes, and finally got the only gene, heterogeneous nuclear ribonucleoprotein (hnRNPU). The high expression of hnRNPU was associated with poor prognosis of HCC, and hnRNPU was a biomarker for diagnosing HCC. In the tissues of patients with excellent HCC treatment hnRNPU messenger RNA (mRNA) was lower than in the tissues of patients with poor HCC treatment. High expression of hnRNPU was significantly increased in HCC patients with low stromal (P<0.05), low immune (P<0.05), and low estimation scores (P<0.05), and with high tumor purity (P<0.05) and high malignant progression (P<0.05) of the HCC. Conclusions The hnRNPU gene identified in this study may become a new biomarker for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Youli Du
- Department of Interventional Medicine, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Xiaoou Ma
- Department of Interventional Medicine, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Dongxu Wang
- CT Room of the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Yuguang Wang
- CT Room of the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Tianyu Zhang
- CT Room of the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Lianjie Bai
- The Ultrasound Department of the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Yunlong Liu
- Department of Oncology, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Shaosen Chen
- Department of Oncology, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| |
Collapse
|
20
|
Hu S, Zhang J, Fang X, Guo G, Dai J, Sheng Z, Li D, Chen J, Zhang L, Liu C, Gao Y. Identification of microRNA hsa-miR-30c-5p as an inhibitory factor in the progression of hepatocellular carcinoma and investigation of its regulatory network via comprehensive analysis. Bioengineered 2021; 12:7165-7177. [PMID: 34503377 PMCID: PMC8806565 DOI: 10.1080/21655979.2021.1979439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with high morbidity and mortality. An increasing number of abnormal gene expressions were identified to be associated with the progression of HCC. Previous studies showed that the hsa-miR-30 c-5p (miR-30 c), one of the miR-30 family members, might play a role in suppressing tumor progression in a variety of tumors. The present study aims to examine miR-30 c effects in the development of HCC. The role of miR-30 c in HCC was comprehensively investigated by using bioinformatics and experiments in vitro. The multiple databases were combined to predict and screen the target genes and upstream lncRNAs of miR-30 c, and then constructed a competitive endogenous RNA (ceRNA) regulatory network with miR-30 c as the central miRNA. The miR-30 c-related ceRNA regulatory network was also initially validated in vitro. The results showed that miR-30 c over-expression could inhibit proliferation, migration, invasion, induce apoptosis, and increase G0/G1 phase ratio of HCC cells. Three miR-30 c upstream lncRNAs and 12 miR-30 c target genes were expressed in HCC cells with increased expression and poor prognosis, and a miR-30 C-related ceRNA regulatory network was constructed. This study verified miR-30 c as an inhibitory factor in the progression of HCC and performed analyses on the miR-30 c regulatory network, which might provide potential target information for HCC prognoses and therapies. However, further experiments in vivo and studies including clinical trials will be conducted to validate our results.
Collapse
Affiliation(s)
- Shangshang Hu
- School of Laboratory Medicine, Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Jinyan Zhang
- School of Life Science, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Xiaoyu Fang
- Department of Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China.,National Clinical Research Center for Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
| | - Guoqing Guo
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Jing Dai
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Zhiyong Sheng
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Dongdong Li
- Department of Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China.,National Clinical Research Center for Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
| | - Jiasheng Chen
- Department of Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China.,National Clinical Research Center for Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
| | - Li Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China.,National Clinical Research Center for Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
| | - Chuanmiao Liu
- Department of Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China.,National Clinical Research Center for Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
| | - Yu Gao
- School of Life Science, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
21
|
Nishimoto Y, Nakagawa S, Okano H. NEAT1 lncRNA and amyotrophic lateral sclerosis. Neurochem Int 2021; 150:105175. [PMID: 34481908 DOI: 10.1016/j.neuint.2021.105175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a representative neurological disease that is known to devastate entire motor neurons within a period of just a few years. Discoveries of the specific pathologies of relevant RNA-binding proteins, including TAR DNA-binding protein-43 (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS), and the causative genes of both familial and sporadic ALS have provided crucial information that could lead to a cure. In recent ALS research the GGGGCC-repeat expansion in the C9orf72 gene was identified as one of the most important pathological findings, suggesting the significance of both nuclear dysfunction due to dipeptide repeat proteins (DPRs) and RNA toxicity (such as pathological alterations of non-coding RNAs). In research on model animals carrying ALS-related molecules, the determination of whether a factor is protective or toxic has been controversial. Herein, we review the findings regarding NEAT1 RNA and C9orf72 GGGGCC repeats associated with ALS, from the viewpoint of conversion from the protective stage in the nucleus in early-phase ALS to late-phase induction of cell death. This review will provide insights for the development of RNA effectors as novel ALS treatments.
Collapse
Affiliation(s)
- Yoshinori Nishimoto
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan.
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan.
| |
Collapse
|
22
|
FMR1/circCHAF1A/miR-211-5p/HOXC8 feedback loop regulates proliferation and tumorigenesis via MDM2-dependent p53 signaling in GSCs. Oncogene 2021; 40:4094-4110. [PMID: 34017077 DOI: 10.1038/s41388-021-01833-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/12/2021] [Accepted: 05/07/2021] [Indexed: 02/04/2023]
Abstract
Glioma is the most common and fatal primary malignant brain tumor. Glioma stem cells (GSCs) may be an important factor in glioma cell proliferation, invasion, chemoradiotherapy tolerance, and recurrence. Therefore, discovering novel GSCs related circular RNAs (circRNAs) may finds out a prospective target for the treatment of glioma. A novel circRNA-CHAF1A (circCHAF1A) was first found in our study. CircCHAF1A was overexpressed in glioma and related to the low survival rate. Functionally, it was found that no matter in vitro or in vivo, circCHAF1A can facilitate the proliferation and tumorigenesis of TP53wt GSCs. Mechanistically, circCHAF1A upregulated transcription factor HOXC8 expression in GSCs through miR-211-5p sponging. Then, HOXC8 can transcriptionally upregulate MDM2 expression and inhibited the antitumor effect of p53. Furtherly, the RNA binding protein FMR1 can bind to and promoted the expression of circCHAF1A via maintaining its stability, while HOXC8 also transcribed the FMR1 expression to form a feedback loop, which may be involved in the malignant transformation of glioma. The novel feedback loop among FMR1, circCHAF1A, miR-211-5p, and HOXC8 in GSCs can facilitate the proliferation and tumorigenesis of glioma and GSCs. It also provided a helpful biomarker for diagnosis and prognostic evaluation of glioma and may be applied to molecular targeted therapy.
Collapse
|
23
|
Zhou M, Liu X, Qiukai E, Shang Y, Zhang X, Liu S, Zhang X. Long non-coding RNA Xist regulates oocyte loss via suppressing miR-23b-3p/miR-29a-3p maturation and upregulating STX17 in perinatal mouse ovaries. Cell Death Dis 2021; 12:540. [PMID: 34035229 PMCID: PMC8149765 DOI: 10.1038/s41419-021-03831-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/04/2023]
Abstract
The fecundity of female mammals is resolved by the limited size of the primordial follicle (PF) pool formed perinatally. The establishment of PF pool is accompanied by a significant programmed oocyte death. Long non-coding RNAs (lncRNA) are central modulators in regulating cell apoptosis or autophagy in multiple diseases, however, the significance of lncRNAs governing perinatal oocyte loss remains unknown. Here we find that Yin-Yang 1 (YY1) directly binds to the lncRNA X-inactive-specific transcript (Xist) promoter and facilitates Xist expression in the perinatal mouse ovaries. Xist is highly expressed in fetal ovaries and sharply downregulated along with the establishment of PF pool after birth. Gain or loss of function analysis reveals that Xist accelerates oocyte autophagy, mainly through binding to pre-miR-23b or pre-miR-29a in the nucleus and preventing the export of pre-miR-23b/pre-miR-29a to the cytoplasm, thus resulting in decreased mature of miR-23b-3p/miR-29a-3p expression and upregulation miR-23b-3p/miR-29a-3p co-target, STX17, which is essential for timely control of the degree of oocyte death in prenatal mouse ovaries. Overall, these findings identify Xist as a key non-protein factor that can control the biogenesis of miR-23b-3p/miR-29a-3p, and this YY1-Xist-miR-23b-3p/miR-29a-3p-STX17 regulatory axis is responsible for perinatal oocyte loss through autophagy.
Collapse
Affiliation(s)
- Meng Zhou
- grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, China
| | - Xiaoqiu Liu
- grid.89957.3a0000 0000 9255 8984Department of Microbiology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 211166 Nanjing, China
| | - E. Qiukai
- grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, China
| | - Yanxing Shang
- grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, China
| | - Xiaoqian Zhang
- grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, China
| | - Shuting Liu
- grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, China
| | - Xuesen Zhang
- grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, China
| |
Collapse
|
24
|
Wu P, Zhang M, Webster NJG. Alternative RNA Splicing in Fatty Liver Disease. Front Endocrinol (Lausanne) 2021; 12:613213. [PMID: 33716968 PMCID: PMC7953061 DOI: 10.3389/fendo.2021.613213] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alternative RNA splicing is a process by which introns are removed and exons are assembled to construct different RNA transcript isoforms from a single pre-mRNA. Previous studies have demonstrated an association between dysregulation of RNA splicing and a number of clinical syndromes, but the generality to common disease has not been established. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease affecting one-third of adults worldwide, increasing the risk of cirrhosis and hepatocellular carcinoma (HCC). In this review we focus on the change in alternative RNA splicing in fatty liver disease and the role for splicing regulation in disease progression.
Collapse
Affiliation(s)
- Panyisha Wu
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, United States
| | - Moya Zhang
- University of California Los Angeles, Los Angeles, CA, United States
| | - Nicholas J. G. Webster
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
25
|
Luo J, Xie K, Gao X, Yao Y, Wang G, Shao C, Li X, Xu Y, Ren B, Hu L, Shen Y. Long Noncoding RNA Nuclear Paraspeckle Assembly Transcript 1 Promotes Progression and Angiogenesis of Esophageal Squamous Cell Carcinoma Through miR-590-3p/MDM2 Axis. Front Oncol 2021; 10:618930. [PMID: 33680941 PMCID: PMC7933463 DOI: 10.3389/fonc.2020.618930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis has been identified as one of the hallmarks of cancer and aggravates cancer development and progression. Accumulating evidence indicated that long noncoding RNAs (lncRNAs) are powerful factors in regulating various cancer behaviors. The aim of this study is to verify the function and potential mechanisms of lncRNA NEAT1 in progression and angiogenesis of esophageal squamous cell carcinoma (ESCC). We found that NEAT1 was overexpressed in ESCC tissues and correlated with clinical characteristics of patients. Silence of NEAT1 inhibited proliferation, migration, invasion and angiogenesis of ESCC cells. High throughput sequencing and western blotting revealed that NEAT1 regulated MDM2/p53 pathway. Rescue of MDM2 restored the effect of NEAT1 on progression and angiogenesis of ESCC cells. Nude mice xenograft models further validated the role of NEAT1 in vivo. Importantly, NEAT1 functioned as a competing endogenous RNA for miR-590-3p to regulate MDM2 expression and miR-590-3p acted as a tumor suppressor in ESCC progression and angiogenesis. These findings suggested that NEAT1/miR-590-3p/MDM2 axis might serve as potential therapeutic targets for ESCC patients.
Collapse
Affiliation(s)
- Jing Luo
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kai Xie
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang Gao
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Yu Yao
- Department of Respiratory Medicine, Nanjing Second Hospital, Nanjing, China
| | - Gaoming Wang
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Chenye Shao
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaokun Li
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yang Xu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Binhui Ren
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Liwen Hu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Tsuchiya H, Shiota G. Clinical and Biological Implications of Cancer Stem Cells in Hepatocellular Carcinoma. Yonago Acta Med 2021; 64:1-11. [PMID: 33642898 DOI: 10.33160/yam.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with poor prognosis, and is one of the leading causes of cancer-related deaths worldwide. Recently, the development of therapeutic drugs via novel mechanisms of action, involving molecular-targeted drugs and immune checkpoint inhibitors, has progressed in the field of HCC. However, the recurrence rate remains high, and further improvement of the prognosis of patients with HCC is urgently needed. Cancer stem cells (CSCs) are a promising target for further development of novel anti-cancer drugs because they are reportedly involved in tumor initiation, maintenance, recurrence, and resistance to conventional therapies. Although several studies have already been conducted, the functions and roles of CSCs in the development and progression of tumors remain to be elucidated. In this review article, we will clarify the fundamental knowledge of CSCs necessary for the understanding of CSCs and will outline so-far identified markers specific to liver CSCs and the pathological and therapeutic implications of CSCs in HCC.
Collapse
Affiliation(s)
- Hiroyuki Tsuchiya
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Goshi Shiota
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
27
|
Zhang B, Wang HY, Zhao DX, Wang DX, Zeng Q, Xi JF, Nan X, He LJ, Zhou JN, Pei XT, Yue W. The splicing regulatory factor hnRNPU is a novel transcriptional target of c-Myc in hepatocellular carcinoma. FEBS Lett 2021; 595:68-84. [PMID: 33040326 DOI: 10.1002/1873-3468.13943] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer with high mortality. Here, we found that hnRNPU is overexpressed in HCC tissues and is correlated with the poor prognosis of HCC patients. Besides, hnRNPU is of high significance in regulating the proliferation, apoptosis, self-renewal, and tumorigenic potential of HCC cells. Mechanismly, c-Myc regulates hnRNPU expression at the transcriptional level, and meanwhile, hnRNPU stabilizes the mRNA of c-MYC. We found that the hnRNPU and c-Myc regulatory loop exerts a synergistic effect on the proliferation and self-renewal of HCC, and promotes the HCC progression. Taken together, hnRNPU functions as a novel transcriptional target of c-Myc and promotes HCC progression, which may become a promising target for the treatment of c-Myc-driven HCC.
Collapse
Affiliation(s)
- Biao Zhang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Hai-Yang Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - De-Xi Zhao
- Department of Hepatobiliary Surgery, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dong-Xing Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Jia-Fei Xi
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Li-Juan He
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Jun-Nian Zhou
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
- Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, China
| | - Xue-Tao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| |
Collapse
|
28
|
Bu FT, Wang A, Zhu Y, You HM, Zhang YF, Meng XM, Huang C, Li J. LncRNA NEAT1: Shedding light on mechanisms and opportunities in liver diseases. Liver Int 2020; 40:2612-2626. [PMID: 32745314 DOI: 10.1111/liv.14629] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022]
Abstract
With advances in genome and transcriptome research technology, the function and mechanism of lncRNAs in physiological and pathological states have been gradually revealed. Nuclear Enriched Abundant Transcript 1 (NEAT1, a long non-coding RNA), a vital component of paraspeckles, plays an indispensable role in the formation and integrity of paraspeckles. Throughout the research history, NEAT1 is mostly aberrantly upregulated in various cancers, and high expression of NEAT1 often contributes to poor prognosis of patients. Notably, the role and mechanism of NEAT1 in liver diseases have been increasingly reported. NEAT1 accelerates the progression of non-alcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma, while exerting a protective role in the pathogenesis of acute-on-chronic liver failure by inhibiting the inflammatory response. In this review, we will elaborate on relevant studies on the different casting of NEAT1 in liver diseases, especially focusing on its regulatory mechanisms and new opportunities for alcoholic liver disease.
Collapse
Affiliation(s)
- Fang-Tian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yan Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong-Mei You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ya-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Downregulated Expression of linc-ROR in Gastric Cancer and Its Potential Diagnostic and Prognosis Value. DISEASE MARKERS 2020; 2020:7347298. [PMID: 33163123 PMCID: PMC7607276 DOI: 10.1155/2020/7347298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/22/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Background Gastric cancer (GC) is one of the global mortality diseases and has a poor prognosis due to the lack of ideal tumor biomarkers. Numerous studies have shown that long noncoding RNAs (lncRNAs) can affect the occurrence and development of cancer through a variety of signaling pathways. The abnormal expression and specificity of lncRNAs in tumors make them potential biomarkers of cancers. Nevertheless, the diagnostic roles of lncRNAs in GC have been poorly understood. So this study focuses on the clinical diagnostic value of lncRNAs in GC. Materials and Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to investigate the expression of the linc-ROR (long intergenic noncoding RNA, regulator of reprogramming) in 105 paired GC tissues and adjacent normal tissues. Receiver operating characteristic (ROC) curve and area under the curve (AUC) were established to assess the diagnostic value of linc-ROR. The relationship between expression of linc-ROR and clinicopathological factors of patients with GC was further explored. Kaplan-Meier analysis was performed to evaluate the prognostic value of linc-ROR expression. Results The linc-ROR expression level was significantly decreased in GC tissues compared with its adjacent nontumor tissues (n = 105, P < 0.001). We also discovered that linc-ROR was evidently downregulated in 68.6% (72/105) of GC tissues. The AUC's value of linc-ROR was up to 0.6495, with sensitivity and specificity of 0.7524 and 0.5143, respectively. Intriguingly, the linc-ROR expression levels were obviously associated with tumor differentiation (P = 0.004). Notably, the overall survival rate of GC patients with high expression of linc-ROR was significantly higher than those with low expression. Conclusion Our data revealed that linc-ROR has clinical potential as a biomarker for the diagnosis of GC and assessment of its prognosis.
Collapse
|
30
|
Wang Z, Li K, Huang W. Long non-coding RNA NEAT1-centric gene regulation. Cell Mol Life Sci 2020; 77:3769-3779. [PMID: 32219465 PMCID: PMC11104955 DOI: 10.1007/s00018-020-03503-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
Abstract
Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA that is widely expressed in a variety of mammalian cell types. An increasing number of studies have demonstrated that NEAT1 plays key roles in various biological and pathological processes; therefore, it is important to understand how its expression is regulated and how it regulates the expression of its target genes. Recently, we found that NEAT1 expression could be regulated by signal transducer and activator of transcription 3 and that altered NEAT1 expression epigenetically regulates downstream gene transcription during herpes simplex virus-1 infection and Alzheimer's disease, suggesting that NEAT1 acts as an important sensor and effector during stress and disease development. In this review, we summarize and discuss the molecules and regulatory patterns that control NEAT1 gene expression and the molecular mechanism via which NEAT1 regulates the expression of its target genes, providing novel insights into the central role of NEAT1 in gene regulation.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| | - Kun Li
- Department of Nuclear Medicine, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| |
Collapse
|
31
|
Zhang Y, Huang C, Zhu Z, Hou Y, Huang S, Sun C, Tang Y, Zhang Z, Wang L, Chen H, Ju W, Qiao X, Chen M. lncRNA NEAT1 regulates the proliferation and migration of hepatocellular carcinoma cells by acting as a miR‑320a molecular sponge and targeting L antigen family member 3. Int J Oncol 2020; 57:1001-1012. [PMID: 32945386 DOI: 10.3892/ijo.2020.5108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Long non‑coding RNAs (lncRNAs) serve a pivotal role in hepatocellular carcinoma (HCC) progression and have been confirmed to participate in the carcinogenesis and development of HCC. Certain studies have focused on lncRNA nuclear enriched abundant transcript 1 (NEAT1) in HCC. However, the relationship between lncRNA NEAT1 and HCC remains unclear. The present study found that NEAT1 was significantly overexpressed in HCC cell lines compared with LX‑2 hepatic stellate cells. NEAT1 expression in Huh7 and MHCC‑97H cells was increased following transfection with lentivirus (LV)‑NEAT1 but inhibited by LV‑short hairpin NEAT1. Knockdown of NEAT1 significantly repressed HCC cell viability, increased cell apoptosis, and inhibited cell migration and invasion capacity. By contrast, upregulation of NEAT1 demonstrated the reverse effects. Furthermore, microRNA‑320a (miR‑230a) was predicted to be a direct target of NEAT1 and was significantly reduced in HCC cells. Additionally, a luciferase activity reporter assay and RNA immunoprecipitation assay were performed to confirm the interaction between miR‑320a and NEAT1. Using a dual‑luciferase activity assay, L antigen family member 3 (LAGE3) was found to be a target of miR‑320a. Finally, in vivo nude mouse models were established, and the results indicated that NEAT1 suppressed HCC progression by targeting miR‑320a. In conclusion, the present findings revealed that the NEAT1/miR‑320a/LAGE3 axis participates in HCC development and that NEAT1 could be used as a biomarker for HCC.
Collapse
Affiliation(s)
- Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Changjun Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yufei Hou
- Department of Ultrasound Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510600, P.R. China
| | - Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Huadi Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xin Qiao
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
32
|
Long noncoding RNA FAM83A-AS1 facilitates hepatocellular carcinoma progression by binding with NOP58 to enhance the mRNA stability of FAM83A. Biosci Rep 2020; 39:220808. [PMID: 31696213 PMCID: PMC6851519 DOI: 10.1042/bsr20192550] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 10/15/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC), as one of the commonest cancers globally, is a primary malignancy in human liver with a characteristic of high mortality rate. Long noncoding RNAs (lncRNAs) are confirmed to be implicated with multiple cancers including HCC. LncRNA FAM83A-AS1 has also been validated as an oncogene in lung cancer, but its mechanism in HCC is poorly understood. Our research is intended to investigate the underlying mechanism of FAM83A-AS1 in HCC. In the present study, we found the abundantly increased expression level of FAM83A-AS1 in HCC tissues and cells. FAM83A-AS1 inhibition hampered cell proliferation, migration and elevated cell apoptosis in HCC. Moreover, FAM83A-AS1 could positively regulate FAM83A, and FAM83A could also promote the progression of HCC. In addition, FAM83A-AS1 and FAM83A were both verified to bind with NOP58, and FAM83A-AS1 enhanced the mRNA stability of FAM83A by binding with NOP58. In rescue assays, the suppressed influence of down-regulated FAM83A-AS1#1 on cell proliferation, migration as well as the accelerated influence of FAM83A-AS1#1 knockdown on cell apoptosis could be partially recovered by overexpression of FAM83A. In conclusion, FAM83A-AS1 facilitated HCC progression by binding with NOP58 to enhance the stability of FAM83A. These findings offer a novel biological insight into HCC treatment.
Collapse
|
33
|
Sun Q, Song YJ, Prasanth KV. One locus with two roles: microRNA-independent functions of microRNA-host-gene locus-encoded long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1625. [PMID: 32945142 PMCID: PMC7965793 DOI: 10.1002/wrna.1625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are RNA transcripts longer than 200 nucleotides that do not code for proteins. LncRNAs play crucial regulatory roles in several biological processes via diverse mechanisms and their aberrant expression is associated with various diseases. LncRNA genes are further subcategorized based on their relative organization in the genome. MicroRNA (miRNA)-host-gene-derived lncRNAs (lnc-MIRHGs) refer to lncRNAs whose genes also harbor miRNAs. There exists crosstalk between the processing of lnc-MIRHGs and the biogenesis of the encoded miRNAs. Although the functions of the encoded miRNAs are usually well understood, whether those lnc-MIRHGs play independent functions are not fully elucidated. Here, we review our current understanding of lnc-MIRHGs, including their biogenesis, function, and mechanism of action, with a focus on discussing the miRNA-independent functions of lnc-MIRHGs, including their involvement in cancer. Our current understanding of lnc-MIRHGs strongly indicates that this class of lncRNAs could play important roles in basic cellular events as well as in diseases. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
34
|
Qin H, Ni H, Liu Y, Yuan Y, Xi T, Li X, Zheng L. RNA-binding proteins in tumor progression. J Hematol Oncol 2020; 13:90. [PMID: 32653017 PMCID: PMC7353687 DOI: 10.1186/s13045-020-00927-w] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023] Open
Abstract
RNA-binding protein (RBP) has a highly dynamic spatiotemporal regulation process and important biological functions. They are critical to maintain the transcriptome through post-transcriptionally controlling the processing and transportation of RNA, including regulating RNA splicing, polyadenylation, mRNA stability, mRNA localization, and translation. Alteration of each process will affect the RNA life cycle, produce abnormal protein phenotypes, and thus lead to the occurrence and development of tumors. Here, we summarize RBPs involved in tumor progression and the underlying molecular mechanisms whereby they are regulated and exert their effects. This analysis is an important step towards the comprehensive characterization of post-transcriptional gene regulation involved in tumor progression.
Collapse
Affiliation(s)
- Hai Qin
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Haiwei Ni
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yichen Liu
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yaqin Yuan
- Guizhou Medical Device Testing Center, Guiyang, 550004, Guizhou, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
35
|
Zhou W, She G, Yang K, Zhang B, Liu J, Yu B. MiR-384 inhibits proliferation and migration of trophoblast cells via targeting PTBP3. Pregnancy Hypertens 2020; 21:132-138. [PMID: 32512528 DOI: 10.1016/j.preghy.2020.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Preeclampsia (PE) is one type of hypertension during pregnancy that seriously threatens maternal and infant health. Trophoblast dysfunction, such as decreased proliferation and migration, is closely related to the occurrence and development of PE. MicroRNAs (miRNAs) have been proven to play an important role in many diseases, including PE. miR-384 was reported to play a regulatory role in promoting cell apoptosis and inhibiting proliferation, migration and invasion in a variety of tumors. Previously, we found that miR-384 is upregulated in the placenta and plasma in the context of PE. In this study, we elucidated the function of miR-384 in the trophoblast cell line HTR-8/SVneo and the trophoblastic tumor cell line JEG-3. Cell proliferation and migration were inhibited by miR-384 overexpression but promoted by miR-384 downregulation. Subsequently, polypyrimidine tract-binding protein 3(PTBP3) was found to be a direct target gene of miR-384. PTBP3 was downregulated in placental tissues from PE patients, and a negative correlation was found between PTBP3 and miR-384. Our results suggest that the miR-384/PTBP3 axis plays an important role in regulating trophoblast function during the progression of PE, and these data provide novel insight into the molecular pathogenesis of this disorder.
Collapse
Affiliation(s)
- Wenbo Zhou
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Guangtong She
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Kaiyan Yang
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Bin Zhang
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Jingbing Liu
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Bin Yu
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu, China.
| |
Collapse
|
36
|
Tao W, Ma J, Zheng J, Liu X, Liu Y, Ruan X, Shen S, Shao L, Chen J, Xue Y. Silencing SCAMP1-TV2 Inhibited the Malignant Biological Behaviors of Breast Cancer Cells by Interaction With PUM2 to Facilitate INSM1 mRNA Degradation. Front Oncol 2020; 10:613. [PMID: 32670859 PMCID: PMC7326047 DOI: 10.3389/fonc.2020.00613] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/03/2020] [Indexed: 01/13/2023] Open
Abstract
Background: Molecular-targeted therapy plays an important role in the combined treatment of breast cancer. Long noncoding RNA (LncRNA) plays a significant role in regulating breast cancer progression. The present study is to reveal the potential roles and molecular mechanism that the secretory carrier-associated membrane protein 1-transcript variant 2 (SCAMP1-TV2) has in breast. Methods: Cell Counting Kit-8 (CCK-8), RNA Immunoprecipitation (RIP), and RNA pull-down assays were employed to determine the interactions between SCAMP1-TV2 and Pumilio RNA binding family member 2 (PUM2). The luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays were used to get to know the effect of human insulinoma-associated 1 (INSM1) directly on the SAM and SH3 domain containing 1 (SASH1) promoter. Results: Silenced SCAMP1-TV2 inhibited the proliferation, migration, and invasion of breast cancer cells, and promoted cell apoptosis. Meanwhile, SCAMP1-TV2 downregulation decreased its binding to PUM2 and increased the binding of PUM2 to INSM1 messenger RNA (mRNA), thus promoting the degradation of INSM1 mRNA. Silencing INSM1 decreased its inhibitory effect on SASH1 transcription and inhibited the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. The xenograft tumor growth in a nude mice was significantly inhibited by the silencing of SCAMP1-TV2 in combination with the overexpression of PUM2. Conclusions: SCAMP1-TV2/PUM2/INSM1 pathway plays an important role in regulating the biological behavior of breast cancer cells.
Collapse
Affiliation(s)
- Wei Tao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Shuyuan Shen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Lianqi Shao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jiajia Chen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| |
Collapse
|
37
|
Liang Y, Song X, Li Y, Chen B, Zhao W, Wang L, Zhang H, Liu Y, Han D, Zhang N, Ma T, Wang Y, Ye F, Luo D, Li X, Yang Q. LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Mol Cancer 2020; 19:85. [PMID: 32384893 PMCID: PMC7206728 DOI: 10.1186/s12943-020-01206-5] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/23/2020] [Indexed: 12/28/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) play crucial roles in tumor progression and are aberrantly expressed in various cancers. However, the functional roles of lncRNAs in breast cancer remain largely unknown. Methods Based on public databases and integrating bioinformatics analyses, the overexpression of lncRNA BCRT1 in breast cancer tissues was detected and further validated in a cohort of breast cancer tissues. The effects of lncRNA BCRT1 on proliferation, migration, invasion and macrophage polarization were determined by in vitro and in vivo experiments. Luciferase reporter assay and RNA immunoprecipitation (RIP) were carried out to reveal the interaction between lncRNA BCRT1, miR-1303, and PTBP3. Chromatin immunoprecipitation (ChIP) and RT-PCR were used to evaluate the regulatory effect of hypoxia-inducible factor-1α (HIF-1α) on lncRNA BCRT1. Results LncRNA BCRT1 was significantly upregulated in breast cancer tissues, which was correlated with poor prognosis in breast cancer patients. LncRNA BCRT1 knockdown remarkably suppressed tumor growth and metastasis in vitro and in vivo. Mechanistically, lncRNA BCRT1 could competitively bind with miR-1303 to prevent the degradation of its target gene PTBP3, which acts as a tumor-promoter in breast cancer. LncRNA BCRT1 overexpression could promote M2 polarization of macrophages, mediated by exosomes, which further accelerated breast cancer progression. Furthermore, lncRNA BCRT1 was upregulated in response to hypoxia, which was attributed to the binding of HIF-1α to HREs in the lncRNA BCRT1 promoter. Conclusions Collectively, these results reveal a novel HIF-1α/lncRNA BCRT1/miR-1303/PTBP3 pathway for breast cancer progression and suggest that lncRNA BCRT1 might be a potential biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yiran Liang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaojin Song
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yaming Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Hanwen Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Ying Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Dianwen Han
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Tingting Ma
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yajie Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Fangzhou Ye
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Dan Luo
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaoyan Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China. .,Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
38
|
Koyama S, Tsuchiya H, Amisaki M, Sakaguchi H, Honjo S, Fujiwara Y, Shiota G. NEAT1 is Required for the Expression of the Liver Cancer Stem Cell Marker CD44. Int J Mol Sci 2020; 21:ijms21061927. [PMID: 32168951 PMCID: PMC7139689 DOI: 10.3390/ijms21061927] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
CD44, a cancer stem cell (CSC) marker, is required for maintaining CSC properties in hepatocellular carcinoma (HCC). Nuclear enriched abundant transcript 1 (NEAT1), a long noncoding RNA (lncRNA), is an oncogenic driver in HCC. In the present study, we investigated the significance of the NEAT1 gene in association with CD44 expression in liver CSCs of human HCC cell lines. The CSC properties were evaluated by spheroid culture, CSC marker expression, and sensitivity to anti-cancer drugs. The expression of both NEAT1 variant 1 (NEAT1v1) and variant 2 (NEAT1v2) as well as CD44 was significantly increased in the spheroid culture, compared with that in monolayer culture. Overexpression of Neat1v1, but not Neat1v2, enhanced the CSC properties, while knockout of the NEAT1 gene suppressed them. CD44 expression was increased by the overexpression of Neat1v1 and abrogated by NEAT1 knockout. The overexpression of NEAT1v1 restored the CSC properties and CD44 expression in NEAT1-knockout cells. NEAT1v1 expression in HCC tissues was correlated with poor prognosis and CD44 expression. These results suggest that NEAT1v1 is required for CD44 expression. To our surprise, NEAT1v1 also restored the CSC properties even in CD44-deficient cells, suggesting that NEAT1v1 maintains the properties of CSCs in a CD44-independent manner.
Collapse
Affiliation(s)
- Shigemi Koyama
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hiroyuki Tsuchiya
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
- Correspondence: ; Tel./Fax: +81-859-38-6435
| | - Masataka Amisaki
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hiromi Sakaguchi
- Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Soichiro Honjo
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Yoshiyuki Fujiwara
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
39
|
Ma J, Weng L, Jia Y, Liu B, Wu S, Xue L, Yin X, Mao A, Wang Z, Shang M. PTBP3 promotes malignancy and hypoxia-induced chemoresistance in pancreatic cancer cells by ATG12 up-regulation. J Cell Mol Med 2020; 24:2917-2930. [PMID: 31989778 PMCID: PMC7077536 DOI: 10.1111/jcmm.14896] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/17/2019] [Accepted: 11/23/2019] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumours exhibit a high level of heterogeneity which is associated with hypoxia and strong resistance to chemotherapy. The RNA splicing protein polypyrimidine tract-binding protein 3 (PTBP3) regulates hypoxic gene expression by selectively binding to hypoxia-regulated transcripts. We have investigated the role of PTBP3 in tumour development and chemotherapeutic resistance in human PDAC tissues and pancreatic cancer cells. In addition, we determined the sensitivity of cancer cells to gemcitabine with differential levels of PTBP3 and whether autophagy and hypoxia affect gemcitabine resistance in vitro. PTBP3 expression was higher in human pancreatic cancer than in paired adjacent tissues. PTBP3 overexpression promoted PDAC proliferation in vitro and tumour growth in vivo, whereas PTBP3 depletion had opposing effects. Hypoxia significantly increased the expression of PTBP3 in pancreatic cancer cells in vitro. Under hypoxic conditions, cells were more resistance to gemcitabine. Knockdown of PTBP3 results in decreased resistance to gemcitabine, which was attributed to attenuated autophagy. We propose that PTBP3 binds to multiple sites in the 3'-UTR of ATG12 resulting in overexpression. PTBP3 increases cancer cell proliferation and autophagic flux in response to hypoxic stress, which contributes to gemcitabine resistance.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Animals
- Autophagy/drug effects
- Autophagy/genetics
- Autophagy-Related Protein 12/genetics
- Autophagy-Related Protein 12/metabolism
- Base Sequence
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Polypyrimidine Tract-Binding Protein/metabolism
- Stress, Physiological/drug effects
- Tumor Hypoxia/drug effects
- Tumor Hypoxia/genetics
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Gemcitabine
Collapse
Affiliation(s)
- Jun Ma
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Weng
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiping Jia
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bingyan Liu
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shaoqiu Wu
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lei Xue
- Shanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Xiang Yin
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Aiwu Mao
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhongmin Wang
- Department of interventional radiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mingyi Shang
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
40
|
Luo N, Zhang K, Li X, Hu Y. ZEB1 induced-upregulation of long noncoding RNA ZEB1-AS1 facilitates the progression of triple negative breast cancer by binding with ELAVL1 to maintain the stability of ZEB1 mRNA. J Cell Biochem 2020; 121:4176-4187. [PMID: 31922280 DOI: 10.1002/jcb.29572] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/11/2019] [Indexed: 01/01/2023]
Abstract
Triple-negative breast cancer (TNBC) is one of the malignant type of breast cancer. Previous study indicated that long noncoding RNA (lncRNA) ZEB1-AS1 was associated with the progression of several cancers. However, its underlying molecular mechanism in TNBC remains to be elucidated. In this study, ZEB1-AS1 expression was boosted in TNBC tissues and cell lines according to reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Inhibition of ZEB1-AS1 suppressed cell proliferation, migration, invasion, and promoted cell apoptosis in TNBC. Moreover, ZEB1-AS1 positively regulated ZEB1 expression. RT-qPCR disclosed ZEB1 expression was elevated in TNBC tissues and ZEB1 silence blocked TNBC progression. RNA pull-down and RNA immunoprecipitation assays revealed ZEB1-AS1 and ZEB1 both could bind with ELAVL1. ZEB1-AS1 maintained ZEB1 messenger RNA (mRNA) stability by binding with ELAVL1. In addition chromatin, immunoprecipitation and luciferase reporter assays confirmed that ZEB1 could bind with ZEB1-AS1 promoter and promoted ZEB1-AS1 expression. Rescue assays manifested ZEB1 overexpression could abolish the inhibitory effect caused by ZEB1-AS1 inhibition on TNBC progression. To sum up, ZEB1 induced-upregulation of ZEB1-AS1 maintained the stability of ZEB1 mRNA by binding with ELAVL1, which formed a feedback loop to facilitate TNBC progression. These findings might provide a new target for TNBC treatment.
Collapse
Affiliation(s)
- Na Luo
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kejing Zhang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Li
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Hu
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
41
|
Zhou X, Wang X, Zhou Y, Cheng L, Zhang Y, Zhang Y. Long Noncoding RNA NEAT1 Promotes Cell Proliferation And Invasion And Suppresses Apoptosis In Hepatocellular Carcinoma By Regulating miRNA-22-3p/akt2 In Vitro And In Vivo. Onco Targets Ther 2019; 12:8991-9004. [PMID: 31802908 PMCID: PMC6827517 DOI: 10.2147/ott.s224521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/28/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most aggressive cancers that is associated with cirrhosis and other chronic liver diseases. Although remarkable progress has been made in past decades, it is still necessary to continue exploring the pathology and development of HCC. OBJECTIVE In this study, we elucidated the effect of long noncoding RNA (lncRNA) NEAT1 on HCC development and underlying mechanisms. METHODS Clinicopathological features of HCC patients were collected and the correlations with NEAT1 expression were assessed. To determine cell activities, CCK-8, flow cytometry, invasion assays, and TUNEL assays were performed. Real-time PCR, Western blot, and luciferase reporter assays were performed to investigate the related mechanism of HCC. RESULTS The results revealed that NEAT1 expression was associated with tumor size and differentiation where NEAT1 was upregulated in both HCC tissues and cell lines. Overexpression of NEAT1 promoted proliferation and invasion while inhibited apoptosis in HCC cells, which was opposite to the effect of NEAT1 knockdown. Also, AKT2 was increased in HCC tissues. Downregulation of AKT2 was associated with reduced cell proliferation and invasion while increased apoptosis, while overexpression of AKT2 exerted opposite roles. In addition, the expression of miRNA-22-3p displayed an inverse association with NEAT1. miRNA-22-3p mimic and inhibitor suppressed and promoted HCC development, respectively. The luciferase assay revealed that both NEAT1 and AKT2 were direct target genes of miRNA-22-3p. Furthermore, knockdown and overexpression of NEAT1 suppressed and promoted tumor growth in the HCC mouse model, which were abolished by the miRNA-22-3p inhibitor and mimic, respectively. CONCLUSION In conclusion, the results demonstrate that NEAT1 promotes the development of HCC, both in vitro and in vivo, through regulating miRNA-22-3p/AKT2, and provides insight into developing a new strategy for HCC treatment.
Collapse
Affiliation(s)
- Xichang Zhou
- Department of Intervention, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou221009, People’s Republic of China
| | - Xiang Wang
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou221009, People’s Republic of China
| | - Yizhou Zhou
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou221009, People’s Republic of China
| | - Long Cheng
- Department of Intervention, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou221009, People’s Republic of China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou221009, People’s Republic of China
| | - Yangmei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou221009, People’s Republic of China
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou215006, People’s Republic of China
| |
Collapse
|
42
|
Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019; 8:cells8091015. [PMID: 31480503 PMCID: PMC6770362 DOI: 10.3390/cells8091015] [Citation(s) in RCA: 534] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.
Collapse
Affiliation(s)
- Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| |
Collapse
|
43
|
Hou P, Chen F, Yong H, Lin T, Li J, Pan Y, Jiang T, Li M, Chen Y, Song J, Zheng J, Bai J. PTBP3 contributes to colorectal cancer growth and metastasis via translational activation of HIF-1α. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:301. [PMID: 31291975 PMCID: PMC6622005 DOI: 10.1186/s13046-019-1312-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/04/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) remains the fourth most common cause of cancer-related mortality worldwide. We aimed to identify key molecules and signalling pathways mediating CRC growth and metastasis. Polypyrimidine tract-binding protein 3 (PTBP3) is a member of PTB family. A prooncogenic role for PTBP3 has also been discovered in several kinds of tumors. However, the expression and biological functions of the PTBP3 are still unknown in CRC. METHODS We analysed the expression levels of PTBP3 using tissue microarray containing 568 CRC tissues and corresponding non-tumor adjacent tissues. The correlations between the PTBP3 expression level and clinicopathological features were evaluated using the chi-square test. The functional characterization for the role and molecular mechanism of PTBP3 in CRC was investigated through a series of in vitro and in vivo experiments. RESULTS We showed that PTBP3 expression was increased in human CRC, and high PTBP3 expression was correlated with poor five-year overall survival and disease-free survival. Moreover, PTBP3 promoted tumor cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo. PTBP3 enhanced HIF-1α protein expression by directly binding to the 5'UTR HIF-1α mRNA and activated translation of HIF-1α. Furthermore, HIF-1α was responsible for PTBP3-induced cell migration and invasion. CONCLUSIONS PTBP3 appears to be a novel oncogene of CRC through binding to the IRES region of HIF-1α mRNA, which regulates HIF-1α translation. PTBP3 can serve as a promising predictive biomarker for recurrence and prognosis in patients with CRC.
Collapse
Affiliation(s)
- Pingfu Hou
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fang Chen
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongmei Yong
- Department of Medical Oncology, Huai'an Hospital to Xuzhou Medical University, Huai'an, Jiangsu Province, China
| | - Tian Lin
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Pan
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China
| | - Tao Jiang
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China
| | - Yansu Chen
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun Song
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
44
|
Su Y, Xu C, Liu Y, Hu Y, Wu H. Circular RNA hsa_circ_0001649 inhibits hepatocellular carcinoma progression via multiple miRNAs sponge. Aging (Albany NY) 2019; 11:3362-3375. [PMID: 31137016 PMCID: PMC6813922 DOI: 10.18632/aging.101988] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/20/2019] [Indexed: 04/14/2023]
Abstract
Circular RNA (circRNA) exerts an essential role in tumor development. Hsa_circ_0001649 (circ-0001649) was produced at the SHPRH gene locus containing exon 26-29. This study analyzed the specific mechanism of circ-0001649 in influencing the development of hepatocellular carcinoma (HCC). Relative levels of circ-0001649 in HCC cell lines and tissues were examined by qRT-PCR. The direct binding between circ-0001649 and miR-127-5p/miR-612/miR-4688 were verified through Dual-luciferase reporter gene assay, RNA Binding Protein Immunoprecipitation (RIP) assay and western blot detection. In vitro and in vivo regulatory roles of circ-0001649 in proliferative and migratory abilities of HCC were evaluated by EdU, Transwell and tumourigenicity assay, respectively. Results showed that circ-0001649 was markedly decreased in hepatocellular carcinoma cell lines and tumor tissues. Overexpression of circ-0001649 greatly inhibited proliferation and migration of HCC in vitro and in vivo. More importantly, we confirmed that circ-0001649 regulated cellular behaviors of HCC cells by targeting SHPRH. Furthermore, we determined that circ-0001649 served as a ceRNA to sponge miR-127-5p, miR-612 and miR-4688, thus activating SHPRH. In summary, our study showed that circ-0001649 was lowly expressed in HCC and inhibited HCC progression via multiple miRNAs sponge.
Collapse
Affiliation(s)
- Yang Su
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Yuting Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Yilin Hu
- Research Center of Clinical Medicine, Nantong University Affiliated Hospital, Nantong, China
| | - Haiyan Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
45
|
Fu R, Wang X, Hu Y, Du H, Dong B, Ao S, Zhang L, Sun Z, Zhang L, Lv G, Ji J. Solamargine inhibits gastric cancer progression by regulating the expression of lncNEAT1_2 via the MAPK signaling pathway. Int J Oncol 2019; 54:1545-1554. [PMID: 30864686 PMCID: PMC6438418 DOI: 10.3892/ijo.2019.4744] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Solamargine, a derivative from the steroidal solasodine in Solanum species, has exhibited anticancer activities in numerous types of cancer; however, its role in gastric cancer (GC) remains unknown. In the present study, it was demonstrated that Solamargine suppressed the viability of five gastric cancer cell lines in a dose‑dependent manner and induced notable alterations in morphology. Treatment with Solamargine promoted cell apoptosis (P<0.01). Solamargine increased the expression of long noncoding RNA (lnc) p53 induced transcript and lnc nuclear paraspeckle assembly transcript 1 (NEAT1)_2 (P<0.01) in GC by reducing the phosphorylation of extracellular signal‑regulated kinase (Erk)1/2 mitogen‑activated protein kinase (MAPK). To gain insight into the potential mechanism, an Erk1/2 inhibitor (U0126) was applied. The results revealed that lncNEAT1_2 expression levels increased, which was consistent with the effects of Solamargine. Downregulation of lncNEAT1_2 in GC cells revealed no effect on the expression levels of total Erk1/2 and, and counteracted the effect of Solamargine. Solamargine was observed to increase the expression of lncNEAT1_2 via the Erk1/2 MAPK signaling pathway. Of note, the knockdown of lncNEAT1_2 reduced the inhibitory effect of Solamargine (P<0.05). Additionally, experiments in vivo and in primary GC cells from patients demonstrated that Solamargine significantly suppressed tumor growth (P<0.05). In vivo analysis of a xenograft mouse model further supported that Solamargine could induce the apoptosis of cancer cells in tumor tissue as observed by a terminal deoxynucleotidyl transferase‑mediated dUTP‑biotin nick end labeling and H&E staining (P<0.05). Experiments in primary GC cells from patients verified the anti‑tumor effect of Solamargine. In summary, the findings of the present study indicated that Solamargine inhibited the progression of GC by regulating lncNeat1_2 via the MAPK pathway.
Collapse
Affiliation(s)
- Runjia Fu
- Department of Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Xiaohong Wang
- Department of Central Biobank, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Ying Hu
- Department of Central Biobank, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Hong Du
- Department of Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Bin Dong
- Department of Pathology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Sheng Ao
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Li Zhang
- Department of Pathology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Zhijian Sun
- K2 Oncology Co., Ltd., Beijing 100061, P.R. China
| | - Lianhai Zhang
- Department of Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Guoqing Lv
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jiafu Ji
- Department of Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
46
|
Shihabudeen Haider Ali MS, Cheng X, Moran M, Haemmig S, Naldrett MJ, Alvarez S, Feinberg MW, Sun X. LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Res 2019; 47:1505-1522. [PMID: 30476192 PMCID: PMC6379667 DOI: 10.1093/nar/gky1190] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 01/10/2023] Open
Abstract
The role of long non-coding RNAs (lncRNAs) in regulating endothelial function through the DNA damage response (DDR) remains poorly understood. In this study, we demonstrate that lncRNA maternally expressed gene 3 (Meg3) interacts with the RNA binding protein polypyrimidine tract binding protein 3 (PTBP3) to regulate gene expression and endothelial function through p53 signaling ─ a major coordinator of apoptosis and cell proliferation triggered by the DDR. Meg3 expression is induced in endothelial cells (ECs) upon p53 activation. Meg3 silencing induces DNA damage, activates p53 signaling, increases the expression of p53 target genes, promotes EC apoptosis, and inhibits EC proliferation. Mechanistically, Meg3 silencing reduces the interaction of p53 with Mdm2, induces p53 expression, and promotes the association of p53 with the promoters of a subset of p53 target genes. PTBP3 silencing recapitulates the effects of Meg3 deficiency on the expression of p53 target genes, EC apoptosis and proliferation. The Meg3-dependent association of PTBP3 with the promoters of p53 target genes suggests that Meg3 and PTBP3 restrain p53 activation. Our studies reveal a novel role of Meg3 and PTBP3 in regulating p53 signaling and endothelial function, which may serve as novel targets for therapies to restore endothelial homeostasis.
Collapse
Affiliation(s)
| | - Xiao Cheng
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Matthew Moran
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Center for Biotechnology, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Center for Biotechnology, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
- Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
47
|
Jimenez M, Arechederra M, Ávila MA, Berasain C. Splicing alterations contributing to cancer hallmarks in the liver: central role of dedifferentiation and genome instability. Transl Gastroenterol Hepatol 2018; 3:84. [PMID: 30505971 DOI: 10.21037/tgh.2018.10.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. HCCs are molecularly heterogeneous tumors, and this complexity is to a great extent responsible for their poor response to conventional and targeted therapies. In this review we summarize recent evidence indicating that imbalanced expression of mRNA splicing factors can be a relevant source for this heterogeneity. We also discuss how these alterations may play a driver role in hepatocarcinogenesis by impinging on the general hallmarks of cancer. Considering the natural history of HCC, we focused on two pathogenic features that are characteristic of liver tumors: chromosomal instability and phenotypic de-differentiation. We highlight mechanisms connecting splicing derangement with these two processes and the enabling capacities acquired by liver cells along their neoplastic transformation. A thorough understanding of the alterations in the splicing machinery may also help to identify new HCC biomarkers and to design novel therapeutic strategies.
Collapse
Affiliation(s)
- Maddalen Jimenez
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | | | - Matías A Ávila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| |
Collapse
|